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Information leakage can have dramatic consequences on systems security. Among harmful
information leaks, the timing information leakage occurs whenever an attacker successfully de-
duces confidential internal information. In a first line of works [AS19; And+22], we consider that
the attacker has access (only) to the system execution time. We address the following timed opac-
ity problem: given a timed system, a private location and a final location, synthesize the execution
times from the initial location to the final location for which one cannot deduce whether the sys-
tem went through the private location. We also consider the full timed opacity problem, asking
whether the system is opaque for all execution times. We show that these problems are decidable
for timed automata (TAs) [AD94] but become undecidable when one adds parameters, yielding
parametric timed automata (PTAs) [AHV93]. We identify a subclass with some decidability results.
We then devise an algorithm for synthesizing PTAs parameter valuations guaranteeing that the
resulting TA is opaque. We finally show that our method can also apply to program analysis.

In a second direction, we considered a notion of non-interference for timed automata
(TAs) [AD94] that allows to quantify the frequency of an attack; that is, we infer values of the
minimal time between two consecutive actions of the attacker, so that (s)he disturbs the set of
reachable locations. We also synthesize valuations for the timing constants of the TA (seen as pa-
rameters) guaranteeing non-interference. We show that this can reduce to reachability synthesis
in parametric timed automata. We apply our method to a model of the Fischer mutual exclusion
protocol and obtain preliminary results [AK20].
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Abstract—We consider a notion of non-interference for timed
automata (TAs) that allows to quantify the frequency of an
attack; that is, we infer values of the minimal time between
two consecutive actions of the attacker, so that (s)he disturbs the
set of reachable locations. We also synthesize valuations for the
timing constants of the TA (seen as parameters) guaranteeing
non-interference. We show that this can reduce to reachability
synthesis in parametric timed automata. We apply our method
to a model of the Fischer mutual exclusion protocol and obtain
preliminary results.

Index Terms—security, non-interference, parametric timed
automata

I. INTRODUCTION

Timed automata (TAs) [AD94] are a powerful formalism
using which one can reason about complex systems involving
time and concurrency. Among various security aspects, non-
interference addresses the problem of deciding whether an
intruder (or attacker) can disturb some aspects of the system.

In [BT03], a decidable notion of non-interference is pro-
posed to detect whether an intruder with a given frequency of
the actions (s)he can perform is able or not to disturb the set
of discrete reachable behaviors (locations); that is, this notion
can quantify the frequency of an attack In this paper, we extend
that definition in two different ways: first, by allowing some
free parameters within the model—that becomes a parametric
timed automaton (PTA) [AHV93]. Second, by synthesizing the
admissible frequency for which the system remains secure,
i. e., for which the actions of the intruder cannot modify the
set of reachable locations.

a) Contribution: In this work, we propose a parametric
notion of non-interference in timed automata that allows to
quantify the speed of the attacker necessary to disturb the
model. Our contribution is threefold: 1) we define a notion
of n-location-non-interference for timed automata; 2) we show
that checking this notion can reduce to reachability synthesis in
PTAs; 3) we model a benchmark from the literature, spot and
correct an error in the original model, and we automatically
infer using IMITATOR [And+12] parameter valuations for
which the system is n-location-non-interfering.

This is the author version of the manuscript of the same name published
in the proceedings of the 25th International Conference on Engineering of
Complex Computer Systems (ICECCS 2020). This work is partially supported
by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-
CE25-0015).

b) Related work: It is well-known (see e. g., [Koc96;
Ben+15]) that time is a potential attack vector against se-
cure systems. That is, it is possible that a non-interferent
(secure) system can become interferent (insecure) when timing
constraints are added [GMR07]. In [Bar+02; BT03], a first
notion of timed non-interference is proposed, based on traces
and locations. The latter is decidable as it reduces to the
reachability problem for TAs [AD94]. In [GMR07], Gardey
et al. define timed strong non-deterministic non-interference
(SNNI) based on timed language equivalence between the
automaton with hidden low-level actions and the automaton
with removed low-level actions.

In [Cas09], the problem of checking opacity for timed
automata is considered: it is undecidable whether a system is
opaque, i. e., whether an attacker can deduce whether some
set of actions was performed, by only observing a given
set of observable actions (with their timing). In [AS19], we
proposed an alternative (and decidable) notion of opacity for
timed automata, in which the intruder can only observe the
execution time of the system. We also extend this notion to
PTAs, and propose a procedure to automatically synthesize
internal timings and admissible execution times for which the
system remains opaque.

In [VNN18], Vasilikos et al. define the security of timed
automata in term of information flow using a bisimulation re-
lation and develop an algorithm for deriving a sound constraint
for satisfying the information flow property locally based on
relevant transitions.

In [Ben+15], Benattar et al. study the control synthesis
problem of timed automata for SNNI. That is, given a timed
automaton, they propose a method to automatically generate a
(largest) sub-systems such that it is non-interferent if possible.
Different from the above-mentioned work, our work considers
parametric timed automata, i. e., timed systems with unknown
design parameters, and focuses on synthesizing parameter
valuations which guarantee non-interference. In [NNV17], the
authors propose a type system dealing with non-determinism
and (continuous) real-time, the adequacy of which is ensured
using non-interference. We share the common formalism of
TA; however, we mainly focus on non-interference seen as
the set of reachable locations, and we synthesize internal parts
of the system (clock guards), in contrast to [NNV17] where
the system is fixed.

c) Outline: In Section II, we recall the necessary pre-
liminaries, including non-interference for TAs. In Section III,
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Figure 1: A PTA example

we define the problem of parametric location-non-interference
for (P)TAs, and we draft a solution reducing to reachability
synthesis. In Section IV, we propose a new model for the
Fischer mutual exclusion protocol. In Section V, we apply IMI-
TATOR to this model, and obtain preliminary results ensuring
non-interference. We sketch future directions of research in
Section VI.

II. PRELIMINARIES

We assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation
is µ : X→ R≥0. We write ~0 for the clock valuation assigning
0 to all clocks. Given d ∈ R≥0, µ + d is s.t. (µ + d)(x) =
µ(x) + d, for all x ∈ X. Given R ⊆ X, we define the reset
of a valuation µ, denoted by [µ]R, as follows: [µ]R(x) = 0 if
x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters. A
parameter valuation v is v : P→ Q+. We assume ./ ∈ {<,≤
,=,≥, >}. A guard g is a constraint over X∪ P defined by a
conjunction of inequalities of the form x ./

∑
1≤i≤M αipi+d,

with pi ∈ P, and αi, d ∈ Z. Given g, we write µ |= v(g) if the
expression obtained by replacing each x with µ(x) and each p
with v(p) in g evaluates to true.

A. Parametric timed automata

Definition 1 (PTA). A PTA A is a tuple
A = (Σ, L, `0,X,P, I, E), where: i) Σ is a finite set of
actions, ii) L is a finite set of locations, iii) `0 ∈ L is the
initial location, iv) X is a finite set of clocks, v) P is a
finite set of parameters, vi) I is the invariant, assigning to
every ` ∈ L a guard I(`), vii) E is a finite set of edges
e = (`, g, a,R, `′) where `, `′ ∈ L are the source and target
locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g
is a guard.

Example 1. Consider the PTA in Fig. 1, containing two
clocks x and y, and one parameter p. `0 is the initial location.
Observe that the transition to `2 can only be taken if the
difference between y and x is larger than 2. This can only
happen for selected valuations of the parameter p.

Given v, we denote by v(A) the non-parametric structure
where all occurrences of a parameter pi have been replaced
by v(pi). We denote as a timed automaton any structure v(A).

The synchronous product (using strong broadcast, i. e.,
synchronization on a given set of actions) of several PTAs
gives a PTA.

Definition 2 (synchronized product of PTAs). Let N ∈ N.
Given a set of PTAs Ai = (Σi, Li, (`0)i,Xi,Pi, Ii, Ei), 1 ≤
i ≤ N , and a set of actions Σs, the synchronized product of
Ai, 1 ≤ i ≤ N , denoted by A1 ‖Σs

A2 ‖Σs
· · · ‖Σs

AN , is
the tuple (Σ, L, `0,X,P, I, E), where:

1) Σ =
⋃N
i=1 Σi,

2) L =
∏N
i=1 Li, `0 = ((`0)1, . . . , (`0)N ),

3) X =
⋃

1≤i≤N Xi, P =
⋃

1≤i≤N Pi,
4) I((`1, . . . , `N )) =

∧N
i=1 Ii(`i) for all (`1, . . . , `N ) ∈ L,

and E is defined as follows. For all a ∈ Σ, let ζa be the
subset of indices i ∈ 1, . . . , N such that a ∈ Σi. For all
a ∈ Σ, for all (`1, . . . , `N ) ∈ L, for all (`′1, . . . , `

′
N ) ∈ L,(

(`1, . . . , `N ), g, a, R, (`′1, . . . , `
′
N )
)
∈ E if:

• if a ∈ Σs, then 1) for all i ∈ ζa, there exist gi, Ri such
that (`i, gi, a, Ri, `

′
i) ∈ Ei, g =

∧
i∈ζa gi, R =

⋃
i∈ζa Ri,

and, 2) for all i 6∈ ζa, `′i = `i.
• otherwise (if a /∈ Σs), then there exists i ∈ ζa such

that 1) there exist gi, Ri such that (`i, gi, a, Ri, `
′
i) ∈ Ei,

g = gi, R = Ri, and, 2) for all j 6= i, `′j = `j .

That is, synchronization is only performed on Σs, and other
actions are interleaved. When Σs is not specified, it is assumed
to be equal to the intersection of the sets of actions. That
is, given A1 over Σ1 and A2 over Σ2, A1 ‖ A2 denotes
A1 ‖Σs

A2 where Σs = Σ1 ∩ Σ2.

Definition 3 (Semantics of a TA). Given a PTA A =
(Σ, L, `0,X,P, I, E), and a parameter valuation v, the seman-
tics of v(A) is given by the timed transition system (TTS)
(S, s0,→), with
• S = {(`, µ) ∈ L× RH≥0 | µ |= v(I(`))}, s0 = (`0,~0),
• → consists of the discrete and (continuous) delay transi-

tion relations: i) discrete transitions: (`, µ)
e7→ (`′, µ′), if

(`, µ), (`′, µ′) ∈ S, and there exists e = (`, g, a,R, `′) ∈
E, such that µ′ = [µ]R, and µ |= v(g). ii) delay
transitions: (`, µ)

d7→ (`, µ + d), with d ∈ R≥0, if
∀d′ ∈ [0, d], (`, µ+ d′) ∈ S.

We write (`, µ)
(e,d)−→ (`′, µ′) for a combination of a delay

and discrete transition if ∃µ′′ : (`, µ)
d7→ (`, µ′′)

e7→ (`′, µ′).
Given a TA v(A) with concrete semantics (S, s0,→), we

refer to the states of S as the concrete states of v(A). A run
of v(A) is an alternating sequence of concrete states of v(A)
and pairs of edges and delays starting from the initial state
s0 of the form s0, (e0, d0), s1, · · · with i = 0, 1, . . . , ei ∈ E,

di ∈ R≥0 and si
(ei,di)−→ si+1. Given s = (`, µ), we say that

s is reachable in v(A) if s appears in a run of v(A). By
extension, we say that ` is reachable; and by extension again,
given a set T of locations, we say that T is reachable if there
exists ` ∈ T such that ` is reachable in v(A). We denote by
Loc(v(A)) the set of all locations reachable in v(A).

Example 2. Consider again the PTA A in Fig. 1. Let v1 be
such that v1(p) = 1. Then, `2 is unreachable in v1(A): at
x = 1, one can take a first time the self-loop over `0, yielding
y = 1 and x = 0. The guard y > 2 to `2 is not yet satisfied.
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Then at x = 1, one can take a second time the self-loop
over `0, yielding y = 2 and x = 0. The guard y > 2 to `2 is
still not satisfied. At x = 1, the guard y < 3 is not satisfied
anymore, and the self-loop over `0 cannot be taken anymore.
Therefore, Loc(v1(A)) = {`0, `1}.

Let v2 be such that v2(p) = 0.9. This time, `2 is reachable,
by taking three times the self-loop over `0 when y = 0.9,
y = 1.8 and y = 2.7 respectively. Therefore, Loc(v2(A)) =
{`0, `1, `2}.
B. Reachability synthesis

We will use reachability synthesis to solve the problem in
Section III. This procedure, called EFsynth, takes as input
a PTA A and a set of target locations T , and attempts to
synthesize all parameter valuations v for which T is reachable
in v(A). EFsynth(A, T ) was formalized in e. g., [JLR15] and
is a procedure that may not terminate, but that computes an
exact result (sound and complete) if it terminates. EFsynth
traverses the parametric zone graph of A, which is a poten-
tially infinite extension of the well-known zone graph of TAs
(see, e. g., [And+09; JLR15]).

Example 3. Consider again the PTA A in Fig. 1. Let us com-
pute the set of parameter valuations for which `2 is reachable.
EFsynth(A, {`2}) = 0 < p < 1 ∨ 1 < p < 1.5 ∨ 2 < p < 3.
Intuitively, whenever p ∈ (0, 1), one can take multiple times
the self-loop over `0 so that eventually the guard y > 2∧x = 0
is satisfied; whenever p ∈ (1, 1.5), one can take exactly twice
the self-loop over `0 so that the guard to `2 is satisfied;
whenever p ∈ (2, 3), one takes a single time the self-loop
over `0, and then the guard to `2 becomes satisfied. For other
valuations, there is no way to reach `2.

Remark 1. EFsynth can also be used to compute unreach-
ability (or safety) synthesis, by taking the negation (i. e., the
complement of the valuations set) of the result.

Example 4. Consider again the PTA A in Fig. 1. Let us
compute the set of parameter valuations for which `2 is
unreachable. ¬EFsynth(A, {`2}) is p = 0 ∨ p = 1 ∨ p ∈
[1.5, 2] ∨ p ≥ 3.

C. Non-interference
Often, non-interference is defined using a set of low-level

actions and a set of high-level ones. The idea is that an
intruder is allowed to perform some high-level actions. The
non-interference property is satisfied whenever the system
behavior in absence of high level actions is equivalent to
its behavior, observed on low level actions, when high level
actions occur [BT03].

In the following, we assume a set of low-level actions L
and a set of high-level actions H .

Definition 4 (restriction). Let A = (Σ, L, `0,X,P, I, E) be
a PTA with Σ = L ] H (] denotes disjoint union), and v
be a parameter valuation. The restriction of v(A) to low-level
actions, denoted by v(A)|L, is defined as the automaton iden-
tical to v(A) except that any edge of the form (`, g, a,R, `′)
with a ∈ H is discarded.

`0 `1

L LH
xinterf ← 0 xinterf ≥ n

H
xinterf ← 0

Figure 2: PTA Interf nH [BT03]

Definition 5 (hiding). Let A = (Σ, L, `0,X,P, I, E) be a PTA
with Σ = L ]H , and v be a parameter valuation. The hiding
of high-level actions in v(A), denoted by v(A)\H , is defined
as the automaton identical to v(A) except that any edge of
the form (`, g, a,R, `′) with a ∈ H is replaced with an edge
(`, g, ε, R, `′).

ε is the special silent action.
In [BT03], n-non-interference is defined as a concept en-

suring that the low level behavior is unaffected by attacks
which are separated by more than n time units. An attack is a
high-level action decided by the attacker. This concept helps
to quantify the necessary attacking speed of the attacker.

Let us now recall from [BT03] the (P)TA Interf nH in Fig. 2,
where xinterf is a local clock only used in Interf nH , and where
L (resp. H) denotes any transition labeled with an action a ∈
L (resp. a ∈ H). The idea is that this PTA allows the execution
of high-level actions only when they are separated by at least
n time units. Note that, in our setting, n can be a timing
parameter.

We now recall the concept of location-non-interference
(called state-non-interference in [BT03]) that checks whether
the set of locations (discrete states) reachable in the original
automaton is identical to the set of locations reachable in the
hiding1 of H in the product of the original automaton with
Interf nH .

Definition 6 (n-location-non-interference). Let A =
(Σ, L, `0,X,P, I, E) be a PTA with Σ = L ] H , and v
be a parameter valuation. Let n ∈ Q+. v(A) is n-location-
non-interfering if Loc

(
v(A)|L

)
is equal to Loc

(
(v(A) ‖

Interf nH)\H
)

projected onto the locations of v(A).

By “projected on v(A)”, we mean the set {` | ∃`′ : (`, `′) ∈
Loc
(
(v(A) ‖ Interf nH)

)
}. In Definition 6, the system is

n-location-non-interfering if an intruder with the ability to
disturb the system at most every n time units is not able
to modify the set of reachable locations. Since the set of
reachable locations is computable for TAs [AD94], n-location-
non-interference (for a given n) is decidable for TAs [BT03].

Example 5. Consider again the PTA A in Fig. 1. Assume
L = {l} and H = {h}. That is, the intruder can take the
self-loop over `0. Let v3 be such that v3(p) = 1.1. First, note
that Loc

(
v3(A)|L

)
= {`0, `1} since the transition to `2 is

syntactically removed, preventing x to be reset.
Fix n = 1. The product of v3(A) with Interf nH prevents

the system to synchronize faster than every 1 time unit on h:

1The hiding of H is not strictly speaking necessary in our setting since
we are interested in the reachability of locations but we keep it for sake of
consistency with [BT03].
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therefore, taking the self-loop labeled with h when y = 1.1
and y = 2.2 respectively is possible, enabling the transition
to `2 at y = 2.2. This gives that Loc

(
(v3(A) ‖ Interf nH)\H

)

projected onto the locations of v3(A) is {`0, `1, `2}. Therefore,
v3(A) is not 1-location-non-interfering.

Now fix n = 2. In that case, the self-loop can be taken when
y = 1.1, but not when y = 2.2 because the condition xinterf ≥
2 is not satisfied (recall that xinterf is reset in Interf nH on the
first transition labeled with h, and therefore we have xinterf =
1.1 when y = 2.2). So `2 is unreachable. Therefore, v3(A) is
2-location-non-interfering.

III. PARAMETRIC LOCATION-NON-INTERFERENCE

In this work, we aim at considering a broader problem:
instead of asking whether the intruder with a predefined power
can disturb the system, we ask what is the power the intruder
needs to perform a successful attack? More precisely, we aim
at computing the speed of the intruder needed to successfuly
disturb the system: that is, for what valuations of n is the
system (not) n-location-non-interfering?

In addition, our PTA model can contain free parameters too;
so the parameter is not only n but also the PTA parameters.
n-location-non-interference synthesis problem:
INPUT: A PTA A with parameters P, a parameter n
PROBLEM: Synthesize valuations v of P and of n such that
v(A) is n-location-non-interfering.

Since our problem is location-based, we can solve it using
reachability synthesis techniques for PTAs, more precisely
using EFsynth. The core idea is to synthesize valuations of
P ∪ {n} such that the set of reachable locations remains
identical in both v(A)|L and (v(A) ‖ Interf nH)\H . This
therefore reduces to a reachability synthesis problem.

Note that, since reachability-emptiness (i. e., the emptiness
of the valuations set for which a given (set of) location(s) is
reachable) is undecidable for PTAs [AHV93; And19], reach-
ability synthesis algorithms are not guaranteed to terminate.
(We discuss approximations later on.)

Example 6. Consider again the PTA A in Fig. 1. Assume
L = {l} and H = {h}. First observe that `1 (and of course `0)
can be reached in v(A) regardless of the value of p. Second,
for all v, `2 is unreachable in v(A)|L since the self-loop on `0
is syntactically removed. Therefore, for all v, Loc

(
v(A)|L

)
=

{`0, `1}.
As a consequence, n-location-non-interference synthesis

for A reduces to unreachability synthesis of valuations of n
and p for which `2 is unreachable.

The result of ¬EFsynth
(
(A ‖ Interf nH)\H , {`2}

)
is:

(0 < p < 1 ∧ n > p)
∨ (p = 1 ∧ n ≥ 0)
∨ (1 < p < 1.5 ∧ n > p)
∨ (1.5 ≤ p ≤ 2 ∧ n ≥ 0)
∨ (p ≥ 3 ∧ n ≥ 0)

That is, for any valuation of p and n within this constraint,
the system is n-location-non-interfering, i. e., the intruder
cannot impact the set of reachable locations.

This result can be intuitively explained as follows: whenever
p < 1 (first disjunct), if the intruder can act strictly slower than
every p time unit (n > p), only one self-loop on `0 can be
taken, and `2 is unreachable, and therefore the system is n-
location-non-interfering. Whenever p = 1 (second disjunct) or
1.5 ≤ p ≤ 2 (4th disjunct) or p ≥ 3 (last disjunct), we saw in
Example 3 that `2 is unreachable, regardless of the value of n.
Finally, whenever 1 < p < 1.5 (3rd disjunct), `2 is reachable
iff the intruder can act strictly slower than every p time units.

IV. APPLICATION TO THE FISCHER PROTOCOL

A. The Fischer mutual exclusion protocol

The protocol proposed by Michael Fischer ensures that
two processes never use a critical resource (often denoted by
critical section) at the same time. The protocol is based on the
speed of the processes.

We consider here the protocol as studied in [BT03]: suppose
that two processes P1 and P2 running in parallel compete for
the critical section. Assume that atomic reads and writes are
permitted to a shared variable v (called x in [BT03]). Assume
also that every access to the shared memory containing v takes
acc units of time. Each process i executes the following code:

repeat
await v = 0
v := i
delay b

until v = i
v := 0
(Critical section)

The idea is that process Pi is allowed into the critical section
only when v = i; “await v=0” waits until v becomes 0;
“delay b” waits exactly b time units, which is ensured by
the process local clock. An assignment takes (at most) a time
units. The modified model of [BT03] also considers that the
maximum time needed to execute the critical section after v
is checked is ucs .

In [BT03], the protocol is modeled using a network A of
TAs made of i) process Pi, for i = 1, 2, ii) an intruder, that can
take an att transition anytime, nondeterministically changing
v to 0, 1 or 2, and iii) a “serializer” responsible to model the
value of v according to the access and modification requests
of P1 and P2; recall that these operations take acc time units.

The idea is as follows: if the intruder is fast enough, (s)he
can successfully disturb the system, i. e., send both processes
into the critical section at the same time, thus violating the
mutual exclusion. On the contrary, if the intruder is slow, its
nondeterministic modifications of v will have no effect on the
security.

The crux of [BT03] is that the model is n-location-non-
interfering iff the previously defined TA A cannot reach a
location where both processes are in the critical section at
the same time. A sufficient condition over n and b to ensure
n-location-non-interference is manually inferred and proved.

Our goal is to automatically infer conditions over n, a, b,
acc and ucs guaranteeing n-location-non-interference.
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Figure 3: Modified model of process Pi for i = 1, 2

B. A modified Fischer model

1) An issue in the existing modeling: While modeling the
TA model of [BT03] using a model checker, we spotted a
modeling issue, that makes the model wrong. The issue lies
in the serializer: the idea of the serializer is to ensure that two
consecutive access or modification requests to v are separated
by at least acc time units; but, due to the absence of invariants
and of “as soon as possible” concept in the TAs of [BT03],
there exist runs of the TA such that the access to v can last
forever, even if no other process is competing. Although this
cannot happen in reality, the model checker always reports that
both processes can end up in the critical sections, whatever the
values of b and n are.

Note that this mistake does not impact the definitions nor
the overall reasoning of the benchmark application of [BT03],
as the authors use a manual reasoning to infer the condition
over n and b.

2) Our new model: The purpose of the serializer is both to
encode the value of v, and to maintain a “queue” of requests
to read or write accesses to the memory, ensuring that any two
consecutive access is separated by acc time units. We therefore
entirely rewrote the serializer, also impacting the model of the
processes.

a) Processes: We first give the modified model of pro-
cess Pi in Fig. 3. Process Pi features a local clock xi and
can read or write v. The main modification w.r.t. to [BT03,
Fig. 6] is the duplication of all locations: indeed, instead of
performing a single action (e. g., try i) reading or writing v,
the process first performs a request req i, then followed by
the action try i; the serializer is responsible for answering the
request as soon as possible, but not earlier than acc since the
latest read or write action. Then, the PTA follows the program
given in Section IV-A: Pi first waits until v = 0, then updates
it to i; then, it waits exactly b time units, and checks whether
v is still i; if not, it moves back to the original location. If
v = i, the process sets v to 0, enters the critical section and,
after at most ucs time units, leaves it to go back to the idle
location.

b) Intruder: The intruder is almost identical to the one
in [BT03]: it is a one-location PTA with three self-loops
synchronizing on att and setting v to 0, 1 or 2 respectively
(given in Fig. 4). Setting H = {att}, the synchronization

idle

att
v← 0

att
v← 1att

v← 2

Figure 4: Model of the intruder

of the intruder with Interf nH ensures that the intruder may
modify v with at least n time units since its last modification.

c) Serializer: The seralizer automaton is both very sim-
ple and quite complex. Its overall goal is very simple, and
is to perform the following behavior: “whenever a process
(P1, P2 or the intruder) requests a write or read access to the
memory, the serializer shall grant it as soon as possible, and
acc time units later than the previous access—unless another
process is also requesting access, in which case the request
should be queued”. Implementing this in a purely automata-
based formalism is however cumbersome, much more than the
simplistic serializer of [BT03], that does not encompass for the
“as soon as possible” concept. This results in a PTA made of
12 locations and 91 transitions.2

V. EXPERIMENTS

We model the aforementioned automata using the IMITA-
TOR [And+12] parametric timed model checker (version 2.12
“Butter Lobster”). We then run safety synthesis (i. e., the
negation of EFsynth, implemented in IMITATOR) so as to
synthesize parameter valuations for which mutual exclusion is
guaranteed, i. e., both processes cannot be in the CS location
at the same time.

A. An approximated result

Running IMITATOR on the model, the analysis does not
terminate; this is not surprising as EFsynth is not guaranteed
to terminate due to the undecidability of the reachability-
emptiness for PTAs [AHV93]. A closer look at the analysis
let us realize that, after passing the depth of 24 (IMITATOR
explores the zone graph in a breadth-first search manner),
no new constraint is synthesized, until at least a depth of
1000 (after which we interrupted the analysis, after about
20 hours of processing). The resulting constraint (that does not
change after depth 24, reached in about 650 s) is made of 22
disjunctions of convex constraints over the system parameters.

A property of EFsynth is that it returns an under-
approximation of the constraint when interrupted; when its
negation (safety synthesis) is run, an over-approximation is
returned. That is to say, the obtained result contains all possible
valuations for which non-interference is satisfied, but the
result may also potentially contain valuations for which the
system is not non-interfering. We therefore tested valuations
from our constraint using the non-parametric timed model
checker UPPAAL [LPY97]. We randomly picked up several
dozens of parameter valuations, and checked using UPPAAL

2All models and results are available at www.imitator.fr/static/ICECCS20.
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that non-interference is satisfied iff the valuation belongs to
the resulting constraint. The UPPAAL model is identical to
the IMITATOR model, but is non-parametric, and therefore
the analysis is guaranteed to terminate (depending on the
parameter valuations, termination is obtained within a few
seconds). This does not formally prove that our result is exact
(sound and complete), but increases the degree of confidence.
Proving the exactness of our constraint (or developing a new
synthesis algorithm able to detect that the constraint is exact
and to terminate the analysis) is among our future work.

B. Interpretation

The 22 disjunctions of convex constraints give a set of
conditions for which the system is non-interfering, that is
the mutual exclusion is guaranteed and an attacker able to
disturb the system at most every n time units cannot succeed
in violating mutual exclusion by its actions.

For sake of exemplification, let us consider the first disjunct
(the full constraint is available online):

n ≥ 0
∧ b ≥ acc + n
∧ b ≥ 3× acc
∧ a > 0
∧ acc > ucs > 0

Recall that b is the waiting time before testing again
the value of v, n is the minimum time between any two
consecutive high-level actions (of the intruder), acc is the
memory access time, and ucs is an upper bound on the time
during which a process remains in the critical section. This
constraint ensures that mutual exclusion is guaranteed even
when an attacker can change the value of v no faster than
every n time units if the following conditions are satisfied:

• the delay (b) is longer than the access time (acc) and
the minimum disturbance time (n); that is to say, even
when the intruder modifies the system, the process can
still detect it as its delay is long enough; this helps
guaranteeing non-interference;

• the delay is longer than three access times (3 × acc);
that is to say, the delay is long enough to detect whether
the other process performs try i, updatei and pre accessi
during the delay; this helps guaranteeing validity of the
mutual exclusion;

• and the memory access time is longer than the time during
which a process remains in the critical section.

Further sufficient conditions ensuring non-interference are
guaranteed by the other disjuncts (see Web page).

VI. CONCLUSION

a) Conclusion: We introduced a definition of n-location-
non-interference, that aims at quantifying the necessary at-
tacker frequency to be able to modify the set of reachable lo-
cations in a timed automaton. Using the IMITATOR parametric
timed model checker, we obtained preliminary results on an
improved version of the Fischer mutual exclusion protocol.

b) Future works: As we only obtained an over-
approximation of the result, our first future work is to prove
the exactness (soundness and completeness) of the obtained
constraint, either by proving it using an ad-hoc reasoning for
our case study, or by developing new automated techniques
allowing IMITATOR to terminate as soon as the constraint
is indeed complete. Alternatively, designing approximated
techniques is another interesting direction.

While the general emptiness problem (the emptiness of the
set of both timing parameter valuations and admissible values
of n for which the system is n-location-non-interfering) is
very likely to be undecidable (due to the undecidability of
reachability emptiness in [AHV93]), the more specific problem
of deciding whether there exists a valuation of n for which the
(non-parametric) system is n-location-non-interfering remains
open. Also, we aim at tackling efficient synthesis of these
sets, independently of the decidability issues. More generally,
proposing new state space reduction techniques dedicated
to the problem of n-location-non-interference is among our
future works.
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[And+09] Étienne André, Thomas Chatain, Emmanuelle Encre-
naz, and Laurent Fribourg. “An Inverse Method for
Parametric Timed Automata”. In: International Journal
of Foundations of Computer Science 20.5 (Oct. 2009),
pp. 819–836. DOI: 10 . 1142 / S0129054109006905 (cit. on
p. 3).
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Information leakage can have dramatic consequences on systems security. Among harmful information
leaks, the timing information leakage occurs whenever an attacker successfully deduces confidential internal
information. In this work, we consider that the attacker has access (only) to the system execution time. We
address the following timed opacity problem: given a timed system, a private location and a final location,
synthesize the execution times from the initial location to the final location for which one cannot deduce
whether the system went through the private location. We also consider the full timed opacity problem, asking
whether the system is opaque for all execution times. We show that these problems are decidable for timed
automata (TAs) but become undecidable when one adds parameters, yielding parametric timed automata
(PTAs). We identify a subclass with some decidability results. We then devise an algorithm for synthesizing
PTAs parameter valuations guaranteeing that the resulting TA is opaque. We finally show that our method
can also apply to program analysis.

CCS Concepts: • Security and privacy→ Logic and verification; • Theory of computation→ Quanti-
tative automata; Verification by model checking; Logic and verification.

Additional Key Words and Phrases: opacity, timed automata, IMITATOR, parameter synthesis.

ACM Reference Format:
Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. 2022. Guaranteeing Timed Opacity using Parametric
Timed Model Checking. ACM Trans. Softw. Eng. Methodol. 37, 4, Article 111 (August 2022), 37 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Timed systems often combine hard real-time constraints with other complications such as con-
currency. Information leakage can have dramatic consequences on the security of such systems.
Among harmful information leaks, the timing information leakage is the ability for an attacker to
deduce internal information depending on timing information. In this work, we focus on timing
leakage through the total execution time, i. e., when a system works as an almost black-box and the
ability of the attacker is limited to know the model and observe the total execution time.

Authors’ addresses: Étienne André, Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France; Didier Lime, École
Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France; Dylan Marinho, Université de Lorraine, CNRS, Inria, LORIA,
F-54000 Nancy, France; Jun Sun, School of Information Systems, Singapore Management University, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1049-331X/2022/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:2 Étienne André, Didier Lime, Dylan Marinho, and Jun Sun

Opacity. In its most general form on partially observed labeled transitions systems, given a set
of runs that reveal a secret (e. g., they perform a secret action or visit a secret state), opacity states
that if there exists a run of the system that reveals the secret (i. e., belongs to the given secret set),
there exists another run, with the same observation, that does not reveal that secret [1]. This secret
is completely generic and, depending on its actual definition, properties and their decidability can
differ.
In our setting, we define a form of opacity in which the observation is only the time to reach a

designated location.

Contributions for TAs. In this work, we consider the setting of timed automata (TAs), which is a
popular extension of finite-state automata with clocks [2]. We consider the following version of
timed opacity: given a TA, a private location denoting the execution of some secret behavior and a
final location denoting the completion of the execution, the TA is opaque for a given execution
time 𝑑 (i. e., the time of a run from the initial location to the final location) if there exist two runs of
duration 𝑑 from the initial location to the final location, one going through the private location, and
another run not going through the private location. That is, for this particular execution time, the
system is opaque if one cannot deduce whether the system went through the private location. Such
a notion of timed opacity can be used to capture many interesting security problems: for instance,
it is possible to deduce whether a secret satisfies a certain condition based on whether a certain
branch is visited or not.
To be explicit, the attacker knows a TA model of the system, and can observe the execution

time from the system start until it reaches some particular final location. No other actions can be
observed. Then, the system is timed opaque if the attacker cannot deduce whether the system has
visited some particular private location. From a higher-level point of view, this means that the
attacker cannot deduce some private information, such as whether some location has been visited,
or whether some branch of a given program was visited, by only observing the execution time. In
practice, this corresponds to a setting where the attacker may interact with some computational
process on a remote machine (e. g., a server) and receives the responses only at the end of the
process (e. g., a server message is received).

We consider two problems based on this notion of timed opacity:
(1) a computation problem: the computation of the set of possible execution times for which the

system is timed opaque; and
(2) a decision problem: whether the TA is timed opaque for all execution times (referred to as

full timed opacity).
We first prove that these problems can be effectively solved for TAs. We implement our procedure

and apply it to a set of benchmarks containing notably a set of Java programs known for their
(absence of) timing information leakage.

Contributions for parametric TAs. As a second setting, we consider a higher-level version of these
problems by allowing (internal) timing parameters in the system, which can model uncertainty
or unknown constants at early design stage. The setting becomes parametric timed automata
(PTAs) [3].

On the theoretical side, we answer an existential parametric version of the two aforementioned
problems, that is, the existence of (at least) one parameter valuation for which the TA is (fully)
timed opaque. Although we show that these problems are in general undecidable, we exhibit a
subclass with some decidability results.
Then, we address a practical problem: given a timed system with timing parameters, a private

location and a final location, synthesize the timing parameters and the execution times for which
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one cannot deduce whether the system went through the private location. We devise a general
procedure not guaranteed to terminate, but that behaves well on examples from the literature.

Summary of the contributions. To sum up, this manuscript proposes the following contributions:
(1) a notion of timed opacity, and a notion of full timed opacity for TAs;
(2) a procedure to solve the timed opacity computation problem for TAs, and a procedure to

answer the full timed opacity decision problem for TAs;
(3) a study of two theoretical decision problems extending the two aforementioned problems to

the parametric setting, and exhibition of a decidable subclass;
(4) a practical algorithm to synthesize parameter valuations and execution times for which the

TA is guaranteed to be opaque;
(5) a set of experiments on a set of benchmarks, including PTAs translations from Java programs.
This manuscript is an extension of [4] with the following improvements.
• We provide all proofs of the results published in [4].
• We extend the theoretical part, by considering not one problem (as in [4]) but two versions
(timed opacity w.r.t. a set of execution times, and full timed opacity), both for TAs and PTAs
(including the subclass of L/U-PTAs).
• We propose a more elegant proof of Proposition 5.2 (formerly [4, Proposition 1]), based on
RA arithmetic [5].
• On the practical side, we give hints to extend our construction to a richer framework (Sec-
tion 9.3).

Outline. After reviewing related works in Section 2, Section 3 recalls necessary concepts and
Section 4 introduces the problem. Section 5 addresses timed opacity for timed automata. We then
address the parametric version of timed opacity, with theory studied in Sections 6 and 7, algorithmic
in Section 8 and experiments in Section 9. Section 10 concludes the paper.

2 RELATEDWORKS
Opacity and timed automata. This work is closely related to the line of work on defining and

analyzing information flow in timed automata. It is well-known (see e. g., [6, 7, 8, 9, 10]) that time
is a potential attack vector against secure systems. That is, it is possible that a non-interferent
(secure) system can become interferent (insecure) when timing constraints are added [11].

In non-interference, actions are partitioned into two levels of privilege, high and low, and we
require that the system in which high-level actions are removed is equivalent to the system in
which they are hidden (i. e., replaced by an unobservable action). Different equivalences lead to
different flavors of non-interference. In [12, 13], a first notion of timed non-interference is proposed
for TAs. This notion is extended to PTAs in [14], with a semi-algorithm.
In [11], Gardey et al. define timed strong non-deterministic non-interference (SNNI) based

on timed language equivalence between the automaton with hidden low-level actions and the
automatonwith removed low-level actions. Furthermore, they show that the problem of determining
whether a timed automaton satisfies SNNI is undecidable. In contrast, timed cosimulation-based
SNNI, timed bisimulation-based SNNI and timed state SNNI are decidable. Classical SNNI is the
one corresponding to the equality of the languages of the two systems. As such it is clearly a
special case of opacity in which the secret runs are those containing a high-level action [1]. Other
equivalence relations (namely (timed) cosimulation, (timed) bisimulation, sets of states) are not as
easily relatable to opacity. No implementation is provided in [11].
In [15], it is proved that it is undecidable whether a TA is opaque, for the following definition

of opacity: the system is opaque if an attacker cannot deduce whether some set of actions was
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performed, by only observing a given set of observable actions together with their timestamp. This
problem is proved undecidable even for the restricted class of event-recording automata [16], which
is a subclass of TAs. No implementation nor procedure is provided. In contrast, our definition of
opacity is decidable for TAs, notably because in our setting the attacker power is more restricted
(they can only observe the “execution time”); in addition, our definition of opacity has some practical
relevance nonetheless, when an attacker is able to interact remotely with the system under attack,
and is therefore able to measure the response time.

In [17], the authors consider a time-bound opacity, where the attacker has to disclose the secret
before an upper bound, using a partial observability. The authors prove that this problem is decidable
for TAs. A construction and an algorithm are also provided to solve it; a case study is verified using
SpaceEx [18]. In contrast, our definition of opacity only assumes observation of the execution time,
does not assume any time-bounded setting, and our most general problem is parametric.

In [19], the authors propose a type system dealing with non-determinism and (continuous) real-
time, the adequacy of which is ensured using non-interference. We share the common formalism
of TAs; however, we mainly focus on leakage as execution time, and we synthesize internal parts of
the system (clock guards), in contrast to [19] where the system is fixed.

In [20], Vasilikos et al. define the security of timed automata in term of information flow using a
bisimulation relation over a set of observable nodes and develop an algorithm for deriving a sound
constraint for satisfying the information flow property locally based on relevant transitions.
In [21], Gerking et al. study non-interference properties with input, high and low actions and

provide a resolutionmethod reducing a secure behavior to an unreachability construction. The proof-
of-concept consists in the exhibition of a test automaton with a dedicated location that indicates
violations of noninterference whenever it is reachable during execution. Then, Uppaal [22] is used
to obtain the answer.
In [10], Benattar et al. study the control synthesis problem of timed automata for SNNI. That

is, given a timed automaton, they propose a method to automatically generate a (largest) sub-
system such that it is non-interferent, if possible. Different from the above-mentioned work, our
work considers parametric timed automata, i. e., timed systems with unknown design parameters,
and focuses on synthesizing parameter valuations which guarantee information flow property.
Compared to [10], our approach is more realistic as it does not require change of program structure.
Rather, our result provides guidelines on how to choose the timing parameters (e. g., how long to
wait after certain program statements) for avoiding information leakage.

In [23, 24], Wang et al. investigate interesting opacity problems for real-time automata. These
works come with a dedicated Python implementation. Although their definition shares similarities
with ours, real-time automata are a severely restricted formalism compared to TAs. Indeed, timed
aspects are only considered by interval restrictions over the total elapsed time along transitions.
Real-time automata can be seen as a subclass of TAs with a single clock, reset at each transition.
Also, parameters are not considered in their work.

To the best of our knowledge, our approach is the first work on parametric model checking
for timed automata for information flow property. In addition, and in contrast to most of the
aforementioned works, our approach comes with an implementation.

Execution times and timed automata. In this paper, we need to compute execution times in timed
automata, i. e., the durations of all runs reaching the final state. Despite its natural aspect, this
problem seems sparsely investigated in the literature. Both [25, 26] deal with the computation
of duration sets; we do reuse some of the reasoning from [25] in our proof of Proposition 5.2.
Conversely, results from [27] cannot be used in our work: while the equality must be forbidden in
PTCTL formulae to make the problems decidable, equality constraints in a PTCTL formula would
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be required for such an approach to answer our problems. Furthermore, the results presented
in [28] cannot be applied to our study, since they concern one-clock timed automata.

Mitigating information leakage. Complex systems may exhibit security problems through infor-
mation leakage due to the presence of unintended communication media, called side channels. An
example is time side channels in which measuring, e. g., execution times, gives information on
some sensitive information. In 2018, the Spectre vulnerability [29] exploited speculative execution
to bring secret information into the cache; subsequently, cache-timing attacks were launched to
exfiltrate these secrets. Therefore, mitigation of timing attacks is of utmost importance.
Our work is related to work on mitigating information leakage through those time side chan-

nels [30, 31, 32, 33, 34]. In [30], Agat et al. proposed to eliminate time side channels through
type-driven cross-copying. In [31], Molnar et al. proposed, along the program counter model, a
method for mitigating side channel through merging branches. A similar idea was proposed in [35].
Coppens et al. [32] developed a compiler backend for removing such leaks on x86 processors. In [33],
Wang et al. proposed to automatically generate masking code for eliminating side channels through
program synthesis. In [34], Wu et al. proposed to eliminate time side channels through program
repair. Different from the above-mentioned works, we reduce the problem of mitigating time
side channels as a parametric model checking problem and solve it using parametric reachability
analysis techniques.
This work is related to work on identifying information leakage through timing analysis [36,

37, 38, 39, 40, 41, 42]. In [37], Chattopadhyay and Roychoudhury applied model checking to
perform cache timing analysis. In [43], Chu et al. performed similar analysis through symbolic
execution. In [38], Abbasi et al. apply the NuSMVmodel checker to verify integrated circuits against
information leakage through side channels. In [41], a tool is developed to identify time side channel
through static analysis. In [39], Sung et al. developed a framework based on LLVM for cache timing
analysis.

3 PRELIMINARIES
In this work, we assume a system is modeled in the form of a parametric timed automaton (PTA).
In Section 9.2, we discuss how we can model programs with unknown design parameters (e. g., a
Java program with a statement Thread.sleep(n) where n is unknown) as PTA.

3.1 Clocks, parameters and guards
We assume a set X = {𝑥1, . . . , 𝑥𝐻 } of clocks, i. e., real-valued variables that all evolve over time at
the same rate. A clock valuation is a function 𝜇 : X → R≥0. We write ®0 for the clock valuation
assigning 0 to all clocks. Given 𝑑 ∈ R≥0, 𝜇 +𝑑 denotes the valuation s.t. (𝜇 +𝑑) (𝑥) = 𝜇 (𝑥) +𝑑 , for all
𝑥 ∈ X. Given 𝑅 ⊆ X, we define the reset of a valuation 𝜇, denoted by [𝜇]𝑅 , as follows: [𝜇]𝑅 (𝑥) = 0
if 𝑥 ∈ 𝑅, and [𝜇]𝑅 (𝑥) = 𝜇 (𝑥) otherwise.

We assume a set P = {𝑝1, . . . , 𝑝𝑀 } of parameters, i. e., unknown constants. A parameter valuation
𝑣 is a function 𝑣 : P → Q+. We assume ⊲⊳ ∈ {<, ≤,=, ≥, >}. A guard 𝑔 is a constraint over X ∪ P
defined by a conjunction of inequalities of the form 𝑥 ⊲⊳

∑
1≤𝑖≤𝑀 𝛼𝑖𝑝𝑖 +𝑑 , with 𝑝𝑖 ∈ P, and 𝛼𝑖 , 𝑑 ∈ Z.

Given 𝑔, we write 𝜇 |= 𝑣 (𝑔) if the expression obtained by replacing each 𝑥 with 𝜇 (𝑥) and each 𝑝
with 𝑣 (𝑝) in 𝑔 evaluates to true.

3.2 Parametric timed automata
Parametric timed automata (PTAs) extend timed automata with parameters within guards and
invariants in place of integer constants [3].

3.2.1 Syntax.
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ℓ0

ℓ2

ℓ1

𝑥 ≤ 3

𝑥 ≤ 3
𝑥 ≥ 𝑝1

𝑥 ≥ 𝑝2

Fig. 1. A PTA example

Definition 3.1 (PTA). A PTA A is a tuple A = (Σ, 𝐿, ℓ0, ℓ𝑓 ,X, P, 𝐼 , 𝐸), where:
(1) Σ is a finite set of actions,
(2) 𝐿 is a finite set of locations,
(3) ℓ0 ∈ 𝐿 is the initial location,
(4) ℓ𝑓 ∈ 𝐿 is the (unique) final location,
(5) X is a finite set of clocks,
(6) P is a finite set of parameters,
(7) 𝐼 is the invariant, assigning to every ℓ ∈ 𝐿 a guard 𝐼 (ℓ),
(8) 𝐸 is a finite set of edges 𝑒 = (ℓ, 𝑔, 𝑎, 𝑅, ℓ ′) where ℓ, ℓ ′ ∈ 𝐿 are the source and target locations,

𝑎 ∈ Σ, 𝑅 ⊆ X is a set of clocks to be reset, and 𝑔 is a guard.

Example 3.2. Consider the PTA in Fig. 1 (inspired by [11, Fig. 1b]), using one clock 𝑥 and two
parameters 𝑝1 and 𝑝2. ℓ0 is the initial location, while we assume that ℓ1 is the (only) final location,
i. e., a location in which an attacker can measure the execution time from the initial location.

L/U-PTAs. For some theoretical problems solved in Sections 6 and 7, we will consider the subclass
of PTAs called “lower-bound/upper-bound parametric timed automata” (L/U-PTAs), introduced
in [44].

Definition 3.3 (L/U-PTA [44]). An L/U-PTA is a PTA where the set of parameters is partitioned
into lower-bound parameters and upper-bound parameters, where each upper-bound (resp. lower-
bound) parameter 𝑝𝑖 must be such that, for every guard or invariant constraint 𝑥 ⊲⊳

∑
1≤𝑖≤𝑀 𝛼𝑖𝑝𝑖 +𝑑 ,

we have: ⊲⊳ ∈ {≤, <} implies 𝛼𝑖 ≥ 0 (resp. 𝛼𝑖 ≤ 0) and ⊲⊳ ∈ {≥, >} implies 𝛼𝑖 ≤ 0 (resp. 𝛼𝑖 ≥ 0).

Example 3.4. The PTA in Fig. 1 is an L/U-PTA with {𝑝1, 𝑝2} as lower-bound parameters, and ∅ as
upper-bound parameters.
The PTA in Fig. 5 is not an L/U-PTA, because 𝑝 is compared to 𝑐𝑙 both as a lower-bound (in

“𝑝 × 322 ≤ 𝑐𝑙”) and as an upper-bound (“𝑐𝑙 ≤ 𝑝 × 322 + 𝜖”).
Given a parameter valuation 𝑣 , we denote by 𝑣 (A) the non-parametric structure where all

occurrences of any parameter 𝑝𝑖 have been replaced by 𝑣 (𝑝𝑖 ). We denote as a timed automaton any
structure 𝑣 (A), by assuming a rescaling of the constants: by multiplying all constants in 𝑣 (A) by
the least common multiple of their denominators, we obtain an equivalent (integer-valued) TA, as
defined in [2].

Synchronized product of PTAs. The synchronous product (using strong broadcast, i. e., synchro-
nization on a given set of actions), or parallel composition, of several PTAs gives a PTA.

Definition 3.5 (synchronized product of PTAs). Let 𝑁 ∈ N. Given a set of PTAs A𝑖 =
(Σ𝑖 , 𝐿𝑖 , (ℓ0)𝑖 , (ℓ𝑓 )𝑖 ,X𝑖 , P𝑖 , 𝐼𝑖 , 𝐸𝑖 ), 1 ≤ 𝑖 ≤ 𝑁 , and a set of actions Σ𝑠 , the synchronized product of
A𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , denoted by A1 ∥Σ𝑠 A2 ∥Σ𝑠 · · · ∥Σ𝑠 A𝑁 , is the tuple (Σ, 𝐿, ℓ0, ℓ𝑓 ,X, P, 𝐼 , 𝐸), where:
(1) Σ =

⋃𝑁
𝑖=1 Σ𝑖 ,

(2) 𝐿 =
∏𝑁
𝑖=1 𝐿𝑖 ,
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(3) ℓ0 = ((ℓ0)1, . . . , (ℓ0)𝑁 ),
(4) ℓ𝑓 = ((ℓ𝑓 )1, . . . , (ℓ𝑓 )𝑁 ),
(5) X =

⋃
1≤𝑖≤𝑁 X𝑖 ,

(6) P =
⋃

1≤𝑖≤𝑁 P𝑖 ,
(7) 𝐼 ((ℓ1, . . . , ℓ𝑁 )) =

∧𝑁
𝑖=1 𝐼𝑖 (ℓ𝑖 ) for all (ℓ1, . . . , ℓ𝑁 ) ∈ 𝐿,

and 𝐸 is defined as follows. For all 𝑎 ∈ Σ, let 𝜁𝑎 be the subset of indices 𝑖 ∈ 1, . . . , 𝑁 such that 𝑎 ∈ Σ𝑖 .
For all 𝑎 ∈ Σ, for all (ℓ1, . . . , ℓ𝑁 ) ∈ 𝐿, for all (ℓ ′1, . . . , ℓ ′𝑁 ) ∈ 𝐿,

((ℓ1, . . . , ℓ𝑁 ), 𝑔, 𝑎, 𝑅, (ℓ ′1, . . . , ℓ ′𝑁 )) ∈ 𝐸 if:
• if 𝑎 ∈ Σ𝑠 , then
(1) for all 𝑖 ∈ 𝜁𝑎 , there exist 𝑔𝑖 , 𝑅𝑖 such that (ℓ𝑖 , 𝑔𝑖 , 𝑎, 𝑅𝑖 , ℓ ′𝑖 ) ∈ 𝐸𝑖 , 𝑔 =

∧
𝑖∈𝜁𝑎 𝑔𝑖 , 𝑅 =

⋃
𝑖∈𝜁𝑎 𝑅𝑖 ,

and,
(2) for all 𝑖 ∉ 𝜁𝑎 , ℓ ′𝑖 = ℓ𝑖 .
• otherwise (if 𝑎 ∉ Σ𝑠 ), then there exists 𝑖 ∈ 𝜁𝑎 such that
(1) there exist 𝑔𝑖 , 𝑅𝑖 such that (ℓ𝑖 , 𝑔𝑖 , 𝑎, 𝑅𝑖 , ℓ ′𝑖 ) ∈ 𝐸𝑖 , 𝑔 = 𝑔𝑖 , 𝑅 = 𝑅𝑖 , and,
(2) for all 𝑗 ≠ 𝑖 , ℓ ′𝑗 = ℓ𝑗 .

That is, synchronization is only performed on Σ𝑠 , and other actions are interleaved.

3.2.2 Concrete semantics of TAs. Let us now recall the concrete semantics of TA.

Definition 3.6 (Semantics of a TA). Given a PTA A = (Σ, 𝐿, ℓ0, ℓ𝑓 ,X, P, 𝐼 , 𝐸), and a parameter
valuation 𝑣 , the semantics of 𝑣 (A) is given by the timed transition system (TTS) [45] 𝑇𝑣 (A) =
(𝑆, 𝑠0,→), with
• 𝑆 = {(ℓ, 𝜇) ∈ 𝐿 × R𝐻≥0 | 𝜇 |= 𝑣 (𝐼 (ℓ))},
• 𝑠0 = (ℓ0, ®0),
• → consists of the discrete and (continuous) delay transition relations:
(1) discrete transitions: (ℓ, 𝜇) 𝑒↦→ (ℓ ′, 𝜇 ′), if (ℓ, 𝜇), (ℓ ′, 𝜇 ′) ∈ 𝑆 , and there exists
𝑒 = (ℓ, 𝑔, 𝑎, 𝑅, ℓ ′) ∈ 𝐸, such that 𝜇 ′ = [𝜇]𝑅 , and 𝜇 |= 𝑣 (𝑔).

(2) delay transitions: (ℓ, 𝜇) 𝑑↦→ (ℓ, 𝜇 + 𝑑), with 𝑑 ∈ R≥0, if ∀𝑑 ′ ∈ [0, 𝑑], (ℓ, 𝜇 + 𝑑 ′) ∈ 𝑆 .

Moreover we write (ℓ, 𝜇) (𝑑,𝑒)−→ (ℓ ′, 𝜇 ′) for a combination of a delay and discrete transition if
∃𝜇 ′′ : (ℓ, 𝜇) 𝑑↦→ (ℓ, 𝜇 ′′) 𝑒↦→ (ℓ ′, 𝜇 ′).

Given a TA 𝑣 (A) with concrete semantics (𝑆, 𝑠0,→), we refer to the states of𝑇𝑣 (A) as the concrete
states of 𝑣 (A). A run of 𝑣 (A) is a (finite or infinite) alternating sequence of concrete states of 𝑣 (A)
and pairs of delays and edges starting from the initial state 𝑠0 of the form 𝑠0, (𝑑0, 𝑒0), 𝑠1, · · · with
𝑖 = 0, 1, . . . , 𝑒𝑖 ∈ 𝐸, 𝑑𝑖 ∈ R≥0 and 𝑠𝑖

(𝑑𝑖 ,𝑒𝑖 )−→ 𝑠𝑖+1.
Given a state 𝑠 = (ℓ, 𝜇), we say that 𝑠 is reachable in 𝑣 (A) if 𝑠 appears in a run of 𝑣 (A).

By extension, we say that ℓ is reachable; and by extension again, given a set 𝐿𝑇 of locations,
we say that 𝐿𝑇 is reachable if there exists ℓ ∈ 𝐿𝑇 such that ℓ is reachable in 𝑣 (A).1 Given
ℓ, ℓ ′ ∈ 𝐿 and a run 𝜌 , we say that ℓ is reached on the way to ℓ ′ in 𝜌 if 𝜌 is of the form
(ℓ0, 𝜇0), (𝑑0, 𝑒0), (ℓ1, 𝜇1), · · · , (ℓ𝑚, 𝜇𝑚), (𝑑𝑚, 𝑒𝑚), · · · (ℓ𝑛, 𝜇𝑛) for some 𝑚,𝑛 ∈ N such that ℓ𝑚 = ℓ ,
ℓ𝑛 = ℓ ′ and ∀0 ≤ 𝑖 ≤ 𝑚 − 1, ℓ𝑖 ≠ ℓ ′. Conversely, ℓ is avoided on the way to ℓ ′ in 𝜌 if 𝜌 is of
the form (ℓ0, 𝜇0), (𝑑0, 𝑒0), (ℓ1, 𝜇1), · · · , (ℓ𝑛, 𝜇𝑛) with ℓ𝑛 = ℓ ′ and ∀0 ≤ 𝑖 ≤ 𝑛, ℓ𝑖 ≠ ℓ . Given ℓ, ℓ ′ ∈ 𝐿,
we say that ℓ is reachable on the way to ℓ ′ in 𝑣 (A) if there exists a run 𝜌 of 𝑣 (A) for which ℓ is
reached on the way to ℓ ′ in 𝜌 . Otherwise, ℓ is unreachable on the way to ℓ ′.
1We use an existential quantification over the set 𝐿𝑇 of locations, i. e., the set of locations is reachable if at least one target
location is reachable. This is a standard definition for reachability synthesis (see, e. g., [46]), and our Algorithm 1 uses a
singleton set for 𝐿𝑇 anyway.
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ℓ0 ℓ1 ℓ𝑓

𝑥1 ≤ 2𝑥2 ≤ 1
𝑥1 ← 0 𝑥2 ≤ 2

Fig. 2. A TA example

The duration of a finite run 𝜌 : 𝑠0, (𝑑0, 𝑒0), 𝑠1, · · · , (𝑑𝑖−1, 𝑒𝑖−1), (ℓ𝑖 , 𝜇𝑖 ) is dur (𝜌) =
∑

0≤ 𝑗≤𝑖−1 𝑑 𝑗 . We
also say that ℓ𝑖 is reachable in time dur (𝜌).

Example 3.7. Consider again the PTA A in Fig. 1, and let 𝑣 be such that 𝑣 (𝑝1) = 1 and 𝑣 (𝑝2) = 2.
Consider the following run 𝜌 of 𝑣 (A): (ℓ0, 𝑥 = 0), (1.4, 𝑒2), (ℓ2, 𝑥 = 1.4), (1.3, 𝑒3), (ℓ1, 𝑥 = 2.7), where
𝑒2 is the edge from ℓ0 to ℓ2 in Fig. 1, and 𝑒3 is the edge from ℓ2 to ℓ1. We write “𝑥 = 1.4” instead of “𝜇
such that 𝜇 (𝑥) = 1.4”. We have dur (𝜌) = 1.4 + 1.3 = 2.7. In addition, ℓ2 is reached on the way to ℓ1
in 𝜌 .
3.2.3 Timed automata regions. Let us next recall the concept of regions and the region graph [2].
Given a TA 𝑣 (A), for a clock 𝑥𝑖 , we denote by 𝑐𝑖 the largest constant to which 𝑥𝑖 is

compared within the guards and invariants of 𝑣 (A) (that is, 𝑐𝑖 = max𝑖 ({ 𝑑𝑖 | 𝑥 ⊲⊳
𝑑𝑖 appears in a guard or invariant of 𝑣 (A)}). Given a clock valuation 𝜇 and a clock 𝑥𝑖 , let ⌊𝜇 (𝑥𝑖 )⌋
and fract(𝜇 (𝑥𝑖 )) denote respectively the integral part and the fractional part of 𝜇 (𝑥𝑖 ).

Example 3.8. Consider again the PTA in Fig. 1, and let 𝑣 be such that 𝑣 (𝑝1) = 2 and 𝑣 (𝑝2) = 4. In
the TA 𝑣 (A), the clock 𝑥 is compared to the constants in {2, 3, 4}. In that case, 𝑐 = 4 is the largest
constant to which the clock 𝑥 is compared.
Definition 3.9 (Region equivalence). We say that two clock valuations 𝜇 and 𝜇 ′ are equivalent,

denoted 𝜇 ≈ 𝜇 ′, if the following three conditions hold for any clocks 𝑥𝑖 , 𝑥 𝑗 :
(1) either

(a) ⌊𝜇 (𝑥𝑖 )⌋ = ⌊𝜇 ′(𝑥𝑖 )⌋ or
(b) 𝜇 (𝑥𝑖 ) > 𝑐𝑖 and 𝜇 ′(𝑥𝑖 ) > 𝑐𝑖

(2) fract(𝜇 (𝑥𝑖 )) ≤ fract(𝜇 (𝑥 𝑗 )) iff fract(𝜇 ′(𝑥𝑖 )) ≤ fract(𝜇 ′(𝑥 𝑗 ))
(3) fract(𝜇 (𝑥𝑖 )) = 0 iff fract(𝜇 ′(𝑥𝑖 )) = 0
The equivalence relation ≈ is extended to the states of 𝑇𝑣 (A) : if 𝑠 = (ℓ, 𝜇), 𝑠 ′ = (ℓ ′, 𝜇 ′) are two

states of 𝑇𝑣 (A) , we write 𝑠 ≈ 𝑠 ′ iff ℓ = ℓ ′ and 𝜇 ≈ 𝜇 ′.
We denote by [𝑠] the equivalence class of 𝑠 for ≈. A region is an equivalence class [𝑠] of ≈. The

set of all regions is denoted R𝑣 (A) . Given a state 𝑠 = (ℓ, 𝜇) and 𝑑 ≥ 0, we write 𝑠 + 𝑑 to denote
(ℓ, 𝜇 + 𝑑).
Definition 3.10 (Region graph [25]). The region graph RG𝑣 (A) = (R𝑣 (A) , F𝑣 (A) ) is a finite graph

with:
• R𝑣 (A) as the set of vertices
• given two regions 𝑟 = [𝑠] , 𝑟 ′ = [𝑠 ′] ∈ R𝑣 (A) , we have (𝑟, 𝑟 ′) ∈ F𝑣 (A) if one of the following
holds:
– if 𝑠 𝑒↦→ 𝑠 ′ ∈ 𝑇𝑣 (A) for some 𝑒 ∈ 𝐸 (discrete instantaneous transition);
– if 𝑟 ′ is a time successor of 𝑟 : 𝑟 ≠ 𝑟 ′ and there exists 𝑑 such that 𝑠 + 𝑑 ∈ 𝑟 ′ and
∀𝑑 ′ < 𝑑, 𝑠 + 𝑑 ′ ∈ 𝑟 ∪ 𝑟 ′ (delay transition);

– 𝑟 = 𝑟 ′ is unbounded: 𝑠 = (ℓ, 𝜇) with 𝜇 (𝑥𝑖 ) > 𝑐𝑖 for all 𝑥𝑖 (equivalent unbounded regions).

Example 3.11 (Region abstraction). Consider the TA in Fig. 2. We present in Fig. 3 some of its
regions. For example, the region depicted in Fig. 3b is the successor (by taking the discrete transition
from ℓ0 to ℓ1, resetting 𝑥1) of the region depicted in Fig. 3a.
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(b) Step 2: 𝑥1 is reset
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(c) Step 3: 𝑥1 and 𝑥2 linearly in-
crease as long as 𝑥1 ≤ 2

1 2 3 4

1

2

3

4

𝑥1

𝑥2

(d) Step 4: 𝑥2 ≤ 2
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(e) Division into regions of the
last constraint

Fig. 3. Region abstraction of the TA in Fig. 2

Consider the valuations 𝜇1 and 𝜇2 such that 𝜇1 (𝑥1) = 0, 𝜇1 (𝑥2) = 0.35, 𝜇2 (𝑥1) = 0, and 𝜇2 (𝑥2) =
0.75. These two valuations satisfy all three conditions of Definition 3.9, and therefore 𝜇1 ≈ 𝜇2. Note
that they both belong to the region depicted in Fig. 3b, and any pair of valuations in this region is
(by definition) equivalent.

3.3 Symbolic semantics
Let us now recall the symbolic semantics of PTAs (see e. g., [44, 47]).

Constraints. We first need to define operations on constraints. A linear term over X ∪ P is of the
form

∑
1≤𝑖≤𝐻 𝛼𝑖𝑥𝑖 +

∑
1≤ 𝑗≤𝑀 𝛽 𝑗𝑝 𝑗 + 𝑑 , with 𝑥𝑖 ∈ X, 𝑝 𝑗 ∈ P, and 𝛼𝑖 , 𝛽 𝑗 , 𝑑 ∈ Z. A constraint 𝐶 (i. e., a

convex polyhedron2) over X ∪ P is a conjunction of inequalities of the form lt ⊲⊳ 0, where lt is a
linear term.
Given a parameter valuation 𝑣 , 𝑣 (𝐶) denotes the constraint over X obtained by replacing each

parameter 𝑝 in 𝐶 with 𝑣 (𝑝). Likewise, given a clock valuation 𝜇, 𝜇 (𝑣 (𝐶)) denotes the expression
obtained by replacing each clock 𝑥 in 𝑣 (𝐶) with 𝜇 (𝑥). We write 𝜇 |= 𝑣 (𝐶) whenever 𝜇 (𝑣 (𝐶))
evaluates to true. We say that 𝑣 satisfies 𝐶 , denoted by 𝑣 |= 𝐶 , if the set of clock valuations
satisfying 𝑣 (𝐶) is nonempty. We say that 𝐶 is satisfiable if ∃𝜇, 𝑣 s.t. 𝜇 |= 𝑣 (𝐶).
2Strictly speaking, we manipulate polytopes, while polyhedra refer to 3-dimensional polytopes. However, for sake of
consistency with the parametric timed model checking literature, and with the Parma polyhedra library (among others), we
refer to these geometric objects as polyhedra.
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s0 s2

s1 s3

𝑒1

𝑒2

𝑒3

Fig. 4. Parametric zone graph of Fig. 1

We define the time elapsing of𝐶 , denoted by𝐶↗, as the constraint over X and P obtained from𝐶
by delaying all clocks by an arbitrary amount of time. That is,

𝜇 ′ |= 𝑣 (𝐶↗) if ∃𝜇 : X→ R+, ∃𝑑 ∈ R+ s.t. 𝜇 |= 𝑣 (𝐶) ∧ 𝜇 ′ = 𝜇 + 𝑑 .
Given 𝑅 ⊆ X, we define the reset of 𝐶 , denoted by [𝐶]𝑅 , as the constraint obtained from 𝐶 by
resetting the clocks in 𝑅 to 0, and keeping the other clocks unchanged. That is,

𝜇 ′ |= 𝑣 ( [𝐶]𝑅) if ∃𝜇 : X→ R+ s.t. 𝜇 |= 𝑣 (𝐶) ∧ ∀𝑥 ∈ X
{
𝜇 ′(𝑥) = 0 if 𝑥 ∈ 𝑅
𝜇 ′(𝑥) = 𝜇 (𝑥) otherwise.

We denote by 𝐶↓P the projection of 𝐶 onto P, i. e., obtained by eliminating the variables not in P
(e. g., using Fourier-Motzkin [48]).

Definition 3.12 (Symbolic state). A symbolic state is a pair (ℓ,𝐶) where ℓ ∈ 𝐿 is a location, and 𝐶
its associated parametric zone.

Definition 3.13 (Symbolic semantics). Given a PTA A = (Σ, 𝐿, ℓ0, ℓ𝑓 ,X, P, 𝐼 , 𝐸), the symbolic se-
mantics of A is the labeled transition system called parametric zone graph PZG = (𝐸, S, s0,⇒),
with
• S = {(ℓ,𝐶) | 𝐶 ⊆ 𝐼 (ℓ)},
• s0 =

(
ℓ0, (

∧
1≤𝑖≤𝐻 𝑥𝑖 = 0)↗ ∧ 𝐼 (ℓ0)

)
, and

• ((ℓ,𝐶), 𝑒, (ℓ ′,𝐶 ′)) ∈ ⇒ if 𝑒 = (ℓ, 𝑔, 𝑎, 𝑅, ℓ ′) ∈ 𝐸 and

𝐶 ′ =
([(𝐶 ∧ 𝑔)]𝑅 ∧ 𝐼 (ℓ ′))↗ ∧ 𝐼 (ℓ ′)

with 𝐶 ′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs are labeled by edges of
the original PTA.

If (s, 𝑒, s′) ∈ ⇒, we write Succ(s, 𝑒) = s′. By extension, we write Succ(s) for ∪𝑒∈𝐸Succ(s, 𝑒).
In the non-parametric timed automata setting, a zone can be seen as a convex union of regions.

In the parametric setting, a parametric zone constrains both clocks and parameters in such a way
that, for each admissible parameter valuation, the resulting projection on clocks is a zone.

Example 3.14. Consider again the PTA A in Fig. 1. The parametric zone graph of A is given in
Fig. 4, where 𝑒1 is the edge from ℓ0 to ℓ1 in Fig. 1, 𝑒2 is the edge from ℓ0 to ℓ2, and 𝑒3 is the edge from
ℓ2 to ℓ1. In addition, the symbolic states are:

s0 = ( ℓ0 , 0 ≤ 𝑥 ≤ 3 ∧ 𝑝1 ≥ 0 ∧ 𝑝2 ≥ 0 )
s1 = ( ℓ1 , 𝑥 ≥ 𝑝2 ∧ 0 ≤ 𝑝2 ≤ 3 ∧ 𝑝1 ≥ 0 )
s2 = ( ℓ2 , 3 ≥ 𝑥 ≥ 𝑝1 ∧ 0 ≤ 𝑝1 ≤ 3 ∧ 𝑝2 ≥ 0 )
s3 = ( ℓ1 , 𝑥 ≥ 𝑝1 ∧ 0 ≤ 𝑝1 ≤ 3 ∧ 𝑝2 ≥ 0 ) .
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3.4 Reachability synthesis
We use reachability synthesis to solve the problems defined in Section 4. This procedure, called
EFsynth, takes as input a PTA A and a set of target locations 𝐿𝑇 , and attempts to synthesize all
parameter valuations 𝑣 for which 𝐿𝑇 is reachable in 𝑣 (A). EFsynth(A, 𝐿𝑇 ) was formalized in e. g.,
[46] and is a procedure that may not terminate, but that computes an exact result (sound and
complete) if it terminates. EFsynth traverses the parametric zone graph of A.

Example 3.15. Consider again the PTAA in Fig. 1. EFsynth(A, {ℓ1}) = 𝑝1 ≤ 3∨𝑝2 ≤ 3. Intuitively,
it corresponds to all parameter constraints in the parametric zone graph in Fig. 4 associated to
symbolic states with location ℓ1.

We finally recall the correctness of EFsynth.

Lemma 3.16 ([46]). Let A be a PTA, and let 𝐿𝑇 be a subset of the locations of A. Assume
EFsynth(A, 𝐿𝑇 ) terminates with result 𝐾 . Then 𝑣 |= 𝐾 iff 𝐿𝑇 is reachable in 𝑣 (A).

4 TIMED OPACITY PROBLEMS
4.1 Definitions
Let us first introduce two key concepts to define our notion of opacity. DReach𝑣 (A)ℓ (ℓ ′) (resp.
DReach𝑣 (A)¬ℓ (ℓ ′)) is the set of all the durations of the runs for which ℓ is reachable (resp. unreachable)
on the way to ℓ ′. Formally:

DReach𝑣 (A)ℓ (ℓ ′) = {𝑑 | ∃𝜌 in 𝑣 (A) such that 𝑑 = dur (𝜌) ∧ ℓ is reached on the way to ℓ ′ in 𝜌}
and
DReach𝑣 (A)¬ℓ (ℓ ′) = {𝑑 | ∃𝜌 in 𝑣 (A) such that 𝑑 = dur (𝜌) ∧ ℓ is avoided on the way to ℓ ′ in 𝜌}.
These concepts can be seen as the set of execution times from the initial location ℓ0 to a target

location ℓ ′ while passing (resp. not passing) by a private location ℓ . Observe that, from the definition
of dur (𝜌), this “execution time” does not include the time spent in ℓ ′.

Example 4.1. Consider again the PTA in Fig. 1, and let 𝑣 be such that 𝑣 (𝑝1) = 1 and 𝑣 (𝑝2) = 2.
We have DReach𝑣 (A)ℓ2

(ℓ1) = [1, 3] and DReach𝑣 (A)¬ℓ2 (ℓ1) = [2, 3].
We now introduce the concept of “timed opacity w.r.t. a set of durations (or execution times) 𝐷”:

a system is opaque w.r.t. a given location ℓpriv on the way to ℓ𝑓 for execution times 𝐷 whenever, for
any duration in 𝐷 , it is not possible to deduce whether the system went through ℓpriv or not. In
other words, if an attacker measures an execution time within 𝐷 from the initial location to the
target location ℓ𝑓 , then this attacker is not able to deduce whether the system visited ℓpriv .

Definition 4.2 (timed opacity w.r.t.𝐷). Given a TA 𝑣 (A), a private location ℓpriv , a target location ℓ𝑓
and a set of execution times 𝐷 , we say that 𝑣 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for execution
times 𝐷 if 𝐷 ⊆ DReach𝑣 (A)ℓpriv

(ℓ𝑓 ) ∩ DReach𝑣 (A)¬ℓpriv (ℓ𝑓 ).
If one does not have the ability to tune the system (i. e., change internal delays, or add some

sleep() or Wait() statements in the program), one may be first interested in knowing whether
the system is opaque for all execution times (i. e., the durations of the runs from the initial location
to the target location ℓ𝑓 ). In other words, if a system is fully opaque, for any possible measured
execution time, an attacker is not able to deduce anything on the system, in terms of visit of ℓpriv .

Definition 4.3 (full timed opacity). Given a TA 𝑣 (A), a private location ℓpriv and a target location ℓ𝑓 ,
we say that 𝑣 (A) is fully opaque w.r.t. ℓpriv on the way to ℓ𝑓 if DReach𝑣 (A)ℓpriv

(ℓ𝑓 ) = DReach𝑣 (A)¬ℓpriv (ℓ𝑓 ).
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ℓ1 ℓ2 ℓ3

error

ℓ4 ℓpriv

ℓ5

ℓ𝑓

cl ≤ 𝜖 cl ≤ 𝜖 cl ≤ 𝜖 cl ≤ 𝜖

cl ≤ 𝜖
setupserver
cl ← 0

cl ≤ 𝜖
read?x
cl ← 0

cl ≤ 𝜖
x < 0

cl ≤ 𝜖
x ≥ 0
cl ← 0

x ≤ secret
∧ cl ≤ 𝜖

cl ← 0

x > secret
∧ cl ≤ 𝜖

cl ← 0

322 ≤ cl
∧ cl ≤ 322 + 𝜖

𝑝 × 322 ≤ cl
∧ cl ≤ 𝑝 × 322 + 𝜖

Fig. 5. A Java program encoded in a PTA

That is, a system is fully opaque if, for any execution time 𝑑 , a run of duration 𝑑 reaches ℓ𝑓 after
going through ℓpriv iff another run of duration 𝑑 reaches ℓ𝑓 without going through ℓpriv .
Remark 1. This definition is symmetric: a system is not opaque iff an attacker can deduce ℓpriv or
¬ℓpriv . For instance, if there is no path through ℓpriv to ℓ𝑓 , but a path to ℓ𝑓 , a system is not opaque
w.r.t. Definition 4.3.

Example 4.4. Consider the PTAA in Fig. 5 where 𝑐𝑙 is a clock, while 𝜖, 𝑝 are parameters. We use
a sightly extended PTA syntax: 𝑟𝑒𝑎𝑑?x reads the value input on a given channel 𝑟𝑒𝑎𝑑 , and assigns
it to a (discrete, global) variable x. secret is a constant variable of arbitrary value. If both x and
secret are finite-domain variables (e. g., bounded integers) then they can be seen as syntactic sugar
for locations. Such variables are supported by most model checkers, including Uppaal [22] and
IMITATOR [49].
This PTA encodes a server process and is a (manual) translation of a Java program from the

DARPA Space/Time Analysis for Cybersecurity (STAC) library3, that compares a user-input variable
with a given secret and performs different actions taking different times depending on this secret.
The original Java program is vulnerable, and tagged as such in the DARPA library, because some
sensitive information can be deduced from the timing information. The original Java code is given
in Appendix A.

In our encoding, a single instruction takes a time in [0, 𝜖], while 𝑝 is a (parametric) factor to one
of the sleep instructions of the program. Note that in the original Java code in Appendix A, at
line 25, there is no parameter 𝑝 but an integer 2; that is, the code is fixed to have 𝑣 (𝑝) = 2. For
sake of simplicity, we abstract away instructions not related to time, and merge subfunctions calls.
For this work, we simplify the problem and abstract in this way. Precisely modeling the timing
behavior of a program is itself a complicated problem (due to caching, speculative execution, etc.)
and we leave to future work.
Let 𝑣1 such that 𝑣1 (𝜖) = 1 and 𝑣1 (𝑝) = 2. For this example, DReach𝑣1 (A)ℓpriv

(ℓ𝑓 ) = [1024, 1029]
while DReach𝑣1 (A)¬ℓpriv (ℓ𝑓 ) = [2048, 2053]. Therefore, 𝑣1 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for
execution times 𝐷 = [1024, 1029] ∩ [2048, 2053] = ∅.
Let 𝑣2 such that 𝑣2 (𝜖) = 2 and 𝑣2 (𝑝) = 1.002. DReach𝑣2 (A)ℓpriv

(ℓ𝑓 ) = [1024, 1034] while
DReach𝑣2 (A)¬ℓpriv (ℓ𝑓 ) = [1026.048, 1036.048]. Therefore, 𝑣2 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for
execution times 𝐷 = [1026.048, 1034].

Obviously, neither 𝑣1 (A) nor 𝑣2 (A) are fully opaque w.r.t. ℓpriv on the way to ℓ𝑓 .

4.2 Decision and computation problems
We can now define the timed opacity computation problem, which consists in computing the
possible execution times ensuring opacity w.r.t. a private location. In other words, the attacker
3https://github.com/Apogee-Research/STAC/blob/master/Canonical_Examples/Source/Category1_vulnerable.java
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model is as follows: the attacker knows the system model in the form of a TA, and can only observe
the computation time between the start of the program and the time it reaches a given (final)
location.
Timed opacity computation Problem:
Input: A TA 𝑣 (A), a private location ℓpriv , a target location ℓ𝑓
Problem: Compute the execution times 𝐷 such that 𝑣 (A) is opaque w.r.t. ℓpriv on the way
to ℓ𝑓 for these execution times 𝐷 .

Let us illustrate that this computation problem is certainly not easy. For the TA A in Fig. 6, the
execution times 𝐷 for which A is opaque w.r.t. ℓpriv on the way to ℓ𝑓 is exactly N; that is, only
integer times are opaque (as the system can only leave ℓpriv and hence enter ℓ𝑓 at an integer time).

ℓ0

ℓpriv

ℓ𝑓

𝑥 = 0

𝑥 = 1
𝑥 ← 0

𝑥 = 0

Fig. 6. TA for which the set of opaque execution times is N

The synthesis counterpart allows for a higher-level problem by also synthesizing the internal
timings guaranteeing opacity.
Timed opacity synthesis Problem:
Input: A PTA A, a private location ℓpriv , a target location ℓ𝑓
Problem: Synthesize the parameter valuations 𝑣 and the execution times 𝐷𝑣 such that 𝑣 (A)
is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for these execution times 𝐷𝑣 .

Note that the execution times can depend on the parameter valuations.
We can also define the full timed opacity decision problem, which consists in answering whether

a timed automaton is fully opaque w.r.t. a private location.
Full timed opacity decision Problem:
Input: A TA 𝑣 (A), a private location ℓpriv , a target location ℓ𝑓
Problem: Is 𝑣 (A) fully opaque w.r.t. ℓpriv on the way to ℓ𝑓 ?

Note that a last problem of interest would be full timed opacity synthesis, aiming at synthesizing
(ideally the entire set of) parameter valuations 𝑣 for which 𝑣 (A) is fully opaque w.r.t. ℓpriv on the
way to ℓ𝑓 . This is left as future work.

5 TIMED OPACITY PROBLEMS FOR TIMED AUTOMATA
In this section, we address the non-parametric problems defined in Section 4.2, i. e., the timed
opacity computation problem (Section 5.2) and full timed opacity decision problem (Section 5.3).
We show that both problems can be solved using a construction of the DReach sets based on the
RA arithmetic [5] (Section 5.1).

In this section, let A denote a (non-parametric) timed automaton.
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5.1 Computing DReachAℓpriv (ℓ𝑓 ) and DReachA¬ℓpriv (ℓ𝑓 )
We must be able to express the set of execution times, i. e., the durations of all runs from the initial
location to a given target location. While the problem of expressing the set of execution times
seems very natural for timed automata, it was barely addressed in the literature, with the exception
of [25, 26].

5.1.1 The RA arithmetic. We use the RA arithmetic, which is the set of first-order formulae,
interpreted over the real numbers, of ⟨R, +, <,N, 0, 1⟩ where N is a unary predicate such that N(𝑧)
is true iff 𝑧 is a natural number. This arithmetic has a decidable theory with a complexity of
3EXPTIME [5].

5.1.2 Computing execution times of timed automata. With 𝑟, 𝑟 ′ ∈ RA , we denote by 𝜆𝑟,𝑟 ′ the set of
durations𝑑 such that there exists a finite path 𝜌 = (𝑠𝑖 )𝑖 in𝑇A such that dur (𝜌) = 𝑑 and the associated
path 𝜋 (𝜌) = (𝑟𝑘 )0≤𝑘≤𝐾 in the region graph satisfies 𝑟0 = 𝑟, 𝑟𝐾 = 𝑟 ′. It is shown in [25, Proposition
5.3] that these sets 𝜆𝑟,𝑟 ′ can be defined in RA arithmetic. Moreover, they are definable by a disjunction
of terms of the form 𝑑 =𝑚, ∃𝑧,N(𝑧) ∧ 𝑑 =𝑚 + 𝑐𝑧 and ∃𝑧,N(𝑧) ∧𝑚 + 𝑐𝑧 < 𝑑 < 𝑚 + 𝑐𝑧 + 1, where
𝑐,𝑚 ∈ N.

Let us give the main idea of the proof presented in [25] (even though this explanation is not
necessary to follow our reasoning). The idea of the proof of [25] is to consider a TA A0 obtained
from A by adding a new clock 𝑥0 which is reset to 0 each time it reaches the value 1 and to count
all of the resets of 𝑥0. The construction of A0 ensures that each (finite) run 𝜌 of 𝑇A corresponds to
a run 𝜌0 of 𝑇A0 (at each state, the value of 𝑥0 is the fractional part of the total time elapsed), and
conversely (erasing 𝑥0). The authors propose next a classical automaton 𝐶 as a particular subgraph
of the region graph RA0 , where the only action 𝑎 denotes the reset of 𝑥0 (all other transitions are
labeled with the silent action). The conclusion follows because 𝑡 ∈ 𝜆𝑟,𝑟 ′ if ⌊𝑡⌋ is the length of a path
in 𝐶 ′, the deterministic automaton obtained from 𝐶 by subset construction.

Lemma 5.1 (Reachability-duration computation). The sets DReachAℓpriv (ℓ𝑓 ) and

DReachA¬ℓpriv (ℓ𝑓 ) are computable and definable in RA arithmetic.

Proof. Let A be a TA. We aim at reducing the computation of the sets DReachAℓpriv (ℓ𝑓 ) and
DReachA¬ℓpriv (ℓ𝑓 ) to the computation of sets 𝜆𝑟,𝑟 ′ .
First, let us compute DReachAℓpriv (ℓ𝑓 ). From A, we define a TA A ′ by adding a Boolean discrete

variable 𝑏, initially false. Recall that discrete variables over a finite domain are syntactic sugar for
locations: therefore, ℓ𝑓 with 𝑏 = false and ℓ𝑓 with 𝑏 = true can be seen as two different locations.
Then, we set 𝑏 ← true on any transition whose target location is ℓpriv ; therefore, 𝑏 = true denotes
that ℓpriv has been visited. We denote by ℓ ′

𝑓 true
the final state of A ′ where 𝑏 = true. DReachAℓpriv (ℓ𝑓 )

is exactly the set of executions times in A ′ between ℓ0 and ℓ ′𝑓 true. For all the regions 𝑟
′
𝑖 associated

to ℓ ′
𝑓 true

, we can compute (using [25]) 𝜆𝑟,𝑟 ′𝑖 , where 𝑟 is the region associated to ℓ0 in A ′. Therefore,
DReachAℓpriv (ℓ𝑓 ) can be computed as the union of all the 𝜆𝑟,𝑟 ′𝑖 (of which there is a finite number),
which is definable in RA arithmetic.

Second, let us compute DReachA¬ℓpriv (ℓ𝑓 ). We define another TAA ′′ obtained fromA by deleting
all the transitions leading to ℓpriv . Therefore, the set of durations reaching ℓ𝑓 in A ′′ is exactly the
set of durations reaching ℓ𝑓 in A associated to runs not visiting ℓpriv . DReachA¬ℓpriv (ℓ𝑓 ) is exactly
the set of executions times in A ′′ between ℓ0 and ℓ𝑓 . For all the regions 𝑟 ′𝑖 associated to ℓ𝑓 , we
can compute 𝜆𝑟,𝑟 ′𝑖 , where 𝑟 is the region associated to ℓ0 in A ′′. Therefore, DReachAℓpriv (ℓ𝑓 ) can be
computed as the union of all the 𝜆𝑟,𝑟 ′𝑖 . □
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5.2 Answering the timed opacity computation problem
Proposition 5.2 (timed opacity computation). The timed opacity computation problem is

solvable for TAs.

Proof. Let A be a TA. From Lemma 5.1, we can compute and define in RA arithmetic the sets
DReachA¬ℓpriv (ℓ𝑓 ) and DReachAℓpriv (ℓ𝑓 ).
By the decidability of RA arithmetic, the intersection of these sets is computable. Then, the set

𝐷 = DReachAℓpriv (ℓ𝑓 )∩DReachA¬ℓpriv (ℓ𝑓 ) is effectively computable (with a 3EXPTIME upper bound). □

This positive result can be put in perspective with the negative result of [15] that proves that it is
undecidable whether a TA (and even the more restricted subclass of event-recording automata [16])
is opaque, in a sense that the attacker can deduce some actions, by looking at observable actions
together with their timing. The difference in our setting is that only the global time is observable,
which can be seen as a single action, occurring once only at the end of the computation. In other
words, our attacker is less powerful than the attacker in [15].

5.3 Checking for full timed opacity
Proposition 5.3 (full timed opacity decision). The full timed opacity decision problem is

decidable for TAs.

Proof. Let A be a TA. From Lemma 5.1, we can compute and define in RA arithmetic the sets
DReachA¬ℓpriv (ℓ𝑓 ) and DReachAℓpriv (ℓ𝑓 ).
From the decidability of RA arithmetic, the equality between these sets is decidable. Therefore,

DReachAℓpriv (ℓ𝑓 )
?
= DReachA¬ℓpriv (ℓ𝑓 ) is decidable. □

From [5] and [25, Theorem 7.5], the computation of a set 𝜆𝑟,𝑟 ′ is 2EXPTIME and the RA arithmetic
has a decidable theory with complexity 3EXPTIME. Therefore, our construction is 3EXPTIME,
which is an upper-bound for the problem complexity. Note that, as in [25], we did not compute a
lower bound for the complexity of Propositions 5.2 and 5.3. This remains to be done as future work.

Example 5.4. Consider again the PTA A in Fig. 1, and let 𝑣 be such that 𝑣 (𝑝1) = 1 and
𝑣 (𝑝2) = 2. Recall from Example 4.1 that DReach𝑣 (A)ℓ2

(ℓ1) = [1, 3] and DReach𝑣 (A)¬ℓ2 (ℓ1) = [2, 3].
Thus, DReach𝑣 (A)ℓ2

(ℓ1) ≠ DReach𝑣 (A)¬ℓ2 (ℓ1) and therefore 𝑣 (A) is not (fully) opaque w.r.t. ℓ2 on the
way to ℓ1.

Now, consider 𝑣 ′ such that 𝑣 ′(𝑝1) = 𝑣 ′(𝑝2) = 1.5. This time,DReach𝑣
′ (A)
ℓ2
(ℓ1) = DReach𝑣

′ (A)
¬ℓ2 (ℓ1) =[1.5, 3] and therefore 𝑣 ′(A) is (fully) opaque w.r.t. ℓ2 on the way to ℓ1.

6 THE THEORY OF PARAMETRIC TIMED OPACITY W.R.T. EXECUTION TIMES
We address in this section the parametric problems of timed opacity w.r.t. execution times.

Let us consider the following decision problem, i. e., the problem of checking the emptiness of
the parameter valuations and execution times set guaranteeing timed opacity w.r.t. execution times.
The decision problem associated to full timed opacity will be considered in Section 7.
Timed opacity emptiness Problem:
Input: A PTA A, a private location ℓpriv , a target location ℓ𝑓
Problem: Is the set of valuations 𝑣 such that 𝑣 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for a
non-empty set of execution times empty?
The negation of the timed opacity emptiness consists in deciding whether there exists at least

one parameter valuation for which 𝑣 (A) is opaque for at least some execution time.
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ℓ0 ℓ𝑓Aℓ ′0 ℓpriv

ℓpub ℓ ′
𝑓

Fig. 7. Reduction from reachability-emptiness

6.1 Undecidability in general
We prove undecidability results for a “sufficient” number of clocks and parameters. Put it differently,
our proofs of undecidability require a minimum number of clocks and parameters to work; the
problems are obviously undecidable for larger numbers, but the decidability is open for smaller
numbers. This will be briefly discussed in Section 10.
With the rule of thumb that all non-trivial decision problems are undecidable for general

PTAs [50], the following result is not surprising, and follows from the undecidability of reachability-
emptiness for PTAs.

Theorem 6.1 (undecidability). The timed opacity emptiness problem is undecidable for general
PTAs.

Proof. We reduce from the reachability-emptiness problem, i. e., the existence of a parameter
valuation for which there exists a run reaching a given location in a PTA, which is undecidable
(e. g., [3, 51, 52, 46, 53]). Consider an arbitrary PTA A with initial location ℓ0 and a given loca-
tion ℓ𝑓 . It is undecidable whether there exists a parameter valuation for which there exists a run
reaching ℓ𝑓 (proofs of undecidability in the literature generally reduce from the halting problem of
a 2-counter machine which is undecidable [54], so one can see A as an encoding of a 2-counter
machine).

Now, add the following locations and transitions (all unguarded) as in Fig. 7: a new urgent4 initial
location ℓ ′0 with outgoing transitions to ℓ0 and to a new location ℓpub; a new urgent location ℓpriv
with an incoming transition from ℓ𝑓 ; a new final location ℓ ′

𝑓
with incoming transitions from ℓpriv

and ℓpub. Also, ℓ𝑓 is made urgent. Let A ′ denote this new PTA.
First note that, due to the unguarded transitions, ℓ ′

𝑓
is reachable for any parameter valuation and

for any execution time by runs going through ℓpub and not going through ℓpriv . That is, for all 𝑣 ,
DReach𝑣 (A

′)
¬ℓpriv (ℓ ′𝑓 ) = [0,∞).

Assume there exists some parameter valuation 𝑣 such that ℓ𝑓 is reachable from ℓ0 in 𝑣 (A) for
some execution times 𝐷 : then, due to our construction with additional urgent locations, ℓpriv is
reachable on the way to ℓ ′

𝑓
in 𝑣 (A ′) for the exact same execution times 𝐷 . Therefore, 𝑣 (A) is

opaque w.r.t. ℓpriv on the way to ℓ ′
𝑓
for execution times 𝐷 .

Conversely, if ℓ𝑓 is not reachable from ℓ0 in A for any valuation, then ℓpriv is not reachable on
the way to ℓ ′

𝑓
for any valuation in A ′. Therefore, there is no valuation 𝑣 such that 𝑣 (A) is opaque

w.r.t. ℓpriv on the way to ℓ ′
𝑓
for any execution time. Therefore, there exists a valuation 𝑣 such that

𝑣 (A) is opaque w.r.t. ℓpriv on the way to ℓ ′
𝑓
iff ℓ𝑓 is reachable in A—which is undecidable. □

4Where time cannot elapse (depicted in dotted yellow in our figures).
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Remark 2. Our proof reduces from the reachability-emptiness problem, for which several un-
decidability proofs were proposed (notably [3, 51, 52, 46, 53]), with various flavors (numbers of
parameters, integer- or dense-time, integer- or rational-valued parameters, etc.). See [50] for a
survey. Notably, this means (from [53]) that Theorem 6.1 holds for PTAs with at least 3 clocks and
a single parameter.

6.2 A decidable subclass
We now show that the timed opacity emptiness problem is decidable for the subclass of PTAs called
L/U-PTAs [44]. Despite early positive results for L/U-PTAs [44, 55], more recent results (notably
[46, 56, 57, 58]) mostly proved undecidable properties of L/U-PTAs, and therefore this positive
result is welcome.

Theorem 6.2 (decidability). The timed opacity emptiness problem is decidable for L/U-PTAs.

Proof. We reduce to the timed opacity computation problem of a given TA, which is decidable
(Proposition 5.2).

Let A be an L/U-PTA. Let A0,∞ denote the structure obtained as follows: any occurrence of
a lower-bound parameter is replaced with 0, and any occurrence of a conjunct 𝑥 ⊳ 𝑝 (where 𝑝 is
necessarily an upper-bound parameter) is deleted, i. e., replaced with true.

Let us show that the set of valuations 𝑣 such that 𝑣 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for
a non-empty set of execution times is non empty iff the solution to the timed opacity computation
problem for A0,∞ is non-empty.
⇒ Assume there exists a valuation 𝑣 such that 𝑣 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for

a non-empty set of execution. Therefore, the solution to the timed opacity computation
problem for A0,∞ is non-empty. That is, there exists a duration 𝑑 such that there exists a run
of duration 𝑑 such that ℓpriv is reachable on the way to ℓ𝑓 , and there exists a run of duration 𝑑
such that ℓpriv is unreachable on the way to ℓ𝑓 .
We now need the following monotonicity property of L/U-PTAs:

Lemma 6.3 ([44]). Let A be an L/U-PTA and 𝑣 be a parameter valuation. Let 𝑣 ′ be a valuation
such that for each upper-bound parameter 𝑝𝑢 , 𝑣 ′(𝑝𝑢) ≥ 𝑣 (𝑝𝑢) and for each lower-bound
parameter 𝑝𝑙 , 𝑣 ′(𝑝𝑙 ) ≤ 𝑣 (𝑝𝑙 ). Then any run of 𝑣 (A) is a run of 𝑣 ′(A).
Therefore, from Lemma 6.3, the runs of 𝑣 (A) of duration 𝑑 such that ℓpriv is reachable (resp.
unreachable) on the way to ℓ𝑓 are also runs of A0,∞. Therefore, there exists a non-empty
set of durations such that A0,∞ is opaque, i. e., solution to the timed opacity computation
problem for A0,∞ is non-empty.

⇐ Assume the solution to the timed opacity computation problem for A0,∞ is non-empty. That
is, there exists a duration𝑑 such that there exists a run of duration𝑑 such that ℓpriv is reachable
on the way to ℓ𝑓 in A0,∞, and there exists a run of duration 𝑑 such that ℓpriv is unreachable
on the way to ℓ𝑓 in A0,∞.
The result could follow immediately—if only assigning 0 and∞ to parameters was a proper
parameter valuation. From [44, 55], if a location is reachable in the TA obtained by valuating
lower-bound parameters with 0 and upper-bound parameters with ∞, then there exists a
sufficiently large constant 𝐶 such that this run exists in 𝑣 (A) such that 𝑣 assigns 0 to lower-
bound and 𝐶 to upper-bound parameters. Here, we can trivially pick 𝑑 + 1, as any clock
constraint 𝑥 ≤ 𝑑 + 1 or 𝑥 < 𝑑 + 1 will be satisfied for a run of duration 𝑑 . Let 𝑣 assign 0 to
lower-bound and 𝑑 to upper-bound parameters. Then, there exists a run of duration 𝑑 such
that ℓpriv is reachable on the way to ℓ𝑓 in 𝑣 (A), and there exists a run of duration 𝑑 such that
ℓpriv is unreachable on the way to ℓ𝑓 in 𝑣 (A). Therefore, the set of valuations 𝑣 such that
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𝑣 (A) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for a non-empty set of execution times is non
empty—which concludes the proof. □

Remark 3. The class of L/U-PTAs is known to be relatively meaningful, and many case studies from
the literature fit into this class, including case studies proposed even before this class was defined
in [44], e. g., a toy railroad crossing model and a model of Fischer mutual exclusion protocol given
in [3] (see [50] for a survey). Even though the PTA in Fig. 5 does not fit in this class, it can easily be
transformed into an L/U-PTA, by duplicating 𝑝 into 𝑝𝑙 (used in lower-bound comparisons with
clocks) and 𝑝𝑢 (used in upper-bound comparisons with clocks).

6.3 Intractability of synthesis for L/U-PTAs
Even though the emptiness problem for the timed opacity w.r.t. a set of execution times 𝐷 is
decidable for L/U-PTAs (Theorem 6.2), the synthesis of the parameter valuations remains intractable
in general, as shown in the following Proposition 6.4. By intractable, we mean more precisely that
the solution, if it can be computed, cannot (in general) be represented using any formalism for
which the emptiness of the intersection with equality constraints is decidable. That is, a formalism
in which it is decidable to answer the question “is the computed solution intersected with an
equality test between variables empty?” cannot be used to represent the solution. By empty, we
mean emptiness of the valuations set. For example, let us question whether we could represent the
solution of the timed opacity synthesis problem for L/U-PTAs using the formalism of a finite union
of polyhedra: testing whether a finite union of polyhedra intersected with “equality constraints”
(typically 𝑝1 = 𝑝2) is empty or not is decidable. The Parma polyhedra library [59] can typically
compute the answer to this question. Therefore, from the following Proposition 6.4, finite unions
of polyhedra cannot be used to represent the solution of the timed opacity synthesis problem for
L/U-PTAs. As finite unions of polyhedra are a very common formalism (not to say the de facto
standard) to represent the solutions of various timing parameters synthesis problems, the synthesis
is then considered to be infeasible in practice, or intractable (following the vocabulary used in [46,
Theorem 2]).

Proposition 6.4 (intractability). If it can be computed, the solution to the timed opacity synthesis
problem for L/U-PTAs cannot in general be represented using any formalism for which the emptiness
of the intersection with equality constraints is decidable.

Proof. We reuse a reasoning inspired by [46, Theorem 2], and we reduce from the undecidability
of the timed opacity emptiness problem for general PTAs (Theorem 6.1). Assume the solution of
the timed opacity synthesis problem for L/U-PTAs can be represented in a formalism for which the
emptiness of the intersection with equality constraints is decidable.
Assume an arbitrary PTA A with notably two locations ℓpriv and ℓ𝑓 . From A, we define an

L/U-PTA A ′ as follow: for each parameter 𝑝𝑖 that is used both as an upper bound and a lower
bound, replace its occurrences as upper bounds by a fresh parameter 𝑝𝑢𝑖 and its occurrences as
lower bounds by a fresh parameter 𝑝𝑙𝑖 .
By assumption, the solution of the synthesis problem Γ ={(𝑣, 𝐷𝑣) | 𝑣 (A ′) is opaque w.r.t. ℓpriv on the way to ℓ𝑓 for times 𝐷𝑣

}
for A ′ can be computed

and represented in a formalism for which the emptiness of the intersection with equality
constraints is decidable.
However, solving the emptiness of

{(𝑣, 𝐷𝑣) ∈ Γ | ∧𝑖 𝑣 (𝑝𝑢𝑖 ) = 𝑣 (𝑝𝑙𝑖 )
}
(which is decidable by as-

sumption), we can decide the timed opacity emptiness for the PTA A (which is undecidable from
Theorem 6.1). This leads to a contradiction, and therefore the solution of the timed opacity synthesis
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ℓ0 ℓ𝑓A ℓ ′
𝑓

𝑥 = 1

Fig. 8. Undecidability of EF-emptiness over constant time

problem for L/U-PTAs cannot in general be represented in a formalism for which the emptiness of
the intersection with equality constraints is decidable. □

7 THE THEORY OF PARAMETRIC FULL TIMED OPACITY
We address here the following decision problem, which asks about the emptiness of the parameter
valuations set guaranteeing full timed opacity.
Full timed opacity Emptiness Problem:
Input: A PTA A, a private location ℓpriv , a target location ℓ𝑓
Problem: Is the set of valuations 𝑣 such that 𝑣 (A) is fully opaque w.r.t. ℓpriv on the way to ℓ𝑓
empty?
Equivalently, we are interested in deciding whether there exists at least one parameter valuation

for which 𝑣 (A) is fully opaque.

7.1 Undecidability in general
Considering that Theorem 6.1 shows that the undecidability of the timed opacity emptiness problem,
the undecidability of the emptiness problem for the full timed opacity is not surprising, but does
not follow immediately.
To prove this result (that will be stated formally in Theorem 7.2), we first need the following

lemma stating that the reachability-emptiness (hereafter sometimes referred to as “EF-emptiness”)
problem is undecidable in constant time, i. e., for a fixed time bound𝑇 . That is, the following lemma
shows that, given a PTA A, a target location ℓ𝑇 and a time bound 𝑇 , it is undecidable whether the
set of parameter valuations for which there exists a run reaching ℓ𝑇 in exactly𝑇 time units is empty
or not.

Lemma 7.1 (Reachability in constant time). The reachability-emptiness problem in constant
time is undecidable for PTAs with 4 clocks and 2 parameters.

Proof. In [58, Theorem 3.12], we showed that the EF-emptiness problem is undecidable over
bounded time for PTAs with (at least) 3 clocks and 2 parameters. That is, given a fixed bound𝑇 and
a location ℓ𝑓 , it is undecidable whether the set of parameter valuations for which at least one run
reaches ℓ𝑓 within 𝑇 time units is empty or not.
We reduce the reachability in bounded time (i. e., in at most 𝑇 time units) to the reachability in

constant time (i. e., in exactly 𝑇 time units). In this proof, we fix 𝑇 = 1.
Assume a PTAA with a location ℓ𝑓 . We define a PTAA ′ as in Fig. 8 by adding a new location ℓ ′

𝑓
,

and a transition from ℓ𝑓 to ℓ ′𝑓 guarded by 𝑥 = 1, where 𝑥 is a new clock (initially 0), not used in A
and therefore never reset in the automaton.

Let us show that there is no valuation such that ℓ𝑓 is reachable in at most 1 time unit iff there is
no valuation such that ℓ ′

𝑓
is reachable exactly in 1 time unit.
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⇐ Assume EF-emptiness holds in constant time forA ′, i. e., there exists no parameter valuation
for which ℓ ′

𝑓
is reachable in𝑇 = 1 time units. Then, from the construction ofA ′, no parameter

valuation exists for which ℓ𝑓 is reachable in 𝑇 ≤ 1 time units.
⇒ Conversely, assume EF-emptiness holds over bounded time for A, i. e., there exists no

parameter valuation for which ℓ𝑓 is reachable in𝑇 ≤ 1 time units. Then, from the construction
of A ′, no parameter valuation exists for which ℓ ′

𝑓
is reachable in 𝑇 = 1 time units.

This concludes the proof of the lemma. □

We can now state and prove Theorem 7.2.
Theorem 7.2 (undecidability). The full timed opacity emptiness problem is undecidable for

general PTAs with (at least) 4 clocks and 2 parameters.

Proof. We reduce from the reachability-emptiness problem in constant time, which is undecid-
able (Lemma 7.1).
Consider an arbitrary PTA A with (at least) 4 clocks and 2 parameters, with initial location ℓ0

and a given location ℓ𝑓 . We add the following locations and transitions inA to obtain a PTAA ′, as
in Fig. 9: a new urgent initial location ℓ ′0 , with outgoing transition to ℓ0 and to a new location ℓpub, a
new urgent location ℓpriv with an incoming transition from ℓ𝑓 , a new urgent and final location ℓ ′

𝑓

with incoming transitions from ℓpriv and ℓpub, and a guard 𝑥 = 1 (with a new clock 𝑥 , never reset)
on the transition from ℓpub to ℓ ′𝑓 .
First, note that, due to the guarded transition, ℓ ′

𝑓
is reachable for any parameter valuation and

(only) for an execution time equal to 1 by runs going through ℓpub and not going through ℓpriv . That
is, for all 𝑣 , DReach𝑣 (A)¬ℓpriv (ℓ𝑓 ) = {1}.

We show that there exists a valuation 𝑣 such that 𝑣 (A ′) is fully opaque w.r.t. ℓpriv on the way to
ℓ ′
𝑓
iff there exists a valuation 𝑣 such that ℓ𝑓 is reachable in 𝑣 (A) for execution time equal to 1.
⇐ Assume there exists some valuation 𝑣 such that ℓ𝑓 is reachable from ℓ0 in A (only) for

execution time equal to 1. Then, due to our construction, ℓpriv is reachable on the way to ℓ ′
𝑓

in 𝑣 (A ′) for the exact same execution time 1. Therefore, 𝑣 (A ′) is fully opaque w.r.t. ℓpriv on
the way to ℓ ′

𝑓
.

⇒ Conversely, if ℓ𝑓 is not reachable from ℓ0 in A for any valuation for execution time 1, then
ℓpriv is not reachable on the way to ℓ ′

𝑓
for any valuation ofA ′. Therefore, there is no valuation

𝑣 such that 𝑣 (A ′) is fully opaque w.r.t. ℓpriv on the way to ℓ ′
𝑓
for execution time 1.

Therefore, there exists a valuation 𝑣 such that 𝑣 (A ′) is fully opaque w.r.t. ℓpriv on the way to ℓ ′
𝑓
iff

there exists a valuation 𝑣 such that ℓ𝑓 is reachable in 𝑣 (A) for execution time equal to 1—which is
undecidable. This concludes the proof.

Let us briefly discuss the minimum number of clocks necessary to obtain undecidability using our
proof (the case of smaller numbers of clocks remains open). Recall that Lemma 7.1 needs 4 clocks;
in the current proof of Theorem 7.2, we add a new clock 𝑥 which is never reset; however, since the
proof of Lemma 7.1 also uses a clock which is never reset, therefore we can reuse it, and our proof
does not need an additional clock. So the result holds for 4 clocks and 2 parameters. □

7.2 Undecidability for L/U-PTAs
Note that reasoning like in Section 6.2, i. e., reducing the emptiness problem to a decision problem
of the non-parametric A0,∞, is not relevant. Fig. 10 shows an L/U-PTA A (and more precisely, a
U-PTA, i. e., an L/U-PTA with an empty set of lower-bound parameters [55]) which is not fully
opaque for any parameter valuation, but whose associated TA A0,∞ is.
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ℓ0 ℓ𝑓Aℓ ′0 ℓpriv

ℓpub ℓ ′
𝑓

𝑥 = 1

Fig. 9. Reduction from reachability-emptiness

ℓ0

ℓpriv

ℓ1

𝑥 ≤ 𝑝

Fig. 10. A0,∞ is not sufficient for the full timed opacity emptiness problem

ℓ0

ℓpriv

ℓ𝑓
𝑥 ≤ 𝑝

𝑥 ≤ 1

Fig. 11. No monotonicity for full timed opacity in L/U-PTAs

In addition, while it is well-known that L/U-PTAs enjoy a monotonicity for reachability prop-
erties (“enlarging an upper-bound parameter or decreasing a lower-bound parameter preserves
reachability”) as recalled in Lemma 6.3, we can show in the following example that this is not the
case for full timed opacity.

Example 7.3. Consider the PTA in Fig. 11. First assume 𝑣 such that 𝑣 (𝑝) = 0.5. Then, 𝑣 (A) is
not full timed opaque: indeed, ℓ𝑓 can be reached in 1 time unit via ℓpriv , but not without going
through ℓpriv .
Second, assume 𝑣 ′ such that 𝑣 ′(𝑝) = 1. Then, 𝑣 ′(A) is full timed opaque: indeed, ℓ𝑓 can be

reached for any duration in [0, 1] by runs both going through and not going through ℓpriv .
Finally, let us enlarge 𝑝 further, and assume 𝑣 ′′ such that 𝑣 ′′(𝑝) = 2. Then, 𝑣 ′′(A) becomes again

not full timed opaque: indeed, ℓ𝑓 can be reached in 2 time units not going through ℓpriv , but cannot
be reached in 2 time units by going through ℓpriv .

As a side note, remark that this PTA is actually a U-PTA, that is, monotonicity for this problem
does not even hold for U-PTAs.

In fact, we show that, while the timed opacity emptiness problem is decidable for L/U-PTAs
(Theorem 6.2), the full timed opacity emptiness problem becomes undecidable for this same class
(from 4 parameters). This confirms (after previous works in [46, 56, 57]) that L/U-PTAs stand at the
frontier between decidability and undecidability.

Theorem 7.4. The full timed opacity emptiness problem is undecidable for L/U-PTAs with (at least)
4 clocks and 4 parameters.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:22 Étienne André, Didier Lime, Dylan Marinho, and Jun Sun

ℓ0 A ℓ𝑓ℓ′0
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∨
𝑖 (𝑝𝑙𝑖 < 𝑥 ≤ 𝑝𝑢𝑖 )

𝑥 > 2

𝑥 = 2

Fig. 12. Undecidability of full timed opacity emptiness for L/U-PTAs

Proof. Let us recall from [58, Theorem 3.12] that the EF-emptiness problem is undecidable
over bounded time for PTAs with (at least) 3 clocks and 2 parameters. Assume a PTA A with
3 clocks and 2 parameters, say 𝑝1 and 𝑝2, and a target location ℓ𝑓 . Take 1 as a time bound. From
[58, Theorem 3.12], it is undecidable whether there exists a parameter valuation for which ℓ𝑓 is
reachable in time ≤ 1.

The idea of our proof is that, as in [46, 60], we “split” each of the two parameters used inA into a
lower-bound parameter (𝑝𝑙1 and 𝑝𝑙2) and an upper-bound parameter (𝑝𝑢1 and 𝑝𝑢2 ). Each construction
of the form 𝑥 < 𝑝𝑖 (resp. 𝑥 ≤ 𝑝𝑖 ) is replaced with 𝑥 < 𝑝𝑢𝑖 (resp. 𝑥 ≤ 𝑝𝑢𝑖 ) while each construction
of the form 𝑥 > 𝑝𝑖 (resp. 𝑥 ≥ 𝑝𝑖 ) is replaced with 𝑥 > 𝑝𝑙𝑖 (resp. 𝑥 ≥ 𝑝𝑙𝑖 ); 𝑥 = 𝑝𝑖 is replaced with
𝑝𝑙𝑖 ≤ 𝑥 ≤ 𝑝𝑢𝑖 .

The idea is that the PTA A is exactly equivalent to our construction with duplicated parameters
only when 𝑝𝑙1 = 𝑝𝑢1 and 𝑝𝑙2 = 𝑝𝑢2 . The crux of the rest of this proof is that we will “rule out” any
parameter valuation not satisfying these equalities, so as to use directly the undecidability result of
[58, Theorem 3.12].

Now, consider the extension of A given in Fig. 12, and let A ′ be this extension. We assume that
𝑥 is an extra clock not used in A. The syntax “X \ {𝑥} ← 0” denotes that all clocks of the original
PTA A are reset—but not the new clock 𝑥 . The guard on the lower transition from ℓ ′0 to ℓ4 stands
for 2 different transitions guarded with 𝑝𝑙1 < 𝑥 ≤ 𝑝𝑢1 , and 𝑝𝑙2 < 𝑥 ≤ 𝑝𝑢2 , respectively. Let us first
make the following observations:
(1) for any parameter valuation, one can take the upper transition from ℓ ′0 to ℓ ′𝑓 at time 2, i. e., ℓ ′

𝑓

is always reachable in time 2 without going through location ℓpriv ;
(2) the original automatonA can only be entered whenever 𝑝𝑙1 ≤ 𝑝𝑢1 and 𝑝𝑙2 ≤ 𝑝𝑢2 ; going from ℓ ′0

to ℓ0 takes exactly 1 time unit (due to the 𝑥 = 1 guard);
(3) if a run reaches ℓpriv on the way to ℓ ′

𝑓
, then its duration is necessarily 2;

(4) from [58, Theorem 3.12], it is undecidable whether there exists a parameter valuation for
which there exists a run reaching ℓ𝑓 from ℓ0 in time ≤ 1, i. e., reaching ℓ𝑓 from ℓ ′0 in time ≤ 2.

Let us consider the following cases:
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(1) if 𝑝𝑙1 > 𝑝𝑢1 or 𝑝𝑙2 > 𝑝𝑢2 , then thanks to the transitions from ℓ ′0 to ℓ0, there is no way to enter
the original PTA A (and therefore to reach ℓpriv on the way to ℓ ′

𝑓
); since these valuations can

still reach ℓ ′
𝑓
for some execution times (notably 𝑥 = 2 through the upper transition from ℓ ′0

to ℓ ′
𝑓
), then A ′ is not fully opaque for any of these valuations.

(2) if 𝑝𝑙1 < 𝑝𝑢1 or 𝑝𝑙2 < 𝑝𝑢2 , then one of the lower transitions from ℓ ′0 to ℓ4 can be taken, and
therefore ℓ ′

𝑓
is reachable in a time > 2 without going through ℓpriv . Since no run can reach

ℓ ′
𝑓
while going through ℓpriv for a duration ≠ 2, then again A ′ is not fully opaque for any of

these valuations.
(3) if 𝑝𝑙1 = 𝑝𝑢1 and 𝑝𝑙2 = 𝑝𝑢2 , then the behavior of the modified A (with duplicate parameters) is

exactly the one of the original A. Also, note that the lower transitions from ℓ ′0 to ℓ ′𝑓 (via ℓ4)
cannot be taken. In contrast, the upper transition from ℓ ′0 to ℓ ′𝑓 can still be taken, and therefore
there exists a run of duration 2 reaching ℓ ′

𝑓
without visiting ℓpriv .

Now, assume there exists a parameter valuation for which there exists a run ofA of duration
≤ 1 reaching ℓ𝑓 . And, as a consequence, ℓpriv is reachable, and therefore there exists some
run of duration 2 (including the 1 time unit to go from ℓ0 to ℓ ′0) reaching ℓ ′𝑓 after visiting ℓpriv .
From the above reasoning, all runs reaching ℓ ′

𝑓
have duration 2; in addition, we exhibited a

run visiting ℓpriv and a run not visiting ℓpriv ; therefore the modified automaton A ′ is fully
opaque for such a parameter valuation.
Conversely, assume there exists no parameter valuation for which there exists a run of A of
duration ≤ 1 reaching ℓ𝑓 . In that case, A ′ is not fully opaque for any parameter valuation.

As a consequence, there exists a parameter valuation 𝑣 ′ for which 𝑣 ′(A ′) is fully opaque iff
there exists a parameter valuation 𝑣 for which there exists a run in 𝑣 (A) of duration ≤ 1 reaching
ℓ𝑓—which is undecidable from [58, Theorem 3.12]. □

8 PARAMETER SYNTHESIS FOR OPACITY
Despite the negative theoretical result of Theorem 6.1, we now address the timed opacity synthesis
problem for the full class of PTAs. Our method may not terminate (due to the undecidability) but, if
it does, its result is correct. Our workflow can be summarized as follows.

(1) We enrich the original PTA by adding a Boolean flag 𝑏 and a final synchronization action;
(2) We perform self-composition (i. e., parallel composition with a copy of itself) of this modified

PTA;
(3) We perform reachability-synthesis using EFsynth on ℓ𝑓 with contradictory values of 𝑏.

We detail each operation in the following.
In this section, we assume a PTA A, a given private location ℓpriv and a given final location ℓ𝑓 .

8.1 Enriching the PTA
We first add a Boolean flag 𝑏 initially set to false, and then set to true on any transition whose target
location is ℓpriv (in the line of the proof of Proposition 5.2). Therefore, 𝑏 = true denotes that ℓpriv
has been visited. Second, we add a synchronization action finish on any transition whose target
location is ℓ𝑓 . Third, we add a new clock 𝑥abs (never reset) together with a new parameter 𝑝abs , and
we guard all transitions to ℓ𝑓 with 𝑥abs = 𝑝abs . This will allow to measure the (parametric) execution
time. Let Enrich(A, ℓpriv, ℓ𝑓 ) denote this procedure.

Example 8.1. Fig. 13 shows the transformed version of the PTA in Fig. 5.
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ℓ1 ℓ2 ℓ3

error

ℓ4 ℓpriv

ℓ5

ℓ𝑓

cl ≤ 𝜖 cl ≤ 𝜖 cl ≤ 𝜖 cl ≤ 𝜖

cl ≤ 𝜖
setupserver
cl ← 0

cl ≤ 𝜖
read?x
cl ← 0

cl ≤ 𝜖
x < 0

cl ≤ 𝜖
x ≥ 0
cl ← 0

x ≤ secret
∧ cl ≤ 𝜖

cl ← 0
b← true

x > secret
∧ cl ≤ 𝜖

cl ← 0

322 ≤ cl
∧ cl ≤ 322 + 𝜖
∧ 𝑥abs = 𝑝abs

finish

𝑝 × 322 ≤ cl
∧ cl ≤ 𝑝 × 322 + 𝜖
∧ 𝑥abs = 𝑝abs

finish

Fig. 13. Transformed version of Fig. 5

Algorithm 1: SynthOp(A, ℓpriv, ℓ𝑓 )
input :A PTA A with parameters set P, locations ℓpriv, ℓ𝑓
output :Parameter constraint 𝐾 over P ∪ {𝑝abs}

1 A ′← Enrich(A, ℓpriv, ℓ𝑓 )
2 A ′′← A ′ ∥{finish} Copy(A ′)
3 return EFsynth

(
A ′′, {(ℓ𝑓 ∧ 𝑏 = true, ℓ ′

𝑓
∧ 𝑏 ′ = false)})

8.2 Self-composition
We use here the principle of self-composition [61], i. e., composing the PTA with a copy of itself.
More precisely, given a PTA A ′ = Enrich(A, ℓpriv, ℓ𝑓 ), we first perform an identical copy of A ′
with distinct variables: that is, a clock 𝑥 of A ′ is distinct from a clock 𝑥 in the copy of A ′—which
can be trivially performed using variable renaming.5 Let Copy(A ′) denote this copy of A ′. We
then compute A ′ ∥{finish} Copy(A ′). That is, A ′ and Copy(A ′) evolve completely independently
due to the interleaving—except that they are forced to enter ℓ𝑓 at the same time, thanks to the
synchronization action finish.

8.3 Synthesis
Then, we apply reachability synthesis EFsynth (over all parameters, i. e., the “internal” timing
parameters, but also the 𝑝abs parameter) to the following goal location: the originalA ′ is in ℓ𝑓 with
𝑏 = true while its copy Copy(A ′) is in ℓ ′

𝑓
with 𝑏 ′ = false (primed variables denote variables from

the copy). Intuitively, we synthesize timing parameters and execution times such that there exists
a run reaching ℓ𝑓 with 𝑏 = true (i. e., that has visited ℓpriv) and there exists another run of same
duration reaching ℓ𝑓 with 𝑏 = false (i. e., that has not visited ℓpriv).
Let SynthOp(A, ℓpriv, ℓ𝑓 ) denote the entire procedure. We formalize SynthOp in Algorithm 1,

where “ℓ𝑓 ∧ 𝑏 = true” denotes the location ℓ𝑓 with 𝑏 = true. Recall that 𝑝abs is added by the
enrichment step described in Section 8.1. The set of execution times 𝐷 is therefore given by the
possible valuations of 𝑝abs; these valuations may depend on the model timing parameters (in the
form of a constraint). Finally note that EFsynth is called on a set made of a single location of
A ′ ∥{finish} Copy(A ′); by definition of the synchronous product, this location is a pair of locations,
one from A ′ (i. e., “ℓ𝑓 ∧ 𝑏 = true”) and one from Copy(A ′) (i. e., “ℓ ′

𝑓
∧ 𝑏 ′ = false”).

5In fact, the fresh clock 𝑥abs and parameter 𝑝abs can be shared to save two variables, as 𝑥abs is never reset, and both PTAs
enter ℓ𝑓 at the same time, therefore both “copies” of 𝑥abs and 𝑝abs always share the same values.
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Example 8.2. Consider again the PTA A in Fig. 5: its enriched version A ′ is given in Fig. 13. Fix
𝑣 (𝜖) = 1, 𝑣 (𝑝) = 2. We then perform the synthesis applied to the self-composition of A ′ according
to Algorithm 1. The result obtained with IMITATOR is: 𝑝abs = ∅ (as expected from Example 4.4).
Now fix 𝑣 (𝜖) = 2, 𝑣 (𝑝) = 1.002. We obtain: 𝑝abs ∈ [1026.048, 1034] (again, as expected from

Example 4.4).
Now let us keep all parameters unconstrained. The result of Algorithm 1 is the following 3-

dimensional constraint:
5 × 𝜖 + 1024 ≥ 𝑝abs ≥ 1024

∧ 1024 × 𝑝 + 5 × 𝜖 ≥ 𝑝abs ≥ 1024 × 𝑝 ≥ 0

8.4 Correctness
We will state below that, whenever SynthOp(A, ℓpriv, ℓ𝑓 ) terminates, then its result is an exact
(sound and complete) answer to the timed opacity synthesis problem.

Let us first prove a technical lemma used later to prove the soundness of SynthOp.

Lemma 8.3. Assume SynthOp(A, ℓpriv, ℓ𝑓 ) terminates with result 𝐾 . For all 𝑣 |= 𝐾 , there exists a
run ending in ℓ𝑓 at time 𝑣 (𝑝abs) in 𝑣 (A).

Proof. From the construction of the procedure Enrich, we added a new clock 𝑥abs (never reset)
together with a new parameter 𝑝abs , and we guarded all transitions to ℓ𝑓 with 𝑥abs = 𝑝abs . Therefore,
valuations of 𝑝abs correspond exactly to the times at which ℓ𝑓 can be reached in 𝑣 (A). □

We can now prove soundness and completeness.

Proposition 8.4 (soundness). Assume SynthOp(A, ℓpriv, ℓ𝑓 ) terminates with result 𝐾 . For all
𝑣 |= 𝐾 , there exists a run of duration 𝑣 (𝑝abs) such that ℓpriv is reachable on the way to ℓ𝑓 in 𝑣 (A) and
there exists a run of duration 𝑣 (𝑝abs) such that ℓpriv is avoided on the way to ℓ𝑓 in 𝑣 (A).

Proof. SynthOp(A, ℓpriv, ℓ𝑓 ) is the result of EFsynth called on the self-composition
of Enrich(A, ℓpriv, ℓ𝑓 ). Recall that Enrich has enrichedA with the addition of a guard 𝑥abs = 𝑝abs on
the incoming transitions of ℓ𝑓 , as well as a Boolean flag 𝑏 that is true iff ℓpriv was visited along a run.
Assume 𝑣 |= 𝐾 . From Lemma 3.16, there exists a run of A ′′ reaching ℓ𝑓 ∧ 𝑏 = true, ℓ ′

𝑓
∧ 𝑏 ′ = false.

From Lemma 8.3, this run takes 𝑣 (𝑝abs) time units. From the self-composition that is made of
interleaving only (except for the final synchronization), there exists a run of duration 𝑣 (𝑝abs) such
that ℓpriv is reachable on the way to ℓ𝑓 in 𝑣 (A) and there exists a run of duration 𝑣 (𝑝abs) such that
ℓpriv is avoided on the way to ℓ𝑓 in 𝑣 (A). □

Proposition 8.5 (completeness). Assume SynthOp(A, ℓpriv, ℓ𝑓 ) terminates with result 𝐾 . Assume
𝑣 . Assume there exists a run of duration 𝑣 (𝑝abs) such that ℓpriv is reachable on the way to ℓ𝑓 in 𝑣 (A)
and there exists a run of duration 𝑣 (𝑝abs) such that ℓpriv is avoided on the way to ℓ𝑓 in 𝑣 (A). Then
𝑣 |= 𝐾 .

Proof. Assume SynthOp(A, ℓpriv, ℓ𝑓 ) terminates with result 𝐾 . Assume 𝑣 . Assume there exists
a run 𝜌 of duration 𝑣 (𝑝abs) such that ℓpriv is reachable on the way to ℓ𝑓 in 𝑣 (A) and there exists a
run 𝜌 ′ of duration 𝑣 (𝑝abs) such that ℓpriv is avoided on the way to ℓ𝑓 in 𝑣 (A).
First, from Enrich, there exists a run 𝜌 of duration 𝑣 (𝑝abs) such that ℓpriv is reachable (resp.

avoided) on the way to ℓ𝑓 in 𝑣 (A) implies that there exists a run 𝜌 of duration 𝑣 (𝑝abs) such that
ℓ𝑓 ∧ 𝑏 = true (resp. 𝑏 = false) is reachable in 𝑣 (Enrich(A)).

Since our self-composition allows any interleaving, runs 𝜌 of 𝑣 (A ′) and 𝜌 ′ in 𝑣 (Copy(A ′)) are
independent—except for reaching ℓ𝑓 . Since 𝜌 and 𝜌 ′ have the same duration 𝑣 (𝑝abs), then they both
reach ℓ𝑓 at the same time and, from our definition of self-composition, they can simultaneously fire
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action finish and enter ℓ𝑓 at time 𝑣 (𝑝abs). Hence, there exists a run reaching ℓ𝑓 ∧ 𝑏 = true, ℓ ′
𝑓
∧ 𝑏 ′ =

false in 𝑣 (A ′′).
Finally, from Lemma 3.16, 𝑣 |= 𝐾 . □

Theorem 8.6 (correctness). Assume SynthOp(A, ℓpriv, ℓ𝑓 ) terminates with result 𝐾 . Assume 𝑣 .
The following two statements are equivalent:
(1) There exists a run of duration 𝑣 (𝑝abs) such that ℓpriv is reachable on the way to ℓ𝑓 in 𝑣 (A) and

there exists a run of duration 𝑣 (𝑝abs) such that ℓpriv is avoided on the way to ℓ𝑓 in 𝑣 (A).
(2) 𝑣 |= 𝐾 .
Proof. From Propositions 8.4 and 8.5 □

9 EXPERIMENTS
9.1 Experimental environment
We use IMITATOR [49], a parametric timed model checking tool taking as input networks of PTAs
extendedwith several handful features such as shared global discrete variables, PTA synchronization
through strong broadcast, non-timing rational-valued parameters, etc. IMITATOR supports various
parameter synthesis algorithms, including reachability synthesis. IMITATOR represents symbolic
states as polyhedra, relying on PPL [59]. IMITATOR is a leading tool for parameter synthesis for
extensions of parametric timed automata. Related tools are Romeo [62] (which cannot be used
here, as it does not support parametric timed automata, but extensions of Petri nets), SpaceEx [18]
(which does not perform parameter synthesis), or Uppaal [22] (which cannot be used here, as our
algorithm requires timing parameters, not supported by Uppaal).
We ran experiments using IMITATOR 2.10.4 “Butter Jellyfish” (build 2477 HEAD/5b53333) on a

Dell XPS 13 9360 equipped with an Intel® Core™ i7-7500U CPU @ 2.70GHz with 8GiB memory
running Linux Mint 18.3 64 bits.6

9.2 Translating programs into PTAs
Wewill consider case studies from the PTA community and from previous works focusing on privacy
using (parametric) timed automata. In addition, we will be interested in analyzing programs too. In
order to apply our method to the analysis of programs, we need a systematic way of translating a
program (e. g., a Java program) into a PTA. In general, precisely modeling the execution time of a
program using models like timed automata is highly non-trivial due to complication of hardware
pipelining, caching, OS scheduling, etc. The readers are referred to the rich literature in, for instance,
[63]. In this work, we instead make the following simplistic assumption on execution time of a
program statement and focus on solving the parameter synthesis problem. How to precisely model
the execution time of programs is orthogonal and complementary to our work.
We assume that the execution time of a program statement other than Thread.sleep(n) is

within a range [0, 𝜖] where 𝜖 is a small integer constant (in milliseconds), whereas the execution
time of statement Thread.sleep(n) is within a range [𝑛, 𝑛 + 𝜖]. In fact, we choose to keep 𝜖
parametric to be as general as possible, and to not depend on particular architectures.
Our test subject is a set of benchmark programs from the DARPA Space/Time Analysis for

Cybersecurity (STAC) program.7 These programs are being released publicly to facilitate researchers
to develop methods and tools for identifying STAC vulnerabilities in the programs. These programs
are simple yet non-trivial, and were built on purpose to highlight vulnerabilities that can be easily
missed by existing security analysis tools.
6Sources, models and results are available at doi.org/10.5281/zenodo.3251141 and imitator.fr/static/ATVA19/.
7https://github.com/Apogee-Research/STAC/
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ℓ1 ℓ2

h > 0
𝑐𝑙 > 30

h ≤ 0

Fig. 14. [20, Fig. 5]

9.3 A richer framework
The symbolic representation of variables and parameters in IMITATOR allows us to reason symbol-
ically concerning variables. That is, instead of enumerating all possible (bounded) values of x and
secret in Fig. 5, we turn them to parameters (i. e., unknown constants), and IMITATOR performs a
symbolic reasoning. Even better, the analysis terminates for this example even when no bound is
provided on these variables. This is often not possible in (non-parametric) timed automata based
model checkers, which usually have to enumerate these values. Therefore, in our PTA representa-
tion of Java programs, we turn all user-input variable and secret constant variables to non-timing
rational-valued parameters, also supported by IMITATOR. Other local variables are implemented
using IMITATOR discrete (shared, global) variables.

We also discuss how to enlarge the scope of our framework.

Multiple private locations. This can be easily achieved by setting 𝑏 to true along any incoming
transition of one of these private locations.

Multiple final locations. The technique used depends on whether these multiple final locations
can be distinguished or not. If they are indistinguishable (i. e., the observer knows when the program
has terminated, but not in which state), then it suffices to merge all these final locations in a single
one, and our framework trivially applies. If they are distinguishable, then one analysis needs to be
conducted on each of these locations (with a different parameter 𝑝abs for each of these), and the
obtained constraints must be intersected.

Access to high-level variables. In the literature, a distinction is sometimes made between low-level
(“public”) and high-level (“private”) variables. Opacity or non-interference can be defined in terms
of the ability for an observer to deduce some information on the high-level variables.

Example 9.1. For example, in Fig. 14 (where 𝑐𝑙 is a clock and h a variable), if ℓ2 is reachable in 20
time units, then it is clear that the value of the high-level variable h is negative.

Our framework can also be used to address this problem, e. g., by setting𝑏 to true, not on locations
but on selected tests / valuations of such variables.

Example 9.2. For example, setting 𝑏 to true on the upper transition from ℓ1 to ℓ2 in Fig. 14, the
answer to the timed opacity computation problem is 𝐷 = (30,∞), and the system is therefore not
opaque since ℓ2 can be reached for any execution time in [0,∞).

9.4 Experiments
9.4.1 Benchmarks. As a proof of concept, we applied our method to a set of examples from the
literature. The first five models come from previous works from the literature [11, 10, 20], also
addressing non-interference or opacity in timed automata.8 In addition, we used two common
8As most previous works on opacity and timed automata do not come with an implementation nor with benchmarks, it is
not easy to find larger models coming in the form of TAs.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:28 Étienne André, Didier Lime, Dylan Marinho, and Jun Sun

Table 1. Experiments: timed opacity

Model Transf. PTA Result
Name |A | |X | |A | |X | |P | Time (s) Opaque?

[20, Fig. 5] 1 1 2 3 3 0.02 (×)
[11, Fig. 1b] 1 1 2 3 1 0.04 (×)
[11, Fig. 2a] 1 1 2 3 1 0.05 (×)
[11, Fig. 2b] 1 1 2 3 1 0.02 (×)

Web privacy problem [10] 1 2 2 4 1 0.07 (×)
Coffee 1 2 2 5 1 0.05

√
Fischer-HSRV02 3 2 6 5 1 5.83 (×)

STAC:1:n 2 3 6 0.12 (×)
STAC:1:v 2 3 6 0.11 ×
STAC:3:n 2 3 8 0.72

√
STAC:3:v 2 3 8 0.74 (×)
STAC:4:n 2 3 8 6.40 ×
STAC:4:v 2 3 8 265.52 ×
STAC:5:n 2 3 6 0.24

√
STAC:11A:v 2 3 8 47.77 (×)
STAC:11B:v 2 3 8 59.35 (×)
STAC:12c:v 2 3 8 18.44 ×
STAC:12e:n 2 3 8 0.58 ×
STAC:12e:v 2 3 8 1.10 (×)
STAC:14:n 2 3 8 22.34 (×)

models from the (P)TA literature, not necessarily linked to security: a toy coffee machine (Coffee)
used as benchmark in a number of papers, and a model Fischer’s mutual exclusion protocol
(Fischer-HRSV02) [44]. In both cases, we added manually a definition of private location (the
number of sugars ordered, and the identity of the process entering the critical section, respectively),
and we verified whether they are opaque w.r.t. these internal behaviors.

We also applied our approach to a set of Java programs from the aforementioned STAC library.
We use identifiers of the form STAC:1:n where 1 denotes the identifier in the library, while n
(resp. v) denotes non-vulnerable (resp. vulnerable). We manually translated these programs to PTAs,
following the method described in Section 9.2. We used a representative set of programs from the
library; however, some of them were too complex to fit in our framework, notably when the timing
leaks come from calls to external libraries (STAC:15:v), when dealing with complex computations
such as operations on matrices (STAC:16:v) or when handling probabilities (STAC:18:v). Proposing
efficient and accurate ways to represent arbitrary programs into (parametric) timed automata is
orthogonal to our work, and is the object of future works.

9.4.2 Timed opacity computation. First, we verified whether a given TA model is opaque, i. e., if for
all execution times reaching a given final location, both an execution goes through a given private
location and an execution does not go through this private location. To this end, we also answer
the timed opacity computation problem, i. e., to synthesize all execution times for which the system
is opaque. While this problem can be verified on the region graph (Proposition 5.2), we use the
same framework as in Section 8, but without parameters in the original TA. That is, we use the
Boolean flag 𝑏 and the parameter 𝑝abs to compute all possible execution times. In other words, we
use a parametric analysis to solve a non-parametric problem.
We tabulate the experiments results in Table 1. We give from left to right the model name, the

numbers of automata and of clocks in the original timed automaton (this information is not relevant
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for Java programs as the original model is not a TA), the numbers of automata9, of clocks and
of parameters in the transformed PTA, the computation time in seconds (for the timed opacity
computation problem), and the result. In the result column, “

√
” (resp. “×”) denotes that the model is

opaque (resp. is not opaque, i. e., vulnerable), while “(×)” denotes that the model is not opaque, but
could be fixed. That is, although DReach𝑣 (A)ℓpriv

(ℓ𝑓 ) ≠ DReach𝑣 (A)¬ℓpriv (ℓ𝑓 ), their intersection is non-empty
and therefore, by tuning the computation time, it may be possible to make the system opaque. This
will be discussed in Section 9.5.

Even though we are interested here in timed opacity computation (and not in synthesis), note
that all models derived from Java programs feature the parameter 𝜖 . The result is obtained by
variable elimination, i. e., by existential quantification over the parameters different from 𝑝abs . In
addition, the number of parameters is increased by the parameters encoding the symbolic variables
(such as x and secret in Fig. 5).

Concerning the Java programs, we decided to keep the most abstract representation, by imposing
that each instruction lasts for a time in [0, 𝜖], with 𝜖 a parameter. However, fixing an identical
(parametric) time 𝜖 for all instructions, or fixing an arbitrary time in a constant interval [0, 𝜖] (for
some constant 𝜖 , e. g., 1), or even fixing an identical (constant) time 𝜖 (e. g., 1) for all instructions,
significantly speeds up the analysis. These choices can be made for larger models.

Discussion. Overall, our method is able to answer the timed opacity computation problem for
practical case studies, exhibiting which execution times are opaque (timed opacity computation
problem), and whether all execution times indeed guarantee opacity (timed opacity problem).

In many cases, while the system is not opaque, we are able to infer the execution times guaran-
teeing opacity (cells marked “(×)”). This is an advantage of our method w.r.t. methods outputting
only binary answers.
We observed some mismatches in the Java programs, i. e., some of the programs marked n

(non-vulnerable) in the library are actually vulnerable according to our method. This mainly comes
from the fact that the STAC library expect tools to use imprecise analyses on the execution times,
while we use an exact method. Therefore, a very small mismatch between DReach𝑣 (A)ℓpriv

(ℓ𝑓 ) and
DReach𝑣 (A)¬ℓpriv (ℓ𝑓 ) will lead our algorithm to answer “not opaque”, while some methods may not be
able to differentiate this mismatch from imprecision (noise). This is notably the case of STAC:14:n
where some action lasts either 5,010,000 or 5,000,000 time units depending on some secret, which
our method detects to be different, while the library does not. For STAC:1:n, using our data, the
difference in the execution time upper bound between an execution performing some secret action
and an execution not performing it is larger than 1%, which we believe is a value which is not
negligible, and therefore this case study might be considered as vulnerable.

STAC:4:n requires a more detailed discussion. This particular program is targeting vulnerabilities
that can be detected easily when they accumulate, typically in loops. This program checks a number
of times (10) a user-input password, and each password check is made in the most insecure way,
i. e., by returning “incorrect” as soon as one character differs between the input password and
the expected password. This way is very insecure because the execution time is proportional
to the number of consecutive correct characters in the input password and, by observing the
execution time, an attacker can guess how many characters are correct, and therefore using a
limited number of tests, (s)he will eventually guess the correct password. The difference between
the vulnerable (STAC:4:v) and the non-vulnerable (STAC:4:n) versions is that the non-vulnerable
version immediately stops if the password is incorrect, and performs the 10 checks only if the
9As usual, it may be simpler to write PTA models as a network of PTAs. Recall from Definition 3.5 that a network of PTAs
gives a PTA. In this case, |A | denotes the number of input PTA components.
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password is correct. Therefore, while the computation time is very different between the correct
input password and any incorrect input password, it is however very similar between an incorrect
input password that would only be incorrect because, say, of the last character (e. g., “kouignamaz”
while the expected password is “kouignaman”), and a completely incorrect input password differing
as early as the first character (e. g., “andouille”). This makes the attacker’s task very difficult. The
main reason for the STAC library to label STAC:4:n as a non-vulnerable program is because of the
“very similar” nature of the computation times between an incorrect input password that would only
be incorrect because of the last character, and a completely incorrect input password. (In contrast,
the vulnerable version STAC:4:v is completely vulnerable because this time difference is amplified
by the loop, here 10 times.) While “very similar” might be acceptable for most tools, in our setting
based on formal verification, we do detect that testing “kouignamaz” or testing “kouignamzz” will
yield a slightly faster computation time for the second input, because the first incorrect letter occurs
earlier—and the program is therefore vulnerable.

9.4.3 Timed opacity synthesis. Then, we address the timed opacity synthesis problem. In this case,
we synthesize both the execution time and the internal values of the parameters for which one
cannot deduce private information from the execution time.

We consider the same case studies as for timed opacity computation; however, the Java programs
feature no internal “parameter” and cannot be used here. Still, as a proof of concept, we artificially
enriched one of them (STAC:3:v) as follows: in addition to the parametric value of 𝜖 and the
execution time, we parameterized one of the sleep timers. The resulting constraint can help
designers to refine this latter value to ensure opacity. Note that it may not be that easy to tune a
Java program to make it non-opaque: while this is reasonably easy on the PTA level (restraining the
execution times using an additional clock), this may not be clear on the original model: Making a
program terminate slower than originally is easy with a Sleep statement; but making it terminate
“earlier” is less obvious, as it may mean an abrupt termination, possibly leading to wrong results.

We tabulate the results in Table 2, where the columns are similar to Table 1. A difference is that
the first |P| column denotes the number of parameters in the original model (without counting
these added by our transformation). In addition, Table 2 does not contain a “vulnerable?” column
as we synthesize the condition for which the model is non-vulnerable, and therefore the answer is
non-binary. However, in the last column (“Constraint”), we make explicit whether no valuations
ensure opacity (“⊥”), all of them (“⊤”), or some of them (“𝐾”).

Discussion. An interesting outcome is that the computation time is comparable to the (non-
parametric) timed opacity computation, with an increase of up to 20 % only. In addition, for all case
studies, we exhibit at least some valuations for which the system can be made opaque. Also note
that our method always terminates for these models, and therefore the result exhibited is complete.
Interestingly, Coffee is opaque for any valuation of the 3 internal parameters.

9.5 “Repairing” a non-opaque PTA
Our method gives a result in time of a union of polyhedra over the internal timing parameters
and the execution time. On the one hand, we believe tuning the internal timing parameters should
be easy: for a program, an internal timing parameter can be the duration of a sleep, for example.
On the other hand, tuning the execution time of a program may be more subtle. A solution is to
enforce a minimal execution time by adding a second thread in parallel with a Wait() primitive
to ensure a minimal execution time. Ensuring a maximal execution time can be achieved with an
exception stopping the program after a given time; however there is a priori no guarantee that the
result of the computation is correct.
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Table 2. Experiments: timed opacity synthesis

Model Transf. PTA Result
Name |A | |X | |P | |A | |X | |P | Time (s) Constraint

[20, Fig. 5] 1 1 0 2 3 4 0.02 𝐾

[11, Fig. 1b] 1 1 0 2 3 3 0.03 𝐾

[11, Fig. 2] 1 1 0 2 3 3 0.05 𝐾

Web privacy problem [10] 1 2 2 2 4 3 0.07 𝐾

Coffee 1 2 3 2 5 4 0.10 ⊤
Fischer-HSRV02 3 2 2 6 5 3 7.53 𝐾

STAC:3:v 2 2 3 9 0.93 𝐾

10 CONCLUSION
In this work, we proposed an approach based on parametric timed model checking to not only
decide whether the model of a timed system can be subject to timing information leakage, but also
to synthesize internal timing parameters and execution times that render the system opaque. We
implemented our approach in a framework based on IMITATOR, and performed experiments on
case studies from the literature and from a library of Java programs.

We now discuss future works in the following.

Theory. We proved decidability of the timed opacity computation problem (Proposition 5.2) and
of the full timed opacity decision problem (Proposition 5.3) for TAs, but we only provided an upper
bound (3EXPTIME) on the complexity. It can be easily shown that these problems are at least
PSPACE, but the exact complexity remains to be exhibited.
In addition, the decidability of several “low-dimensional” problems (i. e., with “small” number

of clocks or parameters) remains open. Among these, the one-clock case for parametric timed
opacity emptiness (Theorem 6.1) remains open: that is, is the timed opacity emptiness problem
decidable for PTAs using a single clock? Our method in Section 8 consists in duplicating the
automaton and adding a clock that is never reset, thus resulting in a PTA with 3 clocks, for which
reachability-emptiness is undecidable [3]. However, since one of the clocks is never reset, and since
the automaton is structurally constrained (it is the result of the composition of two copies of the
same automaton), decidability might be envisioned. Recall that the 2-clock reachability-emptiness
problem is a famous open problem [50], despite recent advances, notably over discrete time [64,
65]. The 1-clock question also remains open for full timed opacity emptiness (Theorem 7.2). The
minimum number of parameters required for our proof of the undecidability of the full timed
opacity emptiness problem for PTAs (resp. L/U-PTAs) to work is 2 (resp. 4), as seen in Theorem 7.2
(resp. Theorem 7.4); it is open whether using less parameters can render these problems decidable.

Finally, concerning L/U-PTAs, we proved two negative results, despite the decidability of the timed
opacity emptiness problem (Theorem 6.2): the undecidability of the full timed opacity emptiness
(Theorem 7.4) and the intractability of timed opacity synthesis (Proposition 6.4). It remains open
whether these results still apply to the more restrictive class of U-PTAs [55].

Full timed opacity synthesis. We leave full timed opacity synthesis as future work; while we could
certainly reuse partially our algorithm, this is not entirely trivial, as we need to select only the
parameter valuations for which the whole set of execution times is exactly the set of opaque times.

Applications. The translation of the STAC library required some non-trivial creativity: while
the translation from programs to quantitative extensions of automata is orthogonal to our work,
proposing automated translations of (possibly annotated) programs to timed automata dedicated to
timing analysis is on our agenda.

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2022.



111:32 Étienne André, Didier Lime, Dylan Marinho, and Jun Sun

Adding probabilities to our framework will be interesting, helping to quantify the execution
times of “untimed” instructions in program with a finer grain than an interval; also note that some
benchmarks make use of probabilities (notably STAC:18:v).

Finally, IMITATOR is a general model checker, not specifically aimed at solving the problem we
address here. Notably, constraints managed by PPL contain all variables (clocks, timing parameters,
and parameters encoding symbolic variables of programs), yielding an exponential complexity.
Separating certain types of independent variables (typically parameters encoding symbolic variables
of programs, and other variables) should increase efficiency.
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A THE CODE OF THE JAVA EXAMPLE

1 impor t j a v a . i o . Bu f f e r edReade r ;
2 impor t j a v a . i o . IOExcep t i on ;
3 impor t j a v a . i o . I npu tS t r eamReade r ;
4 impor t j a v a . i o . P r i n tWr i t e r ;
5 impor t j a v a . ne t . S e r v e r S o c k e t ;
6 impor t j a v a . ne t . Socke t ;
7
8 / / C o e f f i c i e n t s a r e D i s r ega rded
9 p u b l i c c l a s s Ca t e go r y 1_vu l n e r a b l e {
10 p r i v a t e s t a t i c f i n a l i n t po r t = 8 0 0 0 ;
11 p r i v a t e s t a t i c f i n a l i n t s e c r e t = 1 2 3 4 ;
12 p r i v a t e s t a t i c f i n a l i n t n = 3 2 ;
13 p r i v a t e s t a t i c S e r v e r S o c k e t s e r v e r ;
14
15 p r i v a t e s t a t i c vo id c h e c k S e c r e t ( i n t gues s ) throws I n t e r r u p t e d E x c e p t i o n {
16 i f ( gues s <= s e c r e t ) {
17 f o r ( i n t i = 0 ; i < n ; i ++) {
18 f o r ( i n t t = 0 ; t < n ; t ++) {
19 Thread . s l e e p ( 1 ) ;
20 }
21 }
22 } e l s e {
23 f o r ( i n t i = 0 ; i < n ; i ++) {
24 f o r ( i n t t = 0 ; t < n ; t ++) {
25 Thread . s l e e p ( 2 ) ;
26 }
27 }
28 }
29 }
30
31 p r i v a t e s t a t i c vo id s t a r t S e r v e r ( ) {
32 t r y {
33 s e r v e r = new Se r v e r S o c k e t ( po r t ) ;
34 System . out . p r i n t l n ( " S e r v e r S t a r t e d Po r t : " + po r t ) ;
35 Socke t c l i e n t ;
36 P r i n tWr i t e r out ;
37 Bu f f e r edReade r in ;
38 S t r i n g u s e r I n pu t ;
39 i n t gues s ;
40 whi l e ( t r u e ) {
41 c l i e n t = s e r v e r . a c c e p t ( ) ;
42 out = new P r i n tWr i t e r ( c l i e n t . ge tOutputS t ream ( ) , t r u e ) ;
43 in = new Bu f f e r edReade r ( new Inpu tS t r eamReade r ( c l i e n t . g e t I npu t S t r e am ( ) ) ) ;
44
45 u s e r I n pu t = in . r e adL in e ( ) ;
46 t r y {
47 gues s = I n t e g e r . p a r s e I n t ( u s e r I n pu t ) ;
48 i f ( gues s < 0 ) {
49 throw new I l l e g a lA r gumen tEx c e p t i o n ( ) ;
50 }
51 c h e c k S e c r e t ( gues s ) ;
52 out . p r i n t l n ( " P r o c e s s Complete " ) ;
53 } c a t ch ( I l l e g a lA r gumen tEx c e p t i o n | I n t e r r u p t e d E x c e p t i o n e ) {
54 out . p r i n t l n ( " Unable to P r o c e s s Inpu t " ) ;
55 }
56 c l i e n t . shutdownOutput ( ) ;
57 c l i e n t . shutdownInput ( ) ;
58 c l i e n t . c l o s e ( ) ;
59 }
60 } c a t ch ( IOExcep t i on e ) {
61 System . e x i t ( −1) ;
62 }
63 }
64
65 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws I n t e r r u p t e d E x c e p t i o n {
66 s t a r t S e r v e r ( ) ;
67 }
68 }

Note that the two “for” loops featuring a Thread.sleep(1) (resp. 2) could be equivalently
replaced with a simple Thread.sleep(32*32) (resp. Thread.sleep(2*32*32)) statement, but
(1) this is the way the program is presented in the DARPA library, and
(2) a (minor) difficulty may come from these loops instead of a simple Thread.sleep(32*32)

statement.
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