

NWPT 2012

31st October 2012 Bergen, Norway

Robustness Analysis of Time Petri Nets

<u>Étienne André¹</u>, Shweta $Garg^2$

¹LIPN, Université Paris 13, Sorbonne Paris Cité, France ²Dept. of Computer Science, IIT Bombay, Mumbai, India

Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

1 / 21

• Need for early bug detection

Étienne André (Paris 13)

- Bugs discovered when final testing: expensive
- Need for thorough modeling and verification

- Need for early bug detection
 - Bugs discovered when final testing: expensive
 - Need for thorough modeling and verification
- Input

A timed concurrent system

- Need for early bug detection
 - Bugs discovered when final testing: expensive
 - Need for thorough modeling and verification
- Input

A timed concurrent system

A good behavior expected for the system

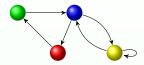
Robustness of Time Petri Nets

- Need for early bug detection
 - Bugs discovered when final testing: expensive
 - Need for thorough modeling and verification
- Input

A timed concurrent system

A good behavior expected for the system

• Question: does the system behave well?

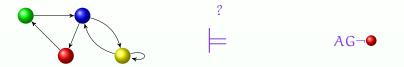

Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

2 / 21

• Use formal methods

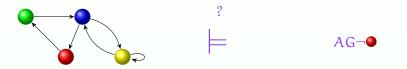


A finite model of the system

A formula to be satisfied

3

• Use formal methods



A finite model of the system

A formula to be satisfied

• Question: does the model of the system satisfy the formula?

• Use formal methods

A finite model of the system

A formula to be satisfied

• Question: does the model of the system satisfy the formula?

Motivation: Robustness Analysis

- Timed systems are characterized by a set of timing constants
 - "The packet transmission lasts for 50 ms"
 - "The sensor reads the value every 10 s"
- Verification for one set of constants does not guarantee the correctness for other values
- Challenge: Robustness [Markey, 2011]
 - What happens if 50 is implemented with 49.99?
 - Until which value can we increase or decrease 50 such that the system still behaves well?

Motivation: Robustness Analysis

- Timed systems are characterized by a set of timing constants
 - "The packet transmission lasts for 50 ms"
 - "The sensor reads the value every 10 s"
- Verification for one set of constants does not guarantee the correctness for other values
- Challenge: Robustness [Markey, 2011]
 - What happens if 50 is implemented with 49.99?
 - Until which value can we increase or decrease 50 such that the system still behaves well?

• Parametric analysis

- Consider that timing constants are parameters
- Find good values for the parameters, such that the system still behaves well

Étienne André (Paris 13)

Robustness of Time Petri Nets

<日→ < 目→ < 目→ 目 31st October 2012

4 / 21

Outline

2 Robustness Analysis Using the Inverse Method

3 Perspectives

▶ < ⊒ >

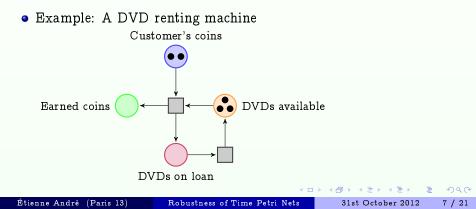
- 3

Outline

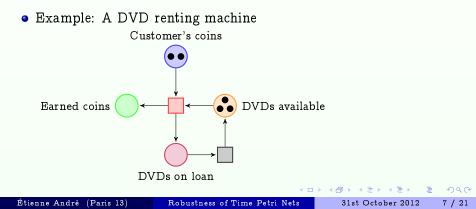
1 Parametric Inhibitor Time Petri Nets

2 Robustness Analysis Using the Inverse Method

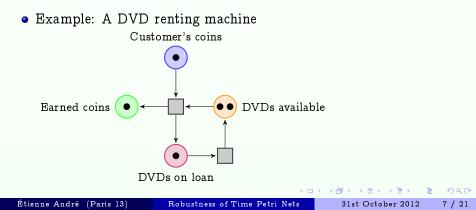
3 Perspectives

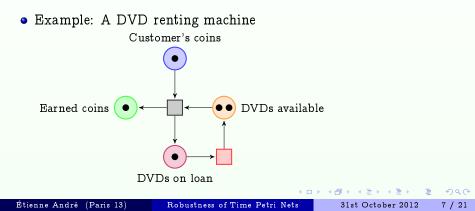

э

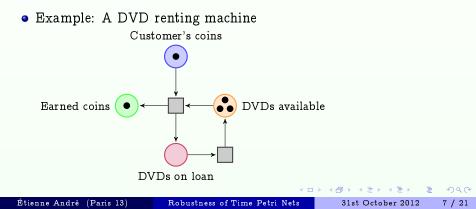
- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics

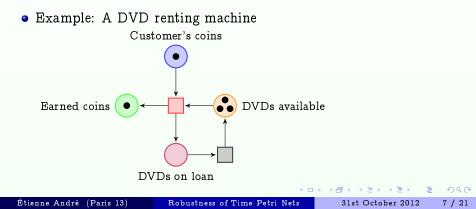

Étienne André (Paris 13)

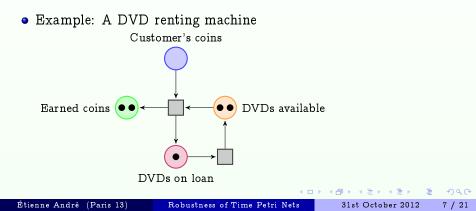
• Powerful model checking tools

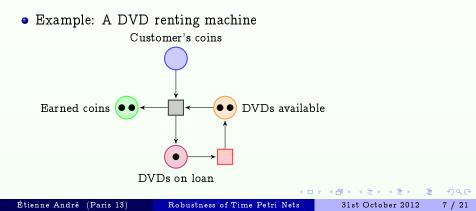

- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools

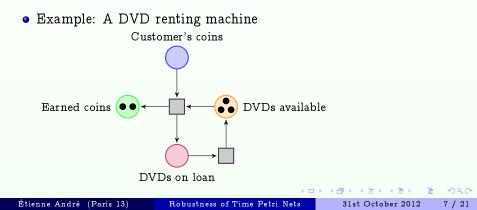

- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools


- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools

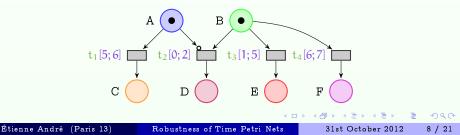

- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools

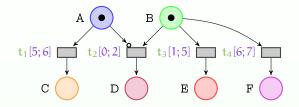

- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools


- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools


- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools

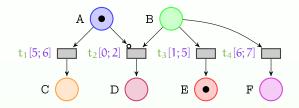
- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools

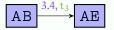



- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation based on places and transitions
 - A formal semantics
 - Powerful model checking tools

Time Petri Nets With Inhibitor Arcs

- Powerful formalism for verifying real-time systems [Merlin, 1974]
- Transition t_1 can be fired from 5 to 6 units of time after it is enabled
- An enabled transition must fire before (or at) its upper bound
 - Except if another transition fires before
- An inhibitor arc (t₂) enables its transition once its predecessor place (A) is empty

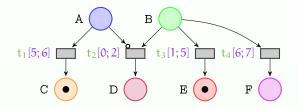

Some possible runs


Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

Some possible runs

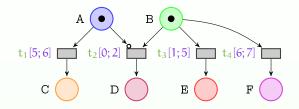


Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

9 / 21

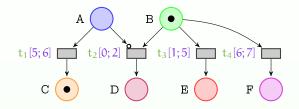

Some possible runs

 $AB \xrightarrow{3.4, t_3} AE \xrightarrow{2, t_1} CE$

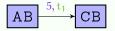
Étienne André (Paris 13)

Robustness of Time Petri Nets

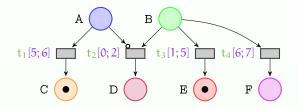
31st October 2012



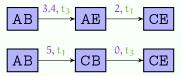
Some possible runs

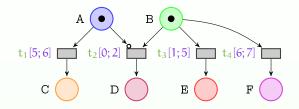

AB

Étienne André (Paris 13)

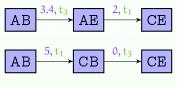


Some possible runs

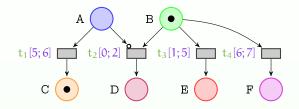


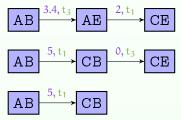


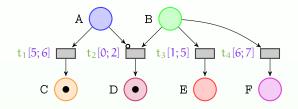
Étienne André (Paris 13)

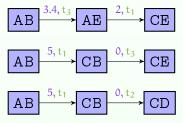


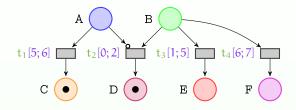
Some possible runs

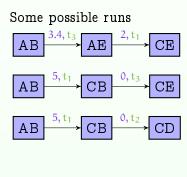



Some possible runs

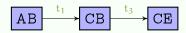



Some possible runs




Étienne André (Paris 13)

Some possible runs



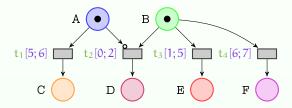


Set of traces

Trace: time-abstract behavior

Sac

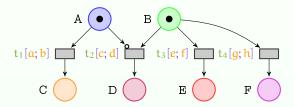
Objectives


- We consider that the system behavior (good or bad) depends on the traces
- Questions
 - Until which value can we minimize the upper bound of t_3 (5) so that the system behavior remains the same?
 - Can we quantify the system robustness?

Objectives

- We consider that the system behavior (good or bad) depends on the traces
- Questions
 - Until which value can we minimize the upper bound of t_3 (5) so that the system behavior remains the same?
 - Can we quantify the system robustness?
- o Idea
 - Reason with parametric time Petri nets
 - Synthesize a constraint on the parameters that guarantees the same behavior

Parametric Time Petri Nets


• Constants in firing intervals replaced with parameters [Traonouez et al., 2009]

31st October 2012

Parametric Time Petri Nets

• Constants in firing intervals replaced with parameters [Traonouez et al., 2009]

31st October 2012

Outline

2 Robustness Analysis Using the Inverse Method

3 Perspectives

医下口 医下

э

The Inverse Method

• Input

- A PITPN \mathcal{P}
- A reference valuation π_0 of all the parameters of $\mathcal P$

Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

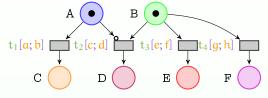
물 이 제 물 이

2012 13

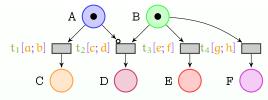
୬ ଏ ୯ 13 / 21

The Inverse Method

• Input

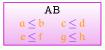

- A PITPN \mathcal{P}
- A reference valuation π_0 of all the parameters of $\mathcal P$
- Output: K₀
 - Convex constraint on the parameters such that
 - $\pi_0 \models K_0$
 - For all points $\pi \models K_0$, $\mathcal{P}[\pi]$ and $\mathcal{P}[\pi_0]$ have the same trace sets

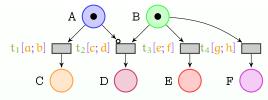
Étienne André (Paris 13) Robustness of Time Petri Nets 31st October 2012 13 / 21


The Inverse Method: General Idea

- Initially defined for timed automata [André et al., 2009]
- Extended to PITPNs [André and Garg, 2012]
- The idea
 - Exploration of the parametric state space
 - Instead of negating bad states (as in "CEGAR" approaches), remove $\pi_0\text{-incompatible states}$
 - Return the intersection of all constraints on the parameters

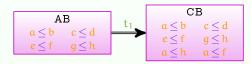
π_0	
a = 5	b = 6
$\mathbf{c} = 0$	d = 2
e = 1	f = 5
a = 6	h = 7

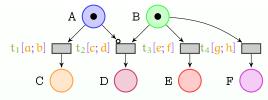

• Forward analysis


 $\begin{aligned} \pi_0 \\ a &= 5 \\ c &= 0 \\ e &= 1 \\ g &= 6 \\ h &= 7 \end{aligned}$

• Forward analysis

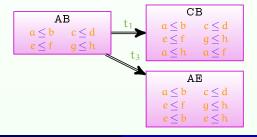
K: true


3) 3


 $\begin{array}{l} \pi_0 \\ a = 5 \\ c = 0 \\ e = 1 \\ q = 6 \\ \end{array} \begin{array}{l} b = 6 \\ b = 7 \end{array}$

• Forward analysis

K: true


3 🕨 3

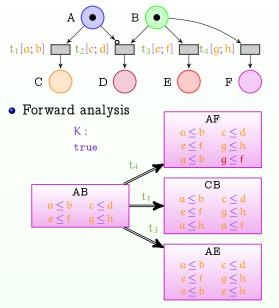
π_0	
a = 5	b = 6
$\mathbf{c} = 0$	d = 2
e = 1	f = 5
$\mathbf{a} = 6$	h = 7

• Forward analysis

K: true

Étienne André (Paris 13)

Robustness of Time Petri Nets


31st October 2012

<

Þ

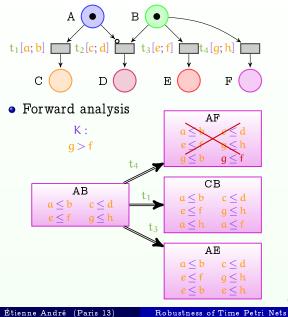
Sac

Étienne André (Paris 13)

π_0	
a = 5	b = 6
c = 0	d = 2
e = 1	f = 5
$\mathbf{a} = 6$	h = 7

୬୯୯ 15 / 21

Þ

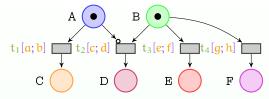

B 🖌 🔺 B 🕨

31st October 2012

<

Robustness of Time Petri Nets

Étienne André (Paris 13)

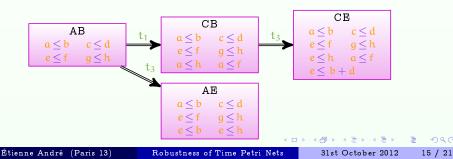


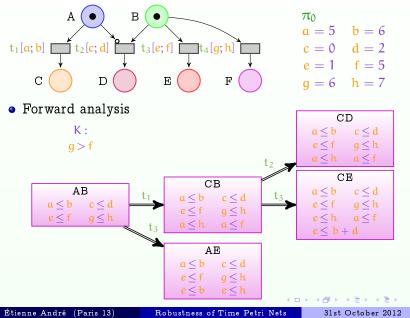
10	
a = 5	$\mathbf{b} = 6$
$\mathbf{c} = 0$	d = 2
e = 1	f = 5
$\mathbf{q} = 6$	h = 7

Þ 31st October 2012 15 / 21

900

<

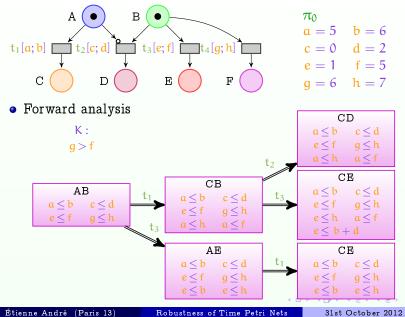


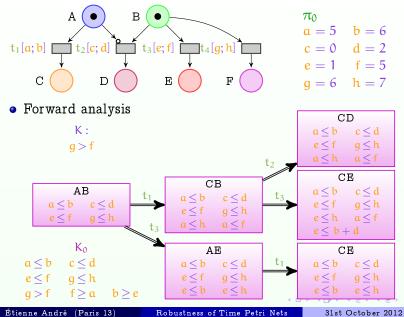

 π_0 $a = 5 \quad b = 6$ $c = 0 \quad d = 2$ e = 1 f = 5q = 6 h = 7

Sac

• Forward analysis

K : q > f




Sac

15 / 21

э

15 / 21

15 / 21

Application to an Example: Interpretation

• Resulting constraint K₀

 $\begin{array}{lll} a \leq b & c \leq d & e \leq f & g \leq h \\ g > f & f \geq a & b \geq e \end{array}$

- Interpretation
 - For any $\pi \models K_0$, the trace set is the same as for π_0
- Remark
 - c and d do not appear within K_0 (except $c \le d$): for any $\pi \models K_0$, the values of c and d do not influence the trace set

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ● ◆ ●

Application to an Example: Interpretation

• Resulting constraint K₀

 $\begin{array}{lll} a \leq b & c \leq d & e \leq f & g \leq h \\ g > f & f \geq a & b \geq e \end{array}$

- Interpretation
 - For any $\pi \models K_0$, the trace set is the same as for π_0
- Remark
 - c and d do not appear within K_0 (except $c \le d$): for any $\pi \models K_0$, the values of c and d do not influence the trace set
- Application
 - Until which value can we minimize the upper bound f of t_3 (5) so that the system behavior remains the same?

Étienne André (Paris 13)

31st October 2012

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ● ◆ ●

Application to an Example: Interpretation

• Resulting constraint K₀

 $\begin{array}{lll} a \leq b & c \leq d & e \leq f & g \leq h \\ g > f & f \geq a & b \geq e \end{array}$

- Interpretation
 - For any $\pi \models K_0$, the trace set is the same as for π_0
- Remark
 - c and d do not appear within K_0 (except $c \le d$): for any $\pi \models K_0$, the values of c and d do not influence the trace set
- Application
 - Until which value can we minimize the upper bound f of t_3 (5) so that the system behavior remains the same?

Due to f ≥ a with a = f = 5, one cannot decrease f

 The system is not robust w.r.t. small variations of f or a

Correctness

Theorem (Correctness)

Let \mathcal{P} be a PITPN, and π_0 be a reference valuation.

- Let $K_0 = IM(\mathcal{P}, \pi_0)$. Then:
 - **1** $\pi_0 \models K_0$ and
 - **2** $\forall \pi \models K_0, \mathcal{P}[\pi]$ and $\mathcal{P}[\pi_0]$ have the same trace set.

▲ 車 ▶ ▲ 車 ▶ ▲ 車 ● � � �

Correctness

Theorem (Correctness) Let \mathcal{P} be a PITPN, and π_0 be a reference valuation. Let $\mathbf{K}_0 = IM(\mathcal{P}, \pi_0)$. Then: $\mathbf{0} \ \pi_0 \models \mathbf{K}_0 \ and$ **2** $\forall \pi \models K_0, \mathcal{P}[\pi]$ and $\mathcal{P}[\pi_0]$ have the same trace set.

Proof.

By induction on the length of the runs.

Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

17 / 21

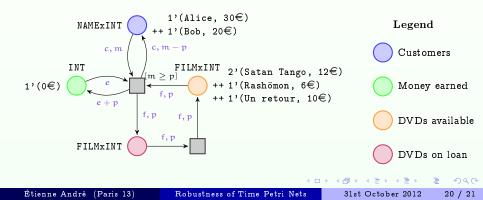
Advantages

- Quantification of the system robustness
- Allows timing optimizations
- Allows the replacement of a component with another one
 - As long as the new timings satisfy K₀

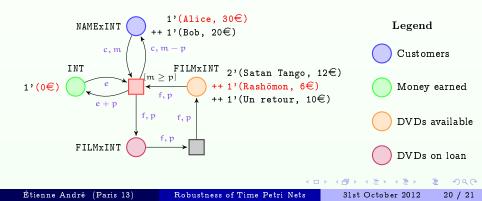
물 문 문 물 문 문

Outline

2 Robustness Analysis Using the Inverse Method

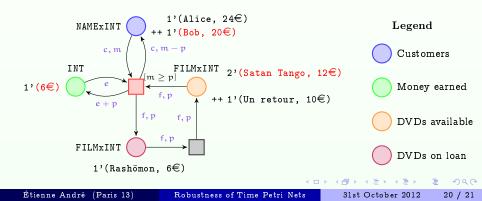

3 Perspectives

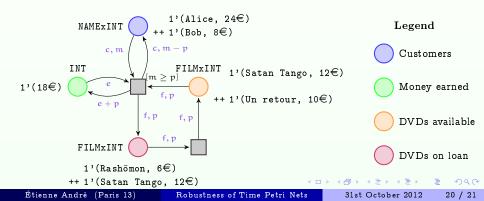
물 이 제 물 이

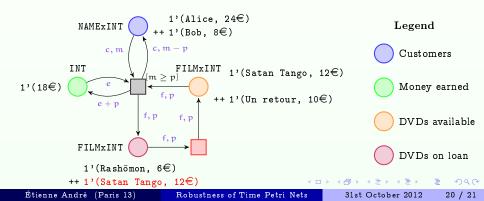

э

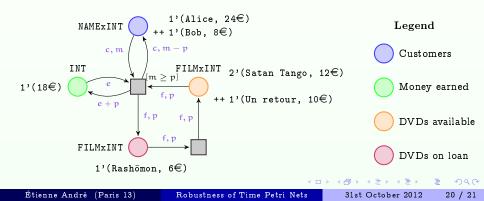
- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard

- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine


- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine


- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine


- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine


- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine

- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine

- Extension to colored Petri nets [Jensen and Kristensen, 2009]
 - Tokens and places have a type ("color set")
 - Arcs are labeled with expressions
 - Transitions can have a guard
 - Example: A more complex version of the DVD renting machine

- Termination
 - Probably does not terminate in the general case
 - ... but no example exhibited so far
- Implementation
 - To do

• Modular analysis

- Combine the inverse method with modular state space exploration for timed Petri nets [Lakos and Petrucci, 2007]
- Idea: apply the inverse method to separate modules, then combine the result
- Challenge: identify subclasses of time(d) Petri nets such that this applies

Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

12 21 / 21

Bibliography

References I

André, É., Chatain, Th., Encrenaz, E., and Fribourg, L. (2009). An inverse method for parametric timed automata. International Journal of Foundations of Computer Science, 20(5):819-836.

André, É. and Garg, S. (2012). Robustness analysis of time Petri nets. In *NWPT'12*, Bergen, Norway.

Jensen, K. and Kristensen, L. M. (2009). Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer.

Lakos, C. and Petrucci, L. (2007). Modular state space exploration for timed Petri nets. Journal of Software Tools for Technology Transfer, 9(3-4):393–411.

Markey, N. (2011).

Robustness in real-time systems.

In SIES'11, pages 28-34, Västerås, Sweden. IEEE Computer Society Press.

Merlin, P. M. (1974).

A study of the recoverability of computing systems. PhD thesis, University of California, Irvine.

31st October 2012

Bibliography

References II

Petri, C. A. (1962).

Kommunikation mit Automaten. PhD thesis, Darmstadt University of Technology, Germany.

Traonouez, L.-M., Lime, D., and Roux, O. H. (2009). Parametric model-checking of stopwatch Petri nets. Journal of Universal Computer Science, 15(17):3273-3304.

Étienne André (Paris 13)

Robustness of Time Petri Nets

31st October 2012

- E - N

2 23 / 21

The Algorithm

```
Algorithm 1: IM(\mathcal{P}, \pi_0)
1 i \leftarrow 0; K \leftarrow K_{init}; C \leftarrow \{c_0\}
2 while true do
3
          while \exists \pi_0-incompatible classes in C do
                Select a \pi_0-incompatible class (M, D) of C
4
5
                Select a \pi_0-incompatible J in D \downarrow_P
                K \leftarrow K \land \neg J
6
            C \leftarrow \bigcup_{i=0}^{i} Post_{\mathcal{P}(K)}^{j}(\{\mathbf{c}_{0}\})
7
          if Post_{\mathcal{P}(K)}(C) \subseteq C then
8
               return K_0 \leftarrow \bigcap_{(M,D) \in C} D \downarrow_P
9
         i \leftarrow i + 1; C \leftarrow C \cup Post_{\mathcal{P}(K)}(C)
O
```

Étienne André (Pa<u>ris 13)</u>

License

This document can be redistributed following the terms of license Creative Commons BY-NC-ND 3.0.

https://creativecommons.org/licenses/by-nc-nd/3.0/

<

SQA