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The Spectre vulnerability in modern processors has been reported in 2018. The key insight
is that speculative execution in processors can be misused to access secrets speculatively. Sub-
sequently even though the speculatively executed states are squashed, the secret may linger in
micro-architectural data structures such as cache, and hence can be potentially accessed by an
attacker via side channels. The Spectre vulnerability is merely one example of a family of vulner-
abilities which could lead to the so-called side channel attacks. In general, side channel attacks
utilize information which is leaked through certain side channels (e. g., time, energy, cache state
and sound wave) in order to reveal system secrets. For instance, a timing side channel attack sim-
ply observes variations in how long it takes to perform certain operations, and determines the
value of a certain secret (e. g., an encryption key) in the system. Such attacks involve analysis of
timing measurements and have been demonstrated to be effective in attacking a range of systems.
Timing side channel attacks are known to be challenging to model, detect and mitigate. This part
of the ProMiS project thus aims to develop an approach which allows us to systematically model
and analyze information leakage through the timing side channel. Timed Automaton (TA) [AD94]
is a prevalent formalism for real-time system modeling and verification. With TA, real-time behav-
iors are captured by clocking constraints on the guards of system transitions and resetting clocks.
Parametric Timed Automaton (PTA) [AHV93] extends TA with unknown constant parameters, e. g.,
by allowing parameters in the timing constraints. Existing research on PTA focuses on problems
such as parametric model checking, which aims to synthesize valuations of the unknown param-
eters such that a desirable property is satisfied. In such settings, a system design is modeled in the
form of a PTA. The parameters are constant values that are to be fixed (as design choices).

We propose to model systems that are potentially subject to timing side channel attacks in
the form of PTA and formulate the problem of mitigating timing attacks as a language inclusion
checking problem between PTA (a.k.a. a parameter synthesis problem). That is, we synthesize con-
straints on the parameters to make the model under such constraints satisfy the non-interference
and non-deducibility property (which are formal definitions of the absence of timing side channel
attacks). We show that the synthesis can be reduced to the parametric timed language inclusion
checking between PTA.

To the best of our knowledge, this is the first work on modeling the problem of mitigating tim-
ing side channel attacks as a language inclusion checking problem between PTA. To demonstrate
the feasibility of our modeling, we evaluated our approach using 14 programs from the DARPA
Space/Time Analysis for Cybersecurity (STAC) benchmark. The results show that we are able to
precise model the programs and demonstrate the corresponding timing attacks based on the mod-
els. Furthermore, for all of the programs in the experiments, we successfully derive meaningful
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constraints on the timing parameters such that timing attacks are mitigated. The details can be
found in the attached report.
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Abstract—We propose a semi-algorithm for the language inclusion
checking of Parameterized Timed Automaton (PTA). The algorithm is
further optimized with zone abstraction and simulation reduction. Such
an algorithm has important applications such as automatic mitigation
of the timing-based side-channel attacks, i.e., by synthesizing specific
valuations of unknown parameters which guarantees the absence of
timing attacks. We evaluate our approach using 14 programs from the
STAC benchmark, where PTA are systematically constructed from the
programs based on the control flow graph and the under/over approx-
imated execution time according to the micro-architecture. The results
indicate that our method always terminates on these programs and
generates useful results efficiently.

1 INTRODUCTION

Timed automata, introduced by Alur and Dill in [1], are as
one of the most prevalent models to specify and analyze
real-time systems. With timed automata, real-time behaviors
are captured by bounds (clocking constraints) on the guards
of system transitions and resetting clocks. However, the
behaviors of a timed automaton are very sensitive to the
values of these bounds, and it is rather challenging to find
their correct values in practice. Therefore, it is interesting
to reason parametrically by considering these bounds as
unknown parameters (and subsequently synthesize their
values based on the desirable properties). Timed automata
with such unknown constant parameters are called Param-
eterized Timed Automaton (PTA) [2]. Given a desirable
property, there are existing methods and tools to automat-
ically synthesize the valuation of the parameters [3] which
guarantees that the property is satisfied.

In this work, we study the language inclusion checking
problem of PTA, which to the best of our knowledge has
not been studied before. That is, given one PTA which
models the implementation (AP) and one which models the
specification (AS), the problem is to synthesize parameter
valuations such that the language of AP is included in the
language of AS . In other words, the problem is to fix the
valuations of the parameters such that the implementation
satisfies the specification. This problem is partially inspired
by the problem of mitigating timing side-channel attacks
(hereafter timing attacks, which are a way of inferring sys-
tem secrets through observing timed system behaviors [4]).
In particular, two essential properties that formalize the

notion of timing-attack-freeness, i.e., non-interference [5]
and non-deducibility [6], can be reduced to the language
inclusion checking of PTA. Synthesizing the parameter’s
valuation in the language inclusion checking problem of
PTA thus potentially allows mitigating timing attacks sys-
tematically.

In particular, we propose a semi-algorithm for solving
the language inclusion checking problem of PTA based on
zone abstraction. We further improve the performance of the
semi-algorithm with antichain-based simulation reduction.
As one application of the semi-algorithm, we formulate the
problem of mitigating timing attacks as a language inclu-
sion checking problem between PTA (a.k.a. a parameter
synthesis problem). That is, we synthesize constraints on
the parameters to make the model under such constraints
satisfy the non-interference and non-deducibility. We show
that the synthesis can be reduced to the parametric timed
language inclusion checking between PTA. Although our
semi-algorithm is not guaranteed to always terminate, we
show that it produces an over-approximation of all safe
parameter valuations if it is interrupted at any time. Further-
more, the synthesized constraint is exact when it terminates.

To the best of our knowledge, this is the first work on lan-
guage inclusion checking of PTA. It is also the first work to
apply such an approach to the mitigation of timing attacks.
Several existing works on mitigating timing attacks demand
hardware modifications. Among these, SafeSpec [7] conceals
the side effects of speculation in temporary structures, Invi-
siSpec [8] aims to make the transient loads invisible to the
cache hierarchy, and DAWG [9] works by isolating cache
behaviors in a protected domain. Concurrently, software-
based approaches for mitigating timing attacks have been
proposed. These approaches have considered the usage of
program repair and symbolic model checking [10], intro-
ducing new programming language [11] or using source
code obfuscation to provide an illusion of program exe-
cution at runtime [12]. In contrast to these approaches, we
model programs in the form of PTA and guarantee that our
synthesized design is free of timing attacks. The proposed
approach is the first one to provide provable guarantees
without additional language or hardware support.

Our approach has been implemented as a self-contained
software toolkit named KALI. To demonstrate the applica-
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bility of KALI, we evaluated KALI using 14 programs from
the DARPA Space/Time Analysis for Cybersecurity (STAC)
benchmark. Specifically, we replace timing delays in these
programs with unknown parameters and apply KALI to
generate constraints on these parameters. The results show
that KALI always terminates in our experiments within the
given time limit. For all of the programs in the experiments,
we successfully derive meaningful constraints on the timing
parameters such that timing attacks are mitigated.

The remainder of the paper is organized as follows. We
first formalize our problem in Section 2. In Section 3, we
present the details of our approach. In Section 4, we present
our implementation and evaluation of our method. We
review related work in Section 5 and conclude in Section 6.

2 MODELS, PROPERTIES AND PROBLEM DEFINI-
TION

In this section, we define our problem based on a system
model in the form of parametric timed automata (PTA [2]).
In our attacker model, we assume the attacker has a com-
plete knowledge of the system model, i. e., a white-box.
The attacker’s goal is to infer certain secrets only through
observing high-level (timed) events.

2.1 Models
We assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued
variables evolving at the same rate. A clock valuation is a
function w : X → R≥0. We write ~0 to denote the clock
valuation assigning 0 to all clocks. Given a constant d ∈
R≥0, w + d denotes the clock valuation s.t. (w + d)(x) =
w(x)+d for all x ∈ X. Intuitively, w+d is the clock valuation
after d time units have elapsed. Given a set of clocks R ⊆
X, we define the reset of a valuation w, denoted by [w]R,
as follows: [w]R(x) = 0 if x ∈ R, and [w]R(x) = w(x)
otherwise. That is, [w]R is the clock valuation after resetting
to 0 all clocks in R.

We assume a set P = {p1, . . . , pM} of parameters, i. e.,
unknown constants. A parameter valuation v is a function
v : P → Q+. A guard g is a constraint over X ∪ P defined
by a conjunction of inequalities of the form x ./ d, or x ./ p
with d ∈ N and p ∈ P; and ./ ∈ {<,≤,=,≥, >}. Given g,
we write w |= v(g) if the expression obtained by replacing
each x with w(x) and each p with v(p) in g evaluates to true.

Definition 1 (PTA). A PTA is a tuple A =
(Σ, L, `0,X,P, I,Ξ), where Σ is a finite set of synchronization
events including a special τ event which represents a silent
(unobserved) event; L is a finite set of locations; `0 ∈ L is
the initial location; X is a finite set of clocks; P is a finite set
of parameters; I is the invariant, assigning to every ` ∈ L
a guard I(`); and Ξ is a finite set of edges (or transitions)
ξ = (`, g, e, R, `′) where `, `′ ∈ L are the source and target
locations, e ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a
guard.

Given a parameter valuation v, we denote by v(A) the
non-parametric structure where all occurrences of a param-
eter pi have been replaced by v(pi). For instance, Fig. 1a

shows a simple PTA (inspired by [13, Fig. 1b]) where the
nodes are the locations, arrows represent edges which are
labeled with events and transition guards (and optionally
clocks to be reset during the transition), and p1 and p2 are
parameters.

In this work, we focus on the finite prefix-closed timed
language of PTA. Thus, an invariant I at location ` can
always be moved to the guard of every incoming and
outgoing transition of `, without changing the semantics of
the PTA. For example, Fig. 1b shows the PTA obtained by
moving all of the invariants of the PTA shown in Fig. 1a to
the transition guards. The state invariants are always moved
to the transition guards in our approach.

Definition 2 (Projection). Let A = (Σ, L, `0,X,P, I,Ξ) be a
PTA and Π ⊆ Σ be a set of events. The projection of A to Π,
written as A�Π, is a PTA (Σ, L, `0,X,P, I,Ξ′) such that for
every edge ξ = (`, g, e, R, `′) ∈ Ξ, ξ is in Ξ′ if e ∈ Π. Otherwise,
ξ′ = (`, g, τ, R, `′) is in Ξ′.

Definition 3 (Pruning). Let A = (Σ, L, `0,X,P, I,Ξ) be a
PTA and Π ⊆ Σ be a set of events. The pruning of Π from A,
written as A/Π, is a PTA (Σ, L, `0,X,P, I,Ξ′) such that for
every edge ξ = (`, g, e, R, `′) ∈ Ξ, ξ is in Ξ′ if e /∈ Π.

Fig. 2a shows the result of A�{l} where A is shown in
Fig. 1b, and Fig. 2b is A�{h}. Pruning event h from the PTA
A shown in Fig. 1b, written as A/{h}, removes locations `2
and `3, as shown in Fig. 3.

Definition 4 (Parallel composition). Let Ai =
(Σi, Li, `i0,Xi,Pi, Ii,Ξi) where i ∈ {0, 1} be two PTAs
such that all components are disjoint except Σ0 and Σ1, the
parallel composition of A0 and A1, written as A0 ‖ A1, is
a PTA A = (Σ, L, `0,X,P, I,Ξ) such that Σ = Σ0 ∪ Σ1;
L = L0 × L1; `0 = (`00, `

1
0); X = X0 ∪ X1; P = P0 ∪ P1; I

is defined such that I((`0, `1)) = I0(`0) ∩ I0(`1); and e is the
smallest set which satisfies the following:
• if (`i, gi, e, Ri, `

′
i) ∈ Ξ0 and (`j , gj , e, Rj , `

′
j) ∈ Ξ1 and

e ∈ Σi ∩ Σj , ((`i, `j), gi ∩ gj , e, Ri ∪Rj , (`′i, `′j)) ∈ Ξ′;
• if (`i, gi, ei, Ri, `

′
i) ∈ Ξi and ei 6∈ Σi ∩ Σ1−i,

((`i, `j), gi, ei, Ri, (`
′
i, `j)) ∈ Ξ′ for all `j ∈ L1−i.

Definition 5 (PTA Semantics). Let A = (Σ, L, `0,X,P, I,Ξ)
be a PTA and a parameter valuation v, the semantics of v(A) is
given by the timed transition system (S, s0,→), with
• S = {(`, w) ∈ L× RH≥0 | w |= v(I(`))}, s0 = (`0,~0),
• → consists of the discrete and (continuous) delay transi-

tion relations: i) discrete transitions: (`, w)
ξ7→ (`′, w′), if

(`, w), (`′, w′) ∈ S, and there exists ξ = (`, g, e, R, `′) ∈
Ξ, such that w′ = [w]R, and w |= v(g). ii) delay
transitions: (`, w)

d7→ (`, w + d), with d ∈ R>0, if
∀d′ ∈ [0, d], (`, w + d′) ∈ S.

We write (`, w)
(ξ,d)−→ (`′, w′) for a combination of a delay

and discrete transition if ∃w′′ : (`, w)
d7→ (`, w′′)

ξ7→ (`′, w′).
The sequence of timed events π = 〈(e0, d0), (e1, d1 +
d0), · · · , (en,

∑
i∈0··n di)〉 for all i is a (timed) trace of v(A).



3

`0 `2

`1 `3

x ≤ 3 x ≤ 3x ≥ p1
h

x ≥ p2
l

l

(a) A PTA example: Aex
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Figure 1: A PTA example: Aex
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(b) Aex�{h}

Figure 2: Projection examples

`0 `1
p2 ≤ x ≤ 3

l

Figure 3: A PTA pruning example: Aex/{h}

We define the language of v(A) to be the set of traces
of v(A), denoted as L(v(A)). Given a trace π of v(A),
we can project it to v(A0) by keeping only those timed
events whose events are in Σ0. In general, given a set of
events Π and a trace π, we write π�Π to be the sequence
of timed events whose events are in Π. Furthermore, we
write head(π) to be the first event in π and tail(π) to be the
remaining sequence of events in π.

A linear term over X ∪ P is of the form
∑

1≤i≤H αixi +∑
1≤j≤M βjpj + d, with xi ∈ X, pj ∈ P, and αi, βj , d ∈ Z.

A constraint C (i. e., a convex polyhedron) over X ∪ P is a
conjunction of inequalities of the form lt ./ 0, where lt is a
linear term.

Given a parameter valuation v, v(C) denotes the con-
straint over X obtained by replacing each parameter p in C
with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x
in v(C) with w(x). We say that v satisfies C , denoted
by v |= C , if the set of clock valuations satisfying v(C)
is nonempty. Given a parameter valuation v and a clock
valuation w, we denote by w|v the valuation over X∪P such
that for all clocks x, w|v(x) = w(x) and for all parameters
p, w|v(p) = v(p). We use the notation w|v |= C to indicate
that w(v(C)) evaluates to true. We say that C is satisfiable if
∃w, v s.t. w|v |= C .

We define the time elapsing of C , denoted by C↗, as
the constraint over X and P obtained from C by delaying
all clocks by an arbitrary amount of time. That is, w′|v |=
C↗ iff ∃w : X → R+,∃d ∈ R+ s.t. w|v |= C ∧ w′ = w + d.

s0 s2

s1 s3

ξ1

ξ2

ξ3

Figure 4: Parametric zone graph of Fig. 1

Given R ⊆ X, we define the reset of C , denoted by [C]R, as
the constraint obtained from C by resetting the clocks in R,
and keeping the other clocks unchanged. We denote by C↓P
the projection of C onto P, i. e., obtained by eliminating the
variables not in P (e. g., using Fourier-Motzkin [14]).

Definition 6 (Symbolic semantics). Given a PTA A =
(Σ, L, `0,X,P, I,Ξ), the symbolic semantics of A is the la-
beled transition system called parametric zone graph PZG =
(Ξ,S, s0,⇒), with
• S = {(`, C) | C ⊆ I(`)}, s0 =

(
`0, (

∧
1≤i≤H xi = 0)↗ ∧

I(`0)
)
, and

•
(
(`, C), ξ, (`′, C ′)

)
∈ ⇒ if ξ = (`, g, e, R, `′) and C ′ =(

[(C ∧ g)]R ∧ I(`′)
)↗ ∧ I(`′) with C ′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic
states, and arcs are labeled by edges of the original PTA. A
symbolic state is a pair (`, C) where ` ∈ L is a location, and
C its associated constraint. This graph is (in general) infinite
and, in contrast to the zone graph of timed automata, no
finite abstraction can be built for properties of interest; this
can be put in perspective with the fact that most problems
are undecidable for PTAs [15].

Example 1. Consider the PTA A in Fig. 1. The parametric zone
graph of A is given in Fig. 4, where ξ1 is the edge from `0 to `1
in Fig. 1, ξ2 is the edge from `0 to `2, and ξ3 is the edge from `2
to `1. In addition, the symbolic states are:

s0 = ( `0 , 0 ≤ x ≤ 3 ∧ p1 ≥ 0 ∧ p2 ≥ 0 )
s1 = ( `1 , x ≥ p2 ∧ 0 ≤ p2 ≤ 3 ∧ p1 ≥ 0 )
s2 = ( `2 , 3 ≥ x ≥ p1 ∧ 0 ≤ p1 ≤ 3 ∧ p2 ≥ 0 )
s3 = ( `3 , x ≥ p1 ∧ 0 ≤ p1 ≤ 3 ∧ p2 ≥ 0 ) .

2.2 Intuition and Problem Definition
In the following, we present two properties for captur-
ing information leakage for timed systems. One is non-
interference, and the other is non-deducibility.

Non-interference and non-deducibility properties are se-
curity properties that are widely studied [44], [45], [46].
Suppose two events H and L with high/low privacy, re-
spectively. The intuitive meaning of non-interference is to
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guarantee that an external observer could never infer that H
happens based only on observing L. The intuitive meaning
of non-deducibility is to guarantee that an external observer
could never infer whether an event H has occurred based
only on observing L, and vice versa.

In the following, we assume a TA A = (Σ, L, `0,X, I,Ξ).
Let L be a set of low events and H be a set of high events
such that τ 6∈ L and τ 6∈ H and L ∪H ∪ {τ} = Σ.

Definition 7 (Non-interference [5]). A satisfies (strong non-
deterministic) non-interference if and only if L(A/H) =
L(A�L).

Example 2. Consider the PTA in Fig. 1. We assume l ∈ L and
h ∈ H. Let v be a parameter valuation such that v(p1) = 1 and
v(p2) = 2. v(A) does not satisfy non-interference: intuitively, if
l occurs within time [1, 2), then an external observer immediately
knows that h has occurred. Formally, L(A/H) only allows the
transition from `0 to `1 (at time [2, 3]) while L(A�L) also allows
the transition from `2 to `3 (with the transition from `0 to `2
becoming silent—but still there). Let v′ be a parameter valuation
such that v′(p1) = v′(p2) = 2. Then v′(A) satisfies non-
interference.

It is trivial to show that L(A/H) ⊆ L(A�L) and thus
the problem of checking whether a timed automaton sat-
isfies non-interference reduces to the problem of checking
whether L(A�L) ⊆ L(A/H).

Definition 8 (Non-deducibility [6]). A satisfies non-
deducibility if and only if: ∀tr ∈ L(A�L),∀tr ′ ∈ L(A�H),∃π ∈
L(A) : tr = π�L ∧ tr ′ = π�H.

Example 3. We assume l ∈ L and h ∈ H. Fig. 2 shows A�L
andA�H given the PTAA shown in Fig. 1b. Let v be a parameter
valuation such that v(p1) = 2 and v(p2) = 1. v(A) does
not satisfy non-deducibility: intuitively, if l occurs within time
[1, 2], an external observer immediately deduces that h has not
occurred. Let v′ be a parameter valuation such that v′(p1) = 1
and v′(p2) = 1. Then v′(A) satisfies non-deducibility.

Our problems are thus defined as follows.
Synthesis problem:
INPUT: a PTA A
PROBLEM: Synthesize a set φ of valuations such that for
all v |= φ, v(A) satisfies non-deducibility (resp. non-
interference)

Hereafter, we say that Aφ satisfies non-deducibility
(resp. non-interference) if and only if v(A) satisfies non-
deducibility (resp. non-interference) for all v |= φ.

3 OUR APPROACH

In this section, we present our approach step-by-step. With-
out loss of generality, we fix a PTAA = (Σ, L, `0,X,P, I,Ξ),
a set of low events L and a set of high events H. Note that
a TA can be viewed as a special PTA whose P is an empty

set and thus our approach can be readily applied to check
whether a TA satisfies non-interference or non-deducibility.

3.1 Reduction to language inclusion checking
We first show that the synthesis problem for non-
interference and non-deducibility can be reduced to the
problem of language inclusion checking for PTA.

Theorem 1. Let φ be a constraint over P. Aφ satisfies non-
interference if and only if L(v(A)�L) ⊆ L(v(A)/H) for all v �
φ.

Proof. By Definition 7, for any TA v(A), v(A) satisfies non-
interference if and only if L(v(A)/H) = L(v(A)�L). Since
L(v(A)/H) ⊆ L(v(A)�L) is always true (by Definitions 2
and 3), the theorem holds.

Lemma 1. Let φ be a constraint on P. Aφ satisfies non-
deducibility if L((v(A)�L) ‖ (v(A)�H)) ⊆ L(v(A)) for all
v � φ.

Proof. Let tr be an arbitrary trace of A�L and tr ′ be an
arbitrary trace of A�H. Let head(tr) be (e, d) and head(tr ′)
be (e′, d′). We construct tr ‖ tr ′, which is a set of traces,
as shown in Formula (6) (where a is sequence concatena-
tion): By Definition 4, any trace π in tr ‖ tr ′ must be in
L((v(A)�L) ‖ (v(A)�H)). Given L((v(A)�L) ‖ (v(A)�H)) ⊆
L(v(A)), π ∈ L(v(A)). Since, tr = π�L ∧ tr ′ = π�H, by
Definition 8, A satisfies non-deducibility.

Lemma 2. Let φ be a constraint over P. For all v � φ, if
Aφ satisfies non-deducibility, then L((v(A)�L) ‖ (v(A)�H)) ⊆
L(v(A)).

Proof. Let π be an arbitrary trace in L((v(A)�L) ‖
(v(A)�H)). There must exist tr in A�L and some tr ′ in
A�H such that π ∈ tr ‖ tr ′ (for instance, tr = π�L and
tr ′ = π�H).

Let tr be an arbitrary trace ofA�L and tr ′ be an arbitrary
trace of A�H. We have tr ‖ tr ′ ⊆ L((v(A)�L) ‖ (v(A)�H)).
By Definition 8, if Aφ satisfies non-deducibility, there exists
π ∈ L(A) such that tr = π�L ∧ tr ′ = π�H. It remains to
show that if π ∈ L(A), π�L ‖ π�H ∈ L(A), which is true
since L and H are disjoint.

Theorem 2. Let φ be a constraint over P. Aφ satisfies non-
deducibility if and only if L((v(A)�L) ‖ (v(A)�H)) ⊆ L(v(A))
for all v � φ.

Proof. By Lemmas 1 and 2.

The above theorems reduce the synthesis problem to the
problem of language inclusion checking between two PTAs,
which we define as follows.
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tr ‖ tr ′ =





{〈(e, d)〉 a π | π ∈ tail(tr) ‖ tr ′} if d < d′

{〈(e′, d′)〉 a π | π ∈ tr ‖ tail(tr ′)} if d′ > d
{〈(e, d), (e′, d′)〉 a π | π ∈ tail(tr) ‖ tail(tr ′)}∪
{〈(e′, d′), (e, d)〉 a π | π ∈ tail(tr) ‖ tail(tr ′)} otherwise

(6)

Language Inclusion Checking problem:
INPUT: Two PTAs Ax = (Σx, Lx, `x0 ,Xx,Px, Ix,Ξx)
where x ∈ {P, S} such that LP and LS as well as XP
and XS are disjoint
PROBLEM: Synthesize a set φ of valuations (over PP ∪PS)
such that, for all v |= φ, L(v(AP )) ⊆ L(v(AS))

For instance, to solve the synthesis problem for non-
deducibility given the PTA shown in Fig. 1, we solve the
language inclusion problem from the parallel composition
of Fig. 2a and Fig. 2a to Fig. 1.

In general, the solution to the language inclusion check-
ing problem for PTA cannot be computed since it is known
that the simpler language inclusion problem for TA is unde-
cidable [1]. In [16], Wang et al. proposed a semi-algorithm
for the language inclusion problem of TA, which often
terminates in practice. Inspired by their work, we propose
in the following a semi-algorithm to solve the language
inclusion problem of Parametric-TA for solving our problem
defined in Section 2. Moreover, we synthesize the valuation
of the parameters in the language inclusion checking of
PTA to ensure that non-interference and non-deducibility
are satisfied. It can be seen as a “best-effort” procedure,
which is not guaranteed to terminate but, if it does, its result
is correct.

3.2 Language inclusion checking
Let AP = (ΣP , LP , `P0 ,XP ,PP , IP ,ΞP ) and AS =
(ΣS , LS , `S0 ,XS ,PS , IS ,ΞS) be two PTAs such that LP and
LS as well as XP and XS are all disjoint. The language
inclusion checking is to decide whether the language of AP
is a subset of that of AS . It is known that the problem can
be converted to a reachability problem on the synchronous
product of AP and the determinization of AS [47]. There-
fore, the first step is to determinize AS , and the second
step is to compute the synchronous product of AP and the
determinized AS using zone graph-based abstraction.

3.2.1 Unfolding specification
Conceptually, the first step is to unfold AS (adopted from
the approach in [17]), although the unfolding is obviously
done only on-the-fly in the actual implementation. The
unfolding of AS is an infinite timed tree, which can be
viewed as a PTA AS∞ with infinitely many locations. AS∞
has the input-determinacy property [17], with which we can
determinize it when we construct the synchronous product
of AP and AS∞. In the following, we first show how the
unfolding works using an example, and then define it.

Consider the PTA in the left of Fig. 5 (essentially a
parameterization of [16, Fig. 1c]). The beginning of the
unfolding is given on the right. Let 〈z0, z1, z2, · · · 〉 be an
infinite sequence of fresh clocks. At each level of the tree,

`0 `1

`2`3

x > p
e
{x}

e
{x, y}

x > 0
e
{x}

y > 0
e

x ≤ 3
e
{x}

`0

{z0}

`1

{z1, z0}

`2

{z2}

`1

{z3, z2}

`3

{z2}

`2

{z4}

`0

{z4, z2}

z0 > p
e
{z1}

e
{z2}

z2 > 0
e
{z3}

z2 > 0
e
{z3}

e
{z4}

z2 ≤ p
e
{z4}

Figure 5: A PTA (left) and its unfolding (right)

a new clock from the sequence is introduced to replace the
ordinary clocks. For instance, a fresh clock z0 is introduced
initially. Since clocks x and y start simultaneously as z0,
we can use z0 to replace x in the transition guard from `0
to `1. Similarly, a fresh clock z1 is introduced afterward at
level 1 of the tree, e. g., when `1 is reached for the first time
in Fig. 5. Since x is reset and restarts at the same time as
z1, z1 is used to replace x in transition guards from `1. This
process continues and it is straightforward to see that the
tree would contain only the freshly introduced clocks. To
facilitate reduction later, each node in AS∞ is associated
with a set of active clocks. A clock is active at a node in
AS∞ if and only if it is a part of a constraint labeling any
subsequent transitions or nodes. For instance, z0 is active at
the left-most node in Fig. 5 and it is no longer active at the
third node from the left.

In the following, we define the unfolding ofAS formally.
Let Z = 〈z0, z1, · · · 〉 be an infinite sequence of clocks.
The unfolding AS is an infinite timed tree, which can
be viewed as a PTA AS∞ = (Σ∞, L∞, `∞0 ,X∞,P∞,Ξ∞)
with infinitely many locations. Furthermore, we assume that
AS∞ is associated with a function level such that level(n)
is the level of node n in the tree for all n ∈ L∞. A node n
in L∞ is in the form of (`, A) where ` ∈ LS and A ⊆ Z
is a set of active clocks. Given any node n, we define a
function fn : XS 7→ Z which maps ordinary clocks in
XS to active clocks in Z . In an abuse of notations, given a
clock constraint δ on XS , we write fn(δ) to denote the clock
constraint obtained by replacing clocks in XS with those in
Z according to fn. Given any node n = (`, A), we define A
to be {fn(c) | c ∈ XS}. The initial state `∞0 and transition
relation T∞ are defined as follows.

• There is a level-0 node n = (`S0 , {z0}) in L∞ with
level(n) = 0, fn(c) = z0 for all c ∈ XS .
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• For each node n = (`, A) at level i and for each transi-
tion (`, δ, e,X, `′) ∈ ΞS , we add a node n′ = (`′, A′) in
L∞ at level i+ 1 such that fn′(c) = fn(c) if c ∈ XS \X ,
fn′(c) = zi+1 if c ∈ X ; level(n′) = i + 1. We add a
transition (n, fn(δ), e, {zi+1}, n′) to Ξ∞.

Note that transitions at the same level have the same newly
introduced clocks. Given a node n = (`, A) in the tree,
observe that not every clock x inA is active as the clock may
never be used to guard any transition from q. Hereafter, we
assume that inactive clocks are always removed.

3.2.2 Zone abstraction

To solve the language inclusion problem between AP
and AS∞, we build a parametric zone graph of the syn-
chronous product of AP and the determinization of AS∞.
This graph is PZG = (ΞP ,S, s0,⇒). Note that the first
component is the set of edges of AP , i. e., we label edges
of the product with transitions of AP . A state in S is a
configuration of the form (`P , JS , C) where `P ∈ LP , JS
is a set of nodes in L∞, and C is a parametric zone. Recall
that a state of AS∞ is of the form (`S , A), where A is a
set of active clocks. Given a set of states JS of AS∞, we
write Act(JS) to denote the set of all active clocks, i. e.,
{x | ∃(`S , A) ∈ JS ∧ x ∈ A}. C constrains all clocks in
Act(JS) as well as the parameters.

The initial state s0 of the parametric zone graph is:
(`P0 , {`∞0 }, (Act(`∞0 ) = 0 ∧ XP = 0)↑). Next, we define
⇒ by showing how to generate successors of a given ab-
stract configuration (`P , JS , δ). Let Ξ∞(e, JS) be the set of
transitions in Ξ∞ which start with a state in JS and are
labeled with event e. The guard conditions of transitions
in Ξ∞(e, JS) may not be mutually exclusive. We define a
set of constraints Cons(e, JS) such that each element in
Cons(e, JS) is a constraint which conjuncts, for each transi-
tion in Ξ∞(e, JS), either the transition guard or its negation.
Notice that elements in Cons(e, JS) are by definition mutu-
ally exclusive. Given (`P , JS , δ) and an outgoing transition
(`P , gp, e,XP , `

′
P ) from `P in AP , for each g ∈ Cons(e, JS)

we generate a successor (`′P , J
′
S , δ
′) as follows.

• For any state (`S , A) ∈ JS and any transition
((`S , A), gS , e, Y, (`

′
S , A

′)) ∈ Ξ∞, if δ∧gP ∧g∧gS is not
false, then (`′S , A

′) ∈ J ′S .
• All states in JS are at the same level in the tree
AS∞ and thus all transitions in Ξ∞(e, JS) have the
same freshly introduced clock. Let y be that clock and
δ′ = ([y ∪XP 7→ 0](δ ∧ g ∧ gP ))↑ if JS 6= ∅ otherwise
δ′ = [y ∪XP 7→ 0](δ ∧ g ∧ gP ).

Intuitively, given any state (`P , JS , δ) in the product, JS is
the set of nodes in AS which can be reached via the same
timed word for reaching `P in AP (and δ is the constraint
which must be satisfied). If JS is ∅, we have a timed word
which is in the language of AP but not that of AS . The
following theorem establishes that the language inclusion
problem is reduced to a reachability problem in PZG. Its
proof follows the proof of [16, Theorem 1].

Theorem 3. L(AP) ⊆ L(AS) if and only if there is no
reachable state of the form (`P , ∅, δ) in PZG.

With the above, our goal is then to synthesize parameter
valuations so that such target states are unreachable in the
product, i. e., by making δ unsatisfiable.

3.3 Simulation reduction
We have reduced the parametric language inclusion check-
ing problem to a reachability problem in PZG. Next, we
establish a simulation relationship between states of PZG
so that we can apply simulation reduction in solving the
problem.

Definition 9 (simulation). Let (S, s0,Σ,→) be a labeled tran-
sition system. Let F ⊆ S be a set of target states. A state s0 ∈ S
is simulated by s1 ∈ S with respect to F if s0 ∈ F implies
s1 ∈ F ; and for all e ∈ Σ, (s0, e, s

′
0) ∈ → implies there exists

(s1, e, s
′
1) ∈ → such that s′0 is simulated by s′1 with respect to

F .

In order to check whether a state in F is reachable, if
we know that s0 is simulated by s1, s0 can be skipped
during system exploration if s1 has been explored already.
Intuitively, this is because if a state in F is reachable from s0,
it must be reachable from s1. This is known as simulation
reduction.

To compare two states (`P , JS , δ) and (`′P , J
′
S , δ
′) of

PZG, one problem is that JS and J ′S as well as δ and δ′

may have different clocks. Since the names of the clocks do
not matter semantically, we define clock renaming functions
to solve the problem. A renaming function from a set of
clocks X to Y is a bijective function θ : X → Y which maps
every clock in X to one in Y . We further write θ(A) ⊆ B
where A is a set of clocks to mean that A is a subset of B
after clock renaming; and we write θ(JS) ⊆ J ′S to mean that
for every (`, A) in JS , there exists (`′, A′) in J ′S such that
` = `′ and θ(JS) = J ′S .

The following lemma is inspired by the Anti-Chain algo-
rithm [18].

Lemma 3. Let (`P , JS , δ) and (`P , J
′
S , δ
′) be states in PZG.

Let F = {(`, ∅, δ0)} be the set of target states. (`P , J
′
S , δ
′)

simulates (`P , JS , δ) w.r.t. F if there is a renaming function
θ : Act(JS)→ Act(J ′S) s.t. θ(JS) ⊇ J ′S and θ(δ) =⇒ δ′.

Proof. The proof follows the proof of [16, Lemma 2].

3.4 Algorithm
In the following, we present our semi-algorithm for para-
metric language inclusion checking. Let PZG be the para-
metric zone graph of the product as explained above.
Algorithm 1 constructs PZG on-the-fly while performing
simulation reduction. It maintains three data structures. One
is a set Working which stores states which are yet to be
explored. Another is a set Done which contains states which
have already been explored. The last one is φ, which is
the constraint over the parameters to be returned. Initially,
Working is set to be {s0} and Done is empty. During
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Algorithm 1: Parametric language inclusion syn-
thesis

input : PZG = (ΞP ,S, s0,⇒)
1 Working ← s0;
2 Done ← ∅;
3 φ← true;
4 while Working 6= ∅ or times out do
5 remove (`P , JS , δ) from Working
6 Done ← Done ∪ {(`P , JS , δ)}
7 forall ps ∈ Done s.t. (`P , JS , δ) simulates ps do

Done ← Done \ {ps} ;
8 forall (l′P , J

′
S , δ
′) such that

(`P , JS , δ)⇒(l′P , J
′
S , δ
′) do

9 if J ′S = ∅ then
10 φ← φ ∧ ¬(δ′↓P) ; /* Prevent this

word */

11 if 6 ∃ps ∈ Done s.t. (`′P , J
′
S , δ
′) is simulated by

ps then
12 Working ←Working ∪ {(`′P , J ′S , δ′)}

13 return φ;

the loop from line 4 to line 8, a state is removed from
Working and added to Done each time. To keep Done small,
whenever a state s is added into Done , all states in Done
which are simulated by s are removed.

We generate successors of s at line 8. For each succes-
sor, if it is a target state, we obtain the constraint on the
parameters at line 10 and its negation is conjuncted with φ.
Intuitively, δ′ is the constraint that must be satisfied so that
the transition (`P , JS , δ)⇒(l′P , J

′
S , δ
′) is feasible. In order

to make it infeasible (by constraining the parameters), we
project the constraint onto the parameters δ′↓P to obtain a
constraint over the parameters which must be satisfied so
that the transition is feasible. Its negation is then conjuncted
with φ. That is, if its negation is satisfied, this transition be-
comes infeasible and thus it prevents violation of language
inclusion.

If s is simulated by a state in Done , it is ignored.
Otherwise, it is added into Working so that it will be
explored later. Lastly, we return the constraint φ at line 13
after exploring all states. We remark that Done is an Anti-
Chain [18] as any pair of states in Done is incomparable. The
following theorem states that the semi-algorithm always
produces correct results

Theorem 4. If Algorithm 1 terminates and returns φ, ∀v �
φ. L(v(AP)) ⊆ L(v(AS)).

In general, Algorithm 1 does not always terminate. If
it times out after a while, φ is guaranteed to be an over-
approximation of all safe parameter valuations.

Corollary 1. If Algorithm 1 times out and returns φ, ∀v 6�
φ. L(v(AP)) 6⊆ L(v(AS)).

Based on Theorems 1 and 2, the above algorithm can be
applied to solve the synthesis problem for non-interference
and non-deducibility. That is, given a PTA model A, we

check L(v(A)�L) ⊆ L(v(A)/H) using the algorithm and
returns the constraint for non-interference; and we check
L((v(A)�L) ‖ (v(A)�H)) ⊆ L(v(A)) using the algorithm
for non-deducibility.

Example 4. For example, to solve the synthesis problem for
Aex shown in Fig. 1 for non-interference, we check whether the
language of (Aex�{l}) shown in Fig. 2(a) is included in that of
L(v(A)/H). The constructed PZG is shown in Fig. 6, where δ is
x = z0∧x ≥ p1∧x ≤ 3∧ (z0 < p2∨ z0 > 3), which simplifies
to p1 ≤ z0 < p2. To make sure this constraint is unsatisfiable, we
have p1 ≥ p2.

4 EVALUATION

We implement a tool named KALI based on the approach.
We use Z3 [19] to solve Linear Real Arithmetic constraints
and Fourier-Motzkin [20] to eliminate the unrelated vari-
ables. To evaluate the relevance of KALI, we conduct a
series of experiments using a PC with Intel® Core™ i5-9500
CPU at 3.10 GHz and 8.0 GiB RAM, running Linux Ubuntu
18.04.4 LTS. The tool and the models are available online at
1.

4.1 Modeling programs in PTAs

We apply KALI to the DARPA STAC (Space/Time Anal-
ysis for Cybersecurity) programs 2. These programs are
being released publicly to facilitate researchers to develop
methods and tools for identifying STAC vulnerabilities in
the programs. We systematically transfer the programs into
PTA (ignoring complications due to hardware architecture
such as caching for simplicity). The readers are referred to
the rich literature documented in, for instance, [21]. In this
work, we instead use the following simplistic assumption
from [22] on the execution time of a program statement and
focus on mitigating the timing attack problem. We assume
that the execution time of a program statement other than
Thread.sleep(n) is within a range [0, ε] where ε is a small
integer constant (in milliseconds), whereas the execution
time of statement Thread.sleep(n) is within a range [n, n+ ε].

We use identifiers of the form STAC:1 where 1 denotes
the identifier in the library. There are both timing-related
and space-related vulnerabilities in the STAC program. We
focus on the timing related programs except those that deal
with complex computations such as operations on matrices
(STAC:16:v) or probabilities (STAC:18:v). We translated
these programs to PTAs with the help of the control flow
graphs. The loops in the programs are unrolled based on
the loop guards.

Example 5. We encode STAC:1 as follows. In this program, a
user guesses the value of a secret variable, the variable x stands
for the guessed value, and the variable secret stands for the
secret value. There are two versions of STAC:1, one vulnerable

1. https://github.com/z971586668/ptata/tree/master
2. https://github.com/Apogee-Research/STAC/
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(`0, {`0}, x = z0) (`2, {`0}, x = z0 ∧ x ≥ p1)

(`1, {`1}, x = z0 ∧ x ≥ p2) (`3, {`1}, (x = z0 ∧ x ≥ p2 ∧ z0 ≥ p1))

(`3, ∅, δ)

Figure 6: Non-interference synthesis example

version and one non-vulnerable version. In the vulnerable version,
if x ≤ secret, the program sleeps for 1024 seconds; otherwise,
it sleeps for 2048 seconds. In the non-vulnerable version, the
program sleeps for 2048 seconds in both cases. Fig. 7 illustrates
the model of the vulnerable version with 2 parameters p1 and p2.
Since the program is executed on a server, the initialize steps (`1,
`2, `3) are hidden from the users, the corresponding transitions are
labeled with τ . Before applying KALI, we systematically remove
all τ -transitions in a way that does not alter the semantics of the
PTA [41]. Note that one of the two branches is labeled with h.

4.2 Experimental results

The statistics of the programs that we verified are shown
in Table 1 where the first column is the name of the pro-
gram, and the second column is the number of lines of the
program. Note that multiple sets of parameters are used for
behaviors depending on user inputs. The timing parameter
pi denotes the number of unknown time units that a process
decides to wait at a certain state (for mitigating timing
attack). A few additional parameters are used to model
program behaviors, e. g., parameter xmi is the (unknown
but constant) position of the input that is different from the
secret value; the parameter xtrue is the number of true in a
random Boolean array, and the parameter xlen is the length
of the user input. Note that although these parameters are
not timing parameters (i. e., they are discrete unknown con-
stants), KALI supports such parameters naturally without
any extension.

Table 1 shows the result of checking non-interference and
non-deducibility using KALI, where the third and fourth
column shows the time (in seconds) for the checkings, and
the last column shows the synthesized constraints. The pos-
sibility of side-channel attacks is mitigated if the parameters
satisfy the constraints. First, it can be observed that not only
KALI terminates on each and every model, but also that it
is rather efficient (within seconds). This is due to multiple
reasons, i.e., the reduction techniques presented in Section 3
help to make sure the semi-algorithm is terminating; the
step of systematically removing τ -transitions before apply-
ing KALI often reduces the number of states in the PTAs
significantly (which is especially important for the specifi-
cation PTA); and the number of parameters is often limited
in these programs. Second, the synthesized constraints are
manually checked to be correct. The most complicated con-
straints are generated for STAC:12e:v, STAC:12c:v, and
STAC:12c:n. In the following, we present some of the re-
sultant constraints as examples. For instance, the parameter
constraints returned from the verification for STAC:1:v is
p1−p2 ≤ 1024 and p1−p2 ≥ 1024 against non-interference.
That is to say, the program satisfies non-interference if and

only if p1 = p2 + 1024. Referring to Fig. 7, it implies that
both branches must wait for the same number of time units
to mitigate timing attack. Lastly, we observe that the re-
sults are identical (after simplification) for checking against
non-deducibility and non-interference. This is mainly due
to how the high events are introduced. We are currently
exploring theoretical results on when these two notions are
the same so that we can reduce the verification time of
non-deducibility by reducing it to the verification of non-
interference.

5 RELATED WORK

In this section, we position our work with respect to previ-
ous approaches in the fields of (parametric) timed automata
and timing attacks.

(Parametric) TA and language inclusion checking: This
work is closely related to the line of research on defining
and analyzing time-related security properties based on
formalisms such as TA or PTA. In [23], Barbuti et al. defined
the notion of timed non-interference. In [24], Cassez et al.
proposed a related property called dense-time opacity for
the discrete-event system, extending from opacity. It re-
veals that verifying opacity against the very restrictive class
of event-recording automata [25] is already undecidable.
In [26], Vasilikos et al. define the security of TA in terms of
information flow using a bisimulation relation and develop
an algorithm for deriving a sound constraint for satisfying
the information flow property locally based on relevant
transitions. In [27], André et al. define a notion of non-
interference based on PTA and give a procedure to solve the
problem without guarantee of termination. Their definition
is different from ours, as their attacker can only observe the
reachability of some discrete locations. Our work is inspired
by the line of works on language inclusion checking for
timed systems. Although the general problem of language
inclusion checking for timed systems (i. e., those modeled
using TA) is shown to be undecidable in [1], there have been
attempts to address the problem by restricting the expres-
siveness of TA (e. g., [25], [28]) or through semi-algorithms
which terminate often [16]. This algorithm developed in
this work is inspired by [16], although [16] neither works
with PTA nor is concerned with security properties such
as non-interference or non-deducibility. Related to language
inclusion is the problem of learning an unknown language:
although the problem is again undecidable for TAs [1], the
problem was tackled for the subclass of event-recording
automata [25] in [29], [30], and extended to PTA in [31].

Timing attacks: Statically analyzing timing channels has
been an active topic of research in the last two decades [32],
[33], [34], [35], [36]. The general idea behind these works
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Figure 7: PTA modeling STAC:1:v

Table 1: Constraints synthesized and verification times

Program LOC I-time (s) D-time (s) Constraints
STAC:1:v 90 0.436 0.401 p1 = p2 + 1024
STAC:1:n 90 0.700 0.894 p1 = p2

STAC:3:v 108
0.447 0.832 p11 = p12
0.448 0.743 p22 = p21 + 380
0.429 0.546 p31 = p32

STAC:3:n 108
0.441 0.786 p11 = p12
0.443 0.495 p11 = p12
0.448 0.490 p31 = p32

STAC:4:v 131 0.528 0.779 p1 − p2 + 1.5× xmi = 15
STAC:4:n 133 0.501 0.475 p1 − p2 + 0.15× xmi = 15
STAC:6:n 103 0.908 0.873 p1 = p2
STAC:6:v 110 0.670 0.541 −p1 + p2 + 1.14× xmi = 11.4
STAC:11A 103 0.873 0.896 p1 − p2 = 1000
STAC:11B 107 0.448 0.647 10× xtrue = p1 − p2
STAC:12e:v 102 1.009 3.339 p4 − p3 = 5 ∧ p1 = p2 = p4
STAC:12c:v 102 0.762 3.814 p4 − p3 = 5 ∧ p1 = p2 = p4
STAC:12c:n 117 0.737 3.793 p3 − p1 = 0.08 ∧ p2 = p3 = p4
STAC:14:n 109 0.363 0.332 0.01× xmi − p1 + p2 = 0.01× xlen

is to statically model the side-channel behavior, including
micro-architectural side channels. Then, based on these
models, the leakage of information from a program is ana-
lyzed. Existing works have also focused on testing the pres-
ence of timing channels, including finding the violations of
the constant-time programming paradigm [37], maximizing
the timing difference in secret-dependent executions [38] or
finding timing-leakage in the presence of speculation [39].
However, none of these works synthesize provable mitiga-
tion to seize timing attacks, no focus on mitigating timing
attacks. Contrary to the works that focus on the synthesis
of side-channel attacks, such as recent work using symbolic
models [42], our work focuses on the synthesis of mitigation.
Our proposed approach is orthogonal to the line of research
based on the constant-time programming paradigm [43], as
our proposed framework does not rely on any specific pro-
gramming styles or rules. In particular, we model arbitrary
programs via PTAs and synthesize parameters that result in
provable mitigation.

6 CONCLUSION

In this work, we propose a novel (and first) semi-algorithm
for the parametric timed language inclusion checking of PTA,
which overcomes the limitations of TA in the verification
of systems with incomplete specifications. To this end, we
propose new zone abstraction and simulation reduction
techniques for solving the problem. We then apply the
language inclusion checking to the mitigation of timing
attacks. In particular, we reduce the mitigation of timing
attacks to a language inclusion checking problem between
two PTAs. The synthesis results on the parameters provide

a provable guarantee against timing attacks. This checking
is an important one not only for mitigating timing attacks
but also in the general model checking community. We
therefore believe that our procedure implemented in our
toolkit can have applications beyond the security problems
we considered in this work. Future works include more
aggressive state space reduction techniques to ensure better
scalability of our algorithm.
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[27] André, Étienne, and Aleksander Kryukov. Parametric non-
interference in timed automata. 2020 25th International Conference
on Engineering of Complex Computer Systems (ICECCS). IEEE,
2020.

[28] Abdulla, Parosh Aziz, et al. Universality analysis for one-clock
timed automata. Fundamenta Informaticae 89.4 (2008): 419-450.

[29] Grinchtein, Olga, Bengt Jonsson, and Martin Leucker. Learning
of event-recording automata. Theoretical Computer Science 411.47
(2010): 4029-4054.

[30] Lin, Shang-Wei, et al. Learning assumptions for compositional
verification of timed systems. IEEE Transactions on Software En-
gineering 40.2 (2013): 137-153.
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