
PSyHCoS: Parameter Synthesis for Hierarchical
Concurrent Real-Time Systems?

Étienne André1, Yang Liu2, Jun Sun3, Jin Song Dong4, and Shang-Wei Lin5??

1 Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
2 Nanyang Technological University, Singapore

3 Singapore University of Technology and Design, Singapore
4 School of Computing, National University of Singapore
5 Temasek Laboratories, National University of Singapore

Abstract. Real-time systems are often hard to control, due to their
complicated structures, quantitative time factors and even unknown de-
lays. We present here PSyHCoS, a tool for analyzing parametric real-time
systems specified using the hierarchical modeling language PSTCSP.
PSyHCoS supports several algorithms for parameter synthesis and model
checking, as well as state space reduction techniques. Its architecture fa-
vors reusability in terms of syntax, semantics, and algorithms. It comes
with a friendly user interface that can be used to edit, simulate and verify
PSTCSP models. Experiments show its efficiency and applicability.

1 Introduction

Ensuring the correctness of safety-critical systems, involving complex data struc-
tures with timing requirements, is crucial. The correctness of such real-time sys-
tems usually depends on the values of timing delays. Checking the correctness
for one particular value for each delay is usually not sufficient for two reasons.
Firstly, values for the delays are not always known, and one may precisely want
to find some values for which the system behaves well. Secondly, even if the
system is proved to be correct for a reference set of values, one has no guarantee
that the correctness holds for other values around the reference ones. This is
known as the robustness (see, e.g., [Mar11]) of the system. Often, the engineer
knows a correct reference valuation, but testing the correctness of the system for
many values around it can turn very costly. Hence, it is interesting to consider
the delays as unknown constants, or parameters, and synthesize constraints on
these parameters to guarantee the correct behavior.

? This is the author (and slightly modified) version of the tool paper of the same
name accepted for publication at CAV 2013. The final publication is available at
www.springer.com.

?? This work is mainly supported by the TRF Project Grant No. R394-000-063-23
and the Seed Project Grant No. R394-000-068-232 from Temasek Lab@National
University of Singapore.

1

www.springer.com

In this work, we present PSyHCoS (Parameter SYnthesis for Hierarchical
COncurrent Systems), which supports editing, simulating, parameter synthesis
and parametric model checking for Parametric Stateful Timed CSP (PSTCSP)
[ALSD12]. PSyHCoS is a self-contained toolkit with extensible architecture de-
sign. To the best of our knowledge, PSyHCoS is the first tool that synthesizes
timing parameters for real-time systems handling both hierarchy and concur-
rency.

The language PSTCSP offers an intuitive syntax for modeling hierarchical
real-time systems involving shared variables, complex data structures, and user
defined programs. PSTCSP (that is a parametric extension of Stateful Timed
CSP [SLD+13]) is a process algebra with syntax for specifying concurrency (in-
cluding conditional, general, external, internal choices, etc.) and timing require-
ments such as Wait[d], timeout[d], within[d] and deadline[d], where d can be a
constant or a timing parameter. The expressiveness of PSTCSP is incomparable1

with Parametric Timed Automata (PTA), which are an extension of finite state
automata with clocks (variables increasing linearly) and parameters. Different
from PTA, clocks in PSTCSP are implicit and dynamically created during the
execution, thus avoiding the designer to write clocks constraints manually, which
is error-prone. Another advantage of PSTCSP over PTA is the ability to eas-
ily define hierarchical systems, where sub-systems can be defined independently.
Many systems can be designed more intuitively using hierarchy, and it may allow
one to handle refinement as well as closed (“black box” or “gray box”) systems.

Related Work. Uppaal [LPY97] is a tool for verifying (extensions of) timed
automata. Uppaal does not handle parameter synthesis and, although an ex-
tension performs parametric model checking [BLR05], the model remains non-
parametric. Some hierarchical extensions were considered, with limited tool sup-
port (e.g., [DHQ+08,DLL+10]).

In [KLS99], the process algebra ACSR-VP is used to synthesize timing con-
straints such that a real-time system is schedulable. PSyHCoS shares some prin-
ciples with this approach, but does not limit to scheduling.

Imitator [AFKS12] is a tool performing parameter synthesis for PTA ex-
tended with stopwatches. Although Imitator has been extensively used, in par-
ticular for verifying models of industrial circuits, it does not feature any GUI
nor simulation facilities and is limited to the inverse method (see Section 2).
Last but not least, PSyHCoS can natively handle hierarchy whereas Imitator
cannot.

2 Parameter Synthesis Made Easy

PSyHCoS offers a complete GUI for the design, simulation and verification of
PSTCSP models. It comes with a user friendly editing environment (multi-
document, multi-language interface, and advanced syntax editing features) for

1 Precisely, PSTCSP is equivalent to parametric closed timed ε-automata
(see [ALSD12]).

2

composing models. PSyHCoS also features a simulator that can be used for inter-
actively and visually simulating system behaviors by random simulation, user-
guided step-by-step simulation, complete state graph generation, trace playback,
etc. Screenshots of the interface are available in PSyHCoS’s Web page [ALSD13].

Among the verification algorithms, PSyHCoS first implements the inverse
method IM initially defined for PTA [AS13] and extended to PSTCSP [ALSD12].
IM takes as input a PSTCSP model as well as a reference valuation π for all the
parameters; it synthesizes a convex constraint K, that guarantees the same time-
abstract behavior (sequences of actions) as for π. A major advantage is that K
gives a quantitative measure of the robustness of the system w.r.t. variations of
the timing delays. In particular, all linear time properties that hold for π also
hold for any valuation in K. Parameter synthesis for PSTCSP has been proved
to be undecidable [ALSD12] (as for PTA), and we were able to build examples on
purpose for which IM does not terminate. However, for all practical case studies
we considered, PSyHCoS does terminate. Exhibiting subclasses of PSTCSP for
which termination of IM is guaranteed is the subject of ongoing work.

A full reachability algorithm reachAll is also implemented in PSyHCoS, in
order to compare optimization techniques (see Table 1). Other classical model
checking algorithms (such as LTL, deadlock freeness, or refinement checking) are
also available. Data structures and functions can be written using the program-
ming languages like C# and used seamlessly in the PSTCSP models.

We use Fischer’s mutual exclusion algorithm to show PSyHCoS’s intuitive
modeling facilities. This hierarchical process (starting from Fischer) uses 2 tim-
ing parameters (Delta and Epsilon) and 2 variables. The turn variable indi-
cates which process attempted to access the critical section most recently. The
counter variable counts the number of processes accessing the critical section.

1 #define N 3;

2 #define Idle -1;

3 var turn = Idle;

4 var counter = 0;

5 parameter Delta;

6 parameter Epsilon;

7

8 proc(i) = ifb(turn == Idle) { Active(i) };

9 Active(i)=((update.i{turn=i} -> Wait[Epsilon]) within[Delta]);

10 if (turn == i) {

11 cs.i{counter ++} -> exit.i{counter --;turn=Idle}->proc(i)

12 } else {

13 proc(i)};

14 Fischer = ||| i:{0..N-1} @proc(i);

15

16 #synthesize Fischer with Delta = 3, Epsilon = 4;

N is a constant representing the number of processes. The parallel compo-
sition (line 14) automatically creates N processes in parallel. Process proc(i)

models a process with a unique integer identify i. If turn is Idle (i.e., no

3

Editor

PSTCSP
model

Parser
Internal

representation

Simulator

Simulation
engine

Graphic
viewer

Algorithms

Inverse
method

Reach.
analysis

etc.

Constraint

Fig. 1. Architecture of PSyHCoS

other process is attempting), proc(i) behaves as specified by Active(i). In
Active(i), turn is first set to i (i.e., the ith process is now attempting) by
action update.i. Note that update.i must occur within Delta time units (cap-
tured by within[Delta]). Next, the process idles for Epsilon time units. It
then checks if turn is still i. If so, it enters the critical section and leaves later.
Otherwise, it restarts from the beginning.

A classical parameter synthesis problem is to find values for Delta and
Epsilon such that mutual exclusion is guaranteed. This is achieved by calling
the inverse method (at the last line) with Delta=3 and Epsilon=4 as a reference
valuation. The constraint synthesized by PSyHCoS is Delta < Epsilon, viz.,
the weakest (i.e., best) constraint known to guarantee mutual exclusion.

3 An Architecture Favoring Reusability

PSyHCoS is implemented in C#, based on Microsoft .NET framework, and uses
the PPL library [BHZ08] for solving the parameter constraints. Sources, binaries,
user manual and case studies are available in [ALSD13].

Reusability. The architecture of PSyHCoS is given in Fig. 1; it is fully object-
oriented to favor reusability and ease the addition of new features. Each semantic
rule of [ALSD12] is implemented in a different class, the methods of which are
called every time the rule is applied. As a consequence, adding a new syntactic
construct and its associated semantic rule simply requires one to add a new
class to implement the semantics of the new syntax, and add a new line to
the parser grammar file. Similarly, all algorithms are implemented in different
classes. Although some algorithms are of course specific to PSTCSP, it is also
possible to add algorithms that only depend on labeled transitions systems (such
as LTL-checking, deadlock freeness, etc.). Such algorithms could be imported at
no cost from existing model checking algorithms operating on LTS, e.g., Bogor,
LTSA or the PAT model checking library.

Internal representation. The semantics of PSTCSP is defined as a labeled tran-
sition system, where the states in the transition system consist of a process and
a constraint on clocks and parameters [ALSD12]. Each state is implemented as
a pair (process id, constraint id), both coded as a string. Although some pro-
cessing is needed each time a new state is computed, the constraint equality
test reduces to string equality, which is faster than other representations. Fur-
thermore, a string format is flexible – which is interesting as we are dealing

4

Case reachAll reachAll+ IM IM+
study |U | |S| |T | |X| t |S| |T | |X| t |S| |X| t |S| |X| t

Bridge 4 - - - M.O. - - - M.O. 2.8k 2 253 2.8k 2 455

Fischer4 2 - - - M.O. - - - M.O. 11k 4 41.9 2k 4 8.65

Fischer5 2 - - - M.O. - - - M.O. 133k 5 1176 13k 5 84.5

Fischer6 2 - - - M.O. - - - M.O. - - M.O. 86k 6 1144

Jobshop 8 14k 20k 2 21.0 12k 17k 2 18.1 1112 2 17.1 877 2 22.8

RCS5 4 5.6k 7.2k 4 10.5 5.6k 7.2k 4 9.54 5.6k 4 7.83 5.6k 4 16.7

RCS6 4 34k 43k 4 91.7 34k 43k 4 54.5 34k 4 60.4 34k 4 91.3

TrAHV 6 7.2k 13k 6 14.2 7.2k 13k 6 15.8 227 6 0.555 227 6 0.655
Table 1. Application of algorithms for parameter synthesis using PSyHCoS

with hierarchical systems so that different states may have very different system
architecture.

Optimization. PSyHCoS implements a state-space reduction technique, that
merges equivalent states in PSTCSP [ALSD12]. In the best case, this leads to
an exponential diminution of the number of states, but at the cost of several
nontrivial operations. The optimized version of reachAll (resp. IM) is denoted
by reachAll+ (resp. IM +). Both approaches are implemented so that users can
choose.

4 Experiments and Discussion

We applied PSyHCoS to synthesize parameters for real-time systems ranging
from classical concurrent algorithms to real world problems. In Table 1, we list
the example names, the number |U | of parameters and, for each algorithm, the
number |S| (resp. |T |) of states (resp. transitions), the maximum number |X|
of clocks, and the computation time t in seconds on a Windows XP 32 bits
computer with an Intel Quad Core 2.4 GHz processor and 4 GB memory.

Bridge is a bridge crossing problem for 4 persons within 17 time units. Fischeri
is the mutual exclusion protocol for i processes. Jobshop is a scheduling problem.
TrAHV is a classical train example for PTA. RCSi is a railway control system
with i trains. The reference valuation used for IM either is the standard valu-
ation for the considered problem (Bridge, Jobshop, RCSi, TrAHV) or has been
computed in order to satisfy a well-known constraint of good behavior (Fischeri).

When reachAll terminates, we can apply classical model checking algorithms:
e.g., we checked that all models are deadlock-free (except Jobshop2). When
reachAll does not terminate (Bridge, Fischer), IM is interesting because it syn-
thesizes constraints despite an infinite set of reachable states; and when reachAll
terminates slowly (TrAHV), IM may synthesize constraints much quicker.

The constraint output has several advantages. Firstly, it synthesizes values
for which the system behaves well. Secondly, it gives a criterion of robustness to

2 Jobshop is an acylic scheduling problem, where tasks should execute only once.
Hence, once all actions have been performed, the system ends with a deadlock.

5

the system, by defining a safety domain around each parameter. Thirdly, it can
happen that the constraint is True (e.g., RCSi for all i). In this case, one can
safely refine the model by removing all timing constructs (Wait, deadline, etc.).
Although this might be checked using refinement techniques for one particular
parameter valuation, we prove it here for any parameter valuation.

Also observe that, when IM + indeed reduces the number of states, it is much
more efficient than IM , not only w.r.t. memory, but also w.r.t. time. However,
with no surprise, when no state duplication is met (e.g., Bridge), the computation
time is greater. Although reducing this computation is a subject of ongoing work,
we do not consider it as a significant drawback: parameter synthesis’ largest
limitations are usually non-termination and memory saturation. Slower analyses
for some case studies (up to +80% for Bridge) are acceptable when others benefit
from a dramatic memory (and time) reduction (-90% for Fischer5), allowing
parameter synthesis even when IM goes out of memory (Fischer6).

Comparison with IMITATOR. A comparison with Imitator (using the same
machine with Ubuntu 11.10 64 bits) turned inaccurate. Indeed, the (manual)
translation of models from PTSCP to PTA (and conversely) is difficult: in all
cases, the tool for which the model was initially designed performs much better
than the tool that runs on a translated model. For example, Jobshop (8.96 s)
and TrAHV (0.097 s) are quicker on Imitator, for which they are designed.
Conversely, Imitator does not terminate for Fischeri for all i because of the
explicit clock representation in PTA (constraints of the form x2 ≥ j ∗ ε + x1,
with j infinitely growing, are generated), whereas the implicit clocks in PSTCSP
prevent this. We did not find a better way to encode an equivalent PTA model
of our Fischer example for PSTCSP. Other models (Bridge, RCSi) are too large
to be manually translated. An automated efficient translation mechanism, that
could ease such a comparison, is a subject of future work. Nevertheless, some
features specific to PSTCSP, such as hierarchy, data structures, and implicit
clocks, would be lost in any case by the translation.

References

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IM-
ITATOR 2.5: A tool for analyzing robustness in scheduling problems. In
FM’12, pages 33–36, 2012. 2

ALSD12. Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Parameter synthesis
for hierarchical concurrent real-time systems. In ICECCS’12, pages 253–262,
2012. 2, 3, 4

ALSD13. Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. PSyHCoS’ web
page. http://lipn.univ-paris13.fr/~andre/software/PSyHCoS/, 2013.
2, 4

AS13. Étienne André and Romain Soulat. The Inverse Method. ISTE Ltd and
John Wiley & Sons Inc., 2013. 3

BHZ08. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhe-
dra Library: Toward a complete set of numerical abstractions for the analy-
sis and verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008. 4

6

http://lipn.univ-paris13.fr/~andre/software/PSyHCoS/

BLR05. Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. Be-
yond liveness: Efficient parameter synthesis for time bounded liveness. In
FORMATS’05, pages 81–94, 2005. 2

DHQ+08. Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang Yi. Timed
automata patterns. IEEE Transactions on Software Engineering, 34(6):844–
859, 2008. 2

DLL+10. Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wasowski. ECDAR: An environment for compositional design and
analysis of real time systems. In ATVA’10, pages 365–370, 2010. 2

KLS99. Hee-Hwan Kwak, Insup Lee, and Oleg Sokolsky. Parametric approach to the
specification and analysis of real-time system designs based on ACSR-VP.
Electronic Notes in Theoretical Computer Science, 25:38–49, 1999. 2

LPY97. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technology Transfer,
1(1-2):134–152, 1997. 2

Mar11. Nicolas Markey. Robustness in real-time systems. In SIES’11, pages 28–34.
IEEE Computer Society Press, 2011. 1

SLD+13. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne
André. Modeling and verifying hierarchical real-time systems using Stateful
Timed CSP. ACM Transactions on Software Engineering and Methodology,
22(1):3.1–3.29, 2013. 2

7

	PSyHCoS: Parameter Synthesis for Hierarchical Concurrent Real-Time Systems

