
A unified formalism for monoprocessor
schedulability analysis under uncertainty?

Étienne André

Université Paris 13, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France

Abstract. The schedulability analysis of real-time systems (even on
a single processor) is a very difficult task, which becomes even more
complex (or undecidable) when periods or deadlines become uncertain.
In this work, we propose a unified formalism to model monoprocessor
schedulability problems with several types of tasks (periodic, sporadic,
or more complex), most types of schedulers (including EDF, FPS and
SJF), with or without preemption, in the presence of uncertain timing
constants. Although the general case is undecidable, we exhibit a large
decidable subclass. We demonstrate the expressive power of our formal-
ism on several examples, allowing also for robust schedulability.

Keywords: schedulability analysis, real-time systems, timing parameters

1 Introduction

The schedulability problem for real-time systems consists in checking whether,
for a given set of tasks bound by some constraints (precedence between tasks,
periods. . .) and for a given scheduler, all tasks can finish their computation
before their relative deadline. This problem is a very delicate task, even on a
single processor, and becomes even more complex (or undecidable) when periods
or deadlines become unknown or subject to uncertainty.

Timed automata (TAs) [AD94] are a powerful formalism to model and verify
timed concurrent systems, by extending finite-state automata with continuous
variables (“clocks”) that can be compared to constants in transitions (“guards”)
and locations (“invariants”) or reset along transitions. Schedulability analysis
with stopwatch automata (an extension of TAs) was proposed in [AM02]: al-
though stopwatch automata are an undecidable formalism in general [CL00],
jobshop scheduling using stopwatch automata is still possible [AM02].

Task automata (TaskA) were introduced in [NWY99] as an extension of TAs
where discrete transitions can be labeled with tasks, that can have a worst

? This is the author version of the manuscript of the same name published in the pro-
ceedings of the International Workshop on Formal Methods for Industrial Critical
Systems and Automated Verification of Critical Systems (FMICS-AVoCS 2017). The
final version is available at http://dx.doi.org/10.1007/978-3-319-67113-0_7.
This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

1

http://dx.doi.org/10.1007/978-3-319-67113-0_7

l0
t0

l1
t1

l2
t2

l3
t3

x > p
x := 0

x = 40
x := 0

x := 0

x = 20
x := 0

Priorities
t0 > t2 > t1 > t3

Task B W D

t0 0 1 2

t1 4 4 20

t2 0 1 p′

t3 2 2 10

Fig. 1: Encoding semi-periodic and sporadic tasks using a PTaskA

case execution time and a deadline. Thanks to the expressive power of TAs, this
formalism is richer than the traditional periodic tasks (characterized by their pe-
riod) or sporadic tasks (characterized only by their minimal inter-arrival time).
In addition, the schedulability problem (“is the TaskA schedulable for a given
strategy?”) is decidable for non-preemptive strategies, i. e., without the ability
of the scheduler to temporarily suspend a task for a more urgent one. This for-
malism is enriched and slightly modified in [FKPY07], where the tasks become
associated with locations (instead of transitions) and are also characterized with
a minimum execution time. Although the schedulability problem for task au-
tomata of [FKPY07] is undecidable in general (for some preemptive strategies),
the decidable case is large, including all non-preemptive strategies, and all strate-
gies without task feedback (i. e., the precise finishing time of a task influences
the release of another one) or when best-case and worst-case computation times
of tasks are equal to each other.

Example 1. Consider the TaskA in Fig. 1 (from [FKPY07, Fig.2b]) with two
tasks t1 and t3 which are similar to periodic tasks, though they alternate between
each other. D, B and W denote the deadline, the best and worst-case execution
time of each task, respectively. In addition, two sporadic tasks (t0 and t2) are
interleaved between t1 and t3. Every time location li is entered, an instance of ti
is created. For preemptive fixed priority scheduling (FPS), the tasks ordered by
decreasing priority order are t0 > t2 > t1 > t3. TaskA can help to solve the
schedulability problem: e. g., for p = 10 and p′ = 4 and FPS strategy, is the
system schedulable?

Contributions. Task automata cannot be used anymore if some of the timing
constants are uncertain (for instance due to clock drift) or if they are unknown
– which rules out the verification at early design stage. In this work, we extend
task automata with timing parameters, i. e., unknown constants, as a unified
formalism to model monoprocessor schedulability problems with several types
of tasks (periodic, sporadic, or more complex). Most types of schedulers, in-
cluding EDF (earliest-deadline first), FPS (fixed-priority) and SJF (shortest job
first), with or without preemption, can be used. Most importantly, uncertain or
unknown timing constants can be used thanks to timing parameters. Although

2

the general case is undecidable, we exhibit a large decidable subclass. We then
propose a method that, given a parametric task automaton and a scheduling
strategy, synthesizes parameter valuations for which the system is schedulable.
For example, for what valuations of p, p′ is the PTaskA in Fig. 1 schedulable? We
demonstrate the applicability of our formalism using the parametric real-time
model-checker IMITATOR [AFKS12] augmented with an ad-hoc extension, and
show that it can also address robust schedulability.

Related work. Schedulability analysis under uncertainty, i. e., with uncertain or
unknown parameters, attracted recent attention. In [CPR08], parametric timed
automata (PTAs) [AHV93] are used to perform parametric schedulability anal-
ysis: whereas the general case is unsurprisingly undecidable, the authors exhibit
a subclass for which the schedulability-synthesis (i. e., synthesizing all valuations
for which the system is schedulable) can be performed exactly.

In [BHJL13] parametric interrupt timed automata are proposed: this class
inspired by PTAs is such that, at any time, at most one clock is active. This
class allows a kind of preemption, and the reachability-emptiness problem is
decidable.

In [SSL+13], we used parametric stopwatch automata (PSwA) to analyze
a distributed real-time system with a preemptive fixed-priority strategy; while
the analytical methods are faster, they are often incomplete, while the PSwA
method implemented in a former version of IMITATOR turns out to be exact
(sound and complete) on a set of case studies. This justifies the use of parametric
model checking techniques instead of analytical techniques in order to analyze
real-time systems under uncertainty. Finally, in [ALS15], IMITATOR was able
to output the exact answer to an industrial challenge by Thales with uncertain
periods, whereas other approaches were not able to compute this result (with the
exception of one simulation-based approach, which did obtain the exact result
without however the ability to assess its optimality).

Different from these previous works, are contribution aims at providing real-
time system designers with a formalism natively including periods, deadlines and
best- and worst-case computation times, and that also allows for uncertainty.

Outline. Section 2 recalls TaskA and introduces PTaskA. Section 3 studies the
decidability of PTaskA. Section 4 introduces the modeling with PTaskA. Sec-
tion 5 presents the practical translation into IMITATOR and Section 6 describes
experiments. Section 7 concludes the paper.

2 Preliminaries: Task Automata

In this section, we mainly recall task automata from [FKPY07] (with some modi-
fications in the syntax to better fit our framework), and introduce our parametric
extension.

3

2.1 Clocks, parameters and constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation is a function
µ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, µ+ d denotes the valuation such that (µ+ d)(x) = µ(x) + d, for
all x ∈ X . Given R ⊆ X , we define the reset of a valuation µ, denoted by [µ]R,
as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown rational-
valued constants. A parameter valuation v is a function v : P → Q+.

In the following, we assume � ∈ {<,≤} and ./ ∈ {<,≤,≥, >}. A P-guard g
is a constraint over X ∪ P defined by a conjunction of inequalities of the form
x ./ z, where z is either a parameter or a constant in Q+. A non-parametric
guard is a P-guard over X only, i. e., defined by a conjunction of inequalities of
the form x ./ d.

We may assume bounds on the parameters; a parameter p is bounded if its
valuation domain is of the form [a,∞) or [a, b] with a, b ∈ N.

2.2 Tasks

Let T = {t1, t2, · · · } be a set of tasks. Each task is characterized by three timings,
i. e., constants in P ∪ Q+: i) B: its best-case execution time, ii) W : its worst-
case execution time, and iii) D: its relative deadline (i. e., the latest time after
the release of the task by which it must be completed). Given a task t and a
parameter valuation v, we denote by v(t) the task where the parameters in the
timings (i. e., B, W and D) are replaced with their value in v.

Each task can have several instances, i. e., copies of the same task. An instance
of task t is written (t, b, w, d) where b ∈ R+ (resp. w ∈ R+) is the best-case (resp.
worst-case) remaining computation time, and d ∈ R+ the remaining time before
the deadline.

2.3 Parametric task automata

Let us define parametric task automata as an extension of task automata defined
in [FKPY07], where we allow the use of parameters in guards and invariants.1

Definition 1 (PTaskA). A parametric task automaton (hereafter PTaskA) is
a tuple (T , Σ,L, l0,X , xdone,P, I, T, E), where: i) T is a set of tasks, ii) Σ
is a set of actions, iii) L is a finite set of locations, iv) l0 ∈ L is the initial
location, v) X is a finite set of clocks, vi) xdone ∈ X is a special clock to be
reset only when a task finishes, vii) P is a finite set of parameters, viii) I is

1 As this definition is a contribution of this paper, it would better fit outside of the
preliminaries section; however, it is convenient to define it first so as to then define
task automata, and (parametric) timed automata in a straightforward manner.

4

l2
t2

l1
t1

l0 a
x1 := 0
x2 := 0

x1 ≥ 10
∧ x2 ≤ 40

a
x1 := 0

b

x1 := 0

x1 > 10
b

x1 := 0

x2 > p
c

Fig. 2: An example of a PTaskA (inspired by [FKPY07, Fig.1])

the invariant, assigning to every l ∈ L a P-guard I(l), ix) T : L ⇀ T is the
partial task function, assigning to some locations a task, x) E is a finite set of
edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a P-guard.

T is a partial function, and therefore some locations may be associated with
no task. Also note that we define at most one task per location. Several tasks can
be encoded in a straightforward manner by using several consecutive locations
in 0-time. Also note that the parameters can be used both in the guards and
invariants of the automaton, and/or in the task timings.

A PTaskA is said to have no task feedback if none of its guards and invariants
contain xdone.

Given a PTaskA A and a parameter valuation v, we denote by v(A) the non-
parametric task automaton (TaskA) where all occurrences of a parameter pi (in
task timings, guards and invariants) have been replaced by v(pi). We will denote
a TaskA using a tuple (T , Σ,L, l0,X , xdone, I, T, E), with all elements defined as
Definition 1 except that guards and invariants are non-parametric guards, and
that all B, W , and d in the tasks of T are non-parametric.

A TaskA is said to have exact computation times if B = W for all tasks.

Example 2. Fig. 2 describes a PTask with 2 clocks, and 2 tasks: t1, an instance
of which is activated every time the PTaskA enters l1, and t2 (in l2). For t1, we
have B = 1, W = 2 and D = 10; for t2, B = 2, W = p′ and D = 8. Note that
our formalism allows one to define parameters both in the automaton (p) and
the task timings (p′). This PTaskA has no task feedback (xdone is not used).

Basically, this PTaskA can create in l1 between 1 and 5 instances of t1 (but
no more frequently than every 10 time units); then, it moves to l2 where it can
remain as long as wished, creating instances of t2 (again no more frequently
than every 10 time units). Eventually, the PTaskA can move back to the initial
location no sooner than p time units since the entering of l1.

Intuitively, this PTaskA will be schedulable only if p′ (W of t2) is not too
large, and only when p is not too small (otherwise one may loop too fast through
the automaton for all tasks to terminate before their deadline).

5

2.4 (Parametric) timed and stopwatch automata

A parametric timed automaton (PTA) is a PTaskA for which T = ∅. Similarly,
a timed automaton (TA) is a TaskA for which T = ∅.2

Lower-bound/upper-bound parametric timed automata (L/U-PTAs), pro-
posed in [HRSV02], restrict the use of parameters in the model. A parameter is
said to be an upper-bound parameter if, whenever it is compared with a clock, it
is necessarily compared as an upper bound, i. e., it only appears in inequalities of
the form x� p. Conversely, a parameter is a lower-bound parameter if it is only
compared with clocks as a lower bound, i. e., of the form p� x. An L/U-PTA is
a PTA where the set of parameters is partitioned into upper-bound parameters
and lower-bound parameters.

Finally, TAs can be extended into stopwatch automata with the additional
ability to stop some clocks in selected locations [CL00]. Similarly, PTAs can be
extended into parametric stopwatch automata (PSwAs) [SSL+13]. We assume
that (P)SwAs are equipped with diagonal constraints, i. e., guards made of a
conjunction of inequalities of the form xi−xj ./

∑
1≤i≤M αipi+d, with αi, d ∈ Q.

2.5 Task queue and scheduling strategy

A task queue is a sequence of instances of the form
(
(t1, b1, w1, d1), (t2, b2, w2, d2), · · ·

)
.

Given a non-parametric task set T , let QT denote all possible task queues. A
scheduling strategy is a function Sch : T × QT → QT that, given a task and a
current task queue, inserts a new instance of this task into the task queue, while
preserving the order of the other task instances in the queue. Famous scheduling
strategies are EDF (earliest deadline first), FPS (fixed-priority scheduling) and
SJF (shortest job first).

Definition 2. A strategy is non-preemptive if it can never insert a new task
instance as the first element of a non-empty queue. A strategy is preemptive if
it can insert a new task instance as the first element of the queue, provided its
task name is different from the name of every task in the queue, i. e., the current
running task and all preempted tasks in the queue.

Example 3. Let q =
(
(t1, 1.4, 2.4, 3), (t2, 2.5, 3.5, 4.2)

)
. Assume a task t3 where

B = 1,W = 1 andD = 10. Then EDF(t3, q) =
(
(t1, 1.4, 2.4, 3), (t2, 2.5, 3.5, 4.2), (t3, 1, 1, 10)

)
,

whereas preemptive SJF(t3, q) =
(
(t3, 1, 1, 10), (t1, 1.4, 2.4, 3), (t2, 2.5, 3.5, 4.2)

)
.

To be general enough, we only assume that schedulers must be encoded using
a SwA. Also, the decision to insert a new task instance into the queue must be
made only by comparing task timings of the new task instance with each of the
existing instances (and possibly by looking at the discrete part of the queue, i. e.,
the ordering of the task names). This is not strong an assumption: for example,
note that EDF, FPS and SJF (preemptive or not) all meet these criteria.

2 In the literature, TAs are often defined using integer constants in guards and invari-
ants; it is well-known that using rationals preserves decidability results, as rationals
can be translated to integers using an appropriate constants rescaling.

6

2.6 Semantics of task automata

A configuration is a triple (l, µ, q) for location l, clock valuation µ and queue q.

Definition 3 (Semantics of TaskA [FKPY07]). Given a scheduling strat-
egy Sch, the semantics of a TaskA A = (T , Σ,L, l0,X , xdone, I, T, E) is a labeled
transition system with initial state (l0,0, []) and transitions defined as follows:

– (l, µ, q)
a→Sch (l′, [µ]R,Sch(T (l), q)) if (l, g, a,R, l′) ∈ E, µ |= g and [µ]R |=

I(l′), (|= denotes satisfiability)

– (l, µ, [])
δ→Sch (l′, µ+ δ, []) if δ ∈ R+ and (µ+ δ) |= I(l),

– (l, µ, (t, b, w, d) :: q)
δ→Sch (l′, µ + δ,Run((t, b, w, d) :: q, δ)) if δ ∈ R+, δ ≤ w

and (µ+ δ) |= I(l), and

– (l, µ, (t, b, w, d) :: q)
fin→Sch (l, [µ]{xdone}, q) if b ≤ 0 ≤ w and [µ]{xdone} |= I(l).

where [] denotes the empty queue, :: is the list “cons” operator, and fin /∈ Σ is a
fresh action name denoting task completion.

The transition relation→ is parameterized by the scheduler Sch, as the strat-
egy impacts the choice of the insertion into the queue of a new task instance.
The first rule defines a discrete transition. The second rule defines time elapsing
for the empty queue. The third rule defines time elapsing for a non-empty queue;
Run(q, δ) decreases by δ the value of all d in q, as well as the b and w of its first
element. The fourth rule defines the task completion, and resets xdone as this
clock is reset iff a task has completed.

2.7 Decidability of task automata

A TaskA is schedulable for a given strategy if, for all possible executions of
the TaskA, all task instances meet their deadlines, i. e., they finish before their
deadline, for any computation time within [B,W].

Let us recall the main results from [FKPY07].

Theorem 1 ([FKPY07, Theorems 1–4]). The problem of checking schedu-
lability is decidable when relative to: i) a non-preemptive scheduling for TaskA;
or ii) a preemptive scheduling strategy for TaskA without task feedback or with
exact computation times.

The decidability is obtained by encoding the scheduler Sch for this decidable
class into a timed automaton, or a timed automaton with bounded subtraction,
denoted by Aenc(Sch). Then, the synchronous product automaton A ‖ Aenc(Sch)
is constructed. Finally, it is shown that the system is schedulable iff a special lo-
cation (which corresponds to a deadline miss) is not reachable in A ‖ Aenc(Sch).
The result follows from the decidability of the reachability in both timed au-
tomata [AD94] and timed automata with bounded subtraction [FKPY07].

Theorem 2 ([FKPY07, Theorems 5]). The problem of checking schedula-
bility is undecidable with (preemptive) EDF, FPS, SJF.

7

3 Decidability and undecidability

In this section, we address the following decision problem.

Schedulability-emptiness problem:
Input: A PTaskA A and a scheduling strategy Sch
Problem: is the set of valuations v for which v(A) is schedulable for strat-
egy Sch empty?

3.1 Undecidability

The following undecidability results derive from two well-known results: i) the
reachability-emptiness problem is undecidable for PTAs with at least three para-
metric clocks (clocks that are indeed compared to a parameter somewhere in the
model) and a single parameter [Mil00] (although many variants of this result
exist, see [And16] for a survey); and ii) general schedulability analysis is unde-
cidable for TaskA [FKPY07].

Theorem 3 (Undecidability). The schedulability-emptiness problem is unde-
cidable for PTaskA with at least three parametric clocks and a single timing
parameter, whatever the scheduling strategy.

The schedulability-emptiness problem is undecidable for general PTaskA.

Proof. It is known that reachability emptiness is undecidable with at least three
parametric clocks and one parameter [Mil00]. That is, we can encode a 2-counter
machine using a PTA such that the machine halts iff a special location in the
PTA is reachable. We reuse this construction by adding no task in the PTA,
except to the special location, where we add two tasks with B = W = D = 1,
activated in 0-time (adding two tasks requires a second additional location with
an urgent transition). Now, if the special location is reachable, the system is
necessarily non-schedulable (the first task will complete within 1 time unit, and
the second one will immediately miss its deadline). Conversely, if the special
location is unreachable, no task is ever activated and the system is necessarily
schedulable. The result follows from the undecidability of the halting problem
for 2-counter machines.

For the second part, it suffices to consider a PTaskA with a single parameter
never used in the model, since non-parametric-schedulability analysis is already
undecidable in general [FKPY07] (using possibly preemptive scheduling strate-
gies). ut

Remark 1. In the first part of Theorem 3, we require three parametric clocks
in the model. Note that the scheduler translates itself into a PTA with several
(possibly parametric) clocks; therefore, it is likely that the undecidability result
holds for less clocks in the PTaskA. Exhibiting better bounds (which does not
have huge practical applications though) is the subject of future work.

8

3.2 Decidability

In the non-parametric setting, the number of instances of a task t (with timings
B, W , D) is intuitively bounded by dD/W e; indeed, when the number of in-
stances exceeds this bound, the queue will be overflown in the sense that it will
be impossible to finish that many instances before the deadline D. Therefore, as
soon as the queue exceeds this value, the system is non-schedulable and therefore,
it is sufficient to consider a bounded queue for schedulability analysis. However,
this reasoning does not hold for general PTaskA, as W can be arbitrarily small,
and D arbitrarily large. This motivates the following definition.

Definition 4. A PTaskA has schedulable-bounded parameters if, for each task t,
its worst-case execution time W is bounded in [a,∞) or [a, b] with a > 0, and
its deadline D is bounded in [a, b], with a, b ≥ 0.

That is, the W cannot be 0, and the deadline cannot be infinite. There-
fore, the maximum number of instances to be considered for a task is bounded
by dmax(D)/min(W)e, where max (resp. min) denotes the upper (resp. lower)
bound of a parameter.

Example 4. The PTaskA in Fig. 2 trivially meets the schedulable-boundedness
assumption, as necessarily p′ ≥ B = 2 > 0. In addition, the maximum number
of instances necessary to check schedulability is 10/2 = 5 for t1 and 8/2 = 4
for t2.

We then slightly restrain the use of parameters in PTaskA in the following
definition, following the similar restriction in L/U-PTAs.

Definition 5. A PTaskA is an L/U-PTaskA if its parameters set is partitioned
into lower-bound parameters and upper-bound parameters.

Theorem 4 (Decidability). The schedulability-emptiness problem is decidable
for L/U-PTaskAs with schedulable-bounded parameters, for non-preemptive FPS
and SJF, and non-preemptive EDF without parametric deadlines.

Proof. Let us first show that Sch can be encoded into an L/U-PTA Aenc(Sch).
Thanks to the restriction in Definition 4, we note that it is sufficient to consider
a bounded number of instances for each task. Therefore, there is a bounded
number of possible discrete queues. These combinations can be encoded us-
ing a finite number of locations in the L/U-PTA (more pragmatically, both
in [NWY99,FKPY07] and in our implementation, we use shared global variables
such as Booleans, integers, or lists, that act as syntactic sugar for extra loca-
tions). Whenever the queue exceeds its bounded size, we add a transition to a
special error location.

Then, we follow the same encoding as in [FKPY07] for non-preemptive strate-
gies: we create one clock per possible task instance (of which the number is
bounded). Whenever x > D∧x ≤W , where x denotes a task instance in a given
location encoding a queue where this instance is indeed active, we add a transi-
tion to the error location, as this task instance missed its deadline. For FPS, this

9

encoding is such that D and B are always compared to clocks as lower-bounds,
and are therefore lower-bound parameters, whereas W is an upper-bound pa-
rameter. This gives that Aenc(Sch) is a (finite) L/U-PTA. For EDF, we need
to compare expressions such as Di − xi ./ Dj − xj ; by forbidding paramet-
ric deadlines, the model remains again an L/U-PTA. Now, since A is itself an
L/U-PTA, the product A ‖ Aenc(Sch) is an L/U-PTA, where the error location
is reachable for all valuations iff there exists no parameter valuation for which
the system is schedulable. The result follows from the fact that the problem
of knowing whether a location is reachable for all valuations is decidable for
L/U-PTAs [And16].

For SJF, we have to compare the B and W with each other, but that can be
done “statically” by considering all possible orderings, which gives a finite union
of L/U-PTAs; we can show using a monotonicity property that the universality
of each of these constrained L/U-PTAs is decidable. ut

The class of PTaskA in Theorem 4 is large. Indeed, the assumption of schedulable-
bounded parameters is more than reasonable: both an infinite deadline and a
0-time WCET seem doubtful cases. In addition, the L/U assumption is not much
restrictive either: first note that any PTaskA with no parameter in the automa-
ton (but with parametric timings in the tasks, except for deadlines for EDF) fits
into this class. Second, this assumption mainly consists in disallowing equality
with parameters in the PTaskA, which does not seem much a restriction. Both
Fig. 1 (except for EDF, unless p′ is valuated) and Fig. 2 (for all strategies) fit
into this class.

Remark 2. The decidability of the schedulability-emptiness problem does not
necessarily mean that one is able to synthesize all parameter valuations. In fact, it
was shown in [JLR15] that the synthesis is in general intractable for L/U-PTAs:
more precisely, it is (in general) impossible to represent the set of valuations
for which a given location is reachable in an L/U-PTA using a finite union of
polyhedra. However, we can mitigate this in two ways. First, the non-emptiness is
constructive: that is, if the set of valuations for which the system is schedulable is
not empty, then one is certain to exhibit immediately a set of valuations (maybe
incomplete though) using procedures from [HRSV02]. When synthesizing all
valuations is out of reach, exhibiting at least some is also of interest. Second, we
have in fact a more pragmatical goal, as the subject of the next section will be
to synthesize valuations not only for this decidable subclass, but for the general
class of PTaskA – maybe not all such valuations (due to Theorem 3) but as
many as possible.

4 Schedulability analysis for parametric task automata

In this section, we adopt a more pragmatical view. Since we only constrain a
scheduler to be encoded using a stopwatch automaton, we therefore directly
translate any scheduler (preemptive or not) into a (parametric) stopwatch au-
tomaton. Even in the decidable cases (where we showed that stopwatches are
not needed), we potentially use stopwatches.

10

As noted in [FKPY07], most scheduling strategies can fit into timed (or stop-
watch) automata, and therefore fit into parametric stopwatch automata when
extended with parameters.

However, the discrete part of the queue might require an unbounded number
of locations. Whereas in the non-parametric case, a sufficient bound can be
computed which is sufficient for schedulability, this does not hold anymore in
the parametric case. Therefore, in the remainder of the paper, we always assume
the mild assumption of schedulable-boundedness of Definition 4, and therefore
we can infer a bound on the length of the tasks queue.

We do not go into full details for encoding strategies, as this was (partially)
done in [NWY99,FKPY07], and would require lengthy details; we however give
the general idea below.

General idea. We will consider the synchronous product of two PSwAs in paral-
lel: the actual PTaskA A, and the translation of the scheduler Sch into a second
PSwA Aenc(Sch). As noted earlier, a PTaskA is just a PTA, where some loca-
tions activate task instances. Therefore, the PTaskA can be transformed into an
almost-identical PSwA (without stopwatches), by labeling each edge going into
a location where task t is activated by a fresh action Act t. Then, the scheduler
will synchronize on actions Act t, and manage the tasks queue according to its
strategy.

The locations of Aenc(Sch) are all possible configurations of the discrete part
of the tasks queue, of which there is a finite number thanks to the schedulable-
boundedness assumption. At any time, if the size of the queue overflows the max-
imal queue size implied by the schedulable-boundedness assumption, Aenc(Sch)
will go to a special error location, which denotes that the system is non-schedulable.

We use the following clocks for Aenc(Sch). First, for each task ti, we use a
unique clock (say xi), that serves to measure the unique running instance; note
that at most one task instance of task ti has a non-zero time of already executed
computation, from the definition of non-preemptive and preemptive strategies
(from Definition 2). These task clocks may be stopped (which is why we require
stopwatches): in fact, they will always be stopped, unless an instance of the
current task is currently being executed. These task clocks are initially 0, run
when an instance of the task is executed, and are reset when such an instance
is completed.

Second, for each task instance, we create one clock. For example, clock xji
denotes the clock for the instance j of task ti. Thanks to the schedulable-
boundedness assumption, we know the maximum required number of instances
per task. These task instance clocks are never stopped; whenever an instance j
of task ti is active, if this instance misses its deadline Di (which can be tested
using a guard xji > Di), Aenc(Sch) is sent to a special error location.

We now briefly review the specificities of the three scheduling strategies.

EDF scheduler. In order to encode EDF, one must identify the task instance with

an earliest deadline: for example, if Di−xji < Di′−xj
′

i′ , then instance j of task ti

11

has an earlier deadline than instance j′ of task ti′ and should be executed first.
This can be tested thanks to the diagonal constraints in PSwAs.

FPS scheduler. The fixed-priority scheduling strategy is encoded directly on the
discrete part of Aenc(Sch). When a new instance of task ti is activated (ac-
tion Act t), if that task has a higher priority than the task currently executed
(say ti′), then the scheduler temporarily stops ti′ and starts executing ti; other-
wise, the scheduler keeps executing ti′ and inserts a new instance of ti into the
queue.

SJF scheduler. In order to encode SJF, one must identify the task with the
shortest job: for example, if Wi − xi < Wi′ − xi′ , then the running instance of
task ti has a shorter job than the running of task ti′ and should be executed
first.

Using the above construction Aenc, we have:

Proposition 1. Given a PTaskA A and strategy Sch, the system is schedulable
for all valuations for which the error location is unreachable in A ‖ Aenc(Sch).

5 Parameter synthesis for PTaskA using IMITATOR

5.1 IMITATOR

IMITATOR [AFKS12] is a parametric model checker for networks of PSwAs ex-
tended with various features, including global rational-valued variables, strong
broadcast synchronization, and linear clock assignments (instead of being reset
to 0, a clock x can also be set, e. g., to x′ + p). The symbolic computations are
performed using polyhedra [BHZ08]. IMITATOR implements various algorithms;
the one used here is EFsynth (“reachability synthesis” [AHV93,JLR15]). EFsynth
is in fact a semi-algorithm: it is not guaranteed to terminate but, if it does, then
its result is exact.

5.2 Translation into parametric stopwatch automata

In our translation of the scheduler into a PSwA, we extensively use stopwatches,
even in the decidable cases. The reason is that, while the semantics of SwA
cannot be encoded using Difference Bound Matrices (DBMs, a popular data
structure rendering TAs very efficient) in the non-parametric setting, however
they come for free in the parametric setting (as stopwatches can be encoded into
polyhedra, which usually encode the semantics of PTAs).

In order to reduce the state space, we also implemented several optimizations
using the expressive power of IMITATOR: i) The queue is not implemented into
locations, but using a set of variables. In contrast to [NWY99] where Booleans
are used to denote whether a task instance is active or not, we use a single integer
for each task ti, that encodes the number of active instances for ti. ii) We also use
stopwatches as much as possible: whenever a instance clock denotes an inactive
instance, it is set to 0 and stopped so as to not create unnecessary diverging
relations with the other clocks.

12

6 Experiments

As writing such a scheduler quickly becomes tedious and error-prone, we imple-
mented an external program (650 lines of Python) that takes as input on the
one hand a scheduling strategy Sch and on the other hand the list of tasks of the
PTaskA A (with their timings, their priority (for FPS), their maximum number
of instances. . .), and automatically generates the corresponding PSwA Aenc(Sch)
in the IMITATOR input format. Then, it suffices to pass to IMITATOR the model
made of A and Aenc(Sch).

We used IMITATOR 2.9.1 for our experiments. All the subsequent analyses
terminate in (at most) a few seconds on a MacBook Pro i7 2.67GHz.3

In this section, we consider a preemptive FPS scheduler. All the results are
exact – although the preemptive FPS scheduler is clearly beyond the decidable
class of Theorem 4.

Non-parametric analysis. Quite trivially, our framework allows for non-parametric
analysis. Setting p = 10 and p′ = 4, IMITATOR concludes that the PTaskA in
Fig. 1 is schedulable for preemptive FPS. With priorities t0 > t1 > t2 > t3, the
system becomes non-schedulable.

Mixing parameters. Let us go back to Fig. 2. First, we set p = 100, and we obtain
that the system is schedulable for p′ ∈ [2, 3]. Second, we set p′ = 3, and we obtain
that the system is schedulable for p ≥ 42. This confirms both intuitions that p′

should be not too large, and p large enough for the system to be schedulable.
Finally, we run an analysis with both parameter dimensions, which gives:

p′ ∈ [2, 3]∧p ≥ 42 ∨ p′ = 2∧p ∈ [8, 42) ∨ p′ > 2∧p < 42∧p ≥ 36+2×p′

A graphical representation output by IMITATOR is given in Fig. 3a (where p100

stands for p and Q WCET for p′).
Concerning Fig. 1, setting p′ = 4 yields p ≥ 9, while a parametric schedula-

bility analysis on both dimensions gives

p ≥ 9 ∧ p′ ≥ 2 ∧ p+ p′ ≥ 23 ∨ p ≥ 9 ∧ p′ ≥ 3 ∧ p+ p′ < 23

A graphical representation output by IMITATOR is given in Fig. 3b (where S D

stands for p′).

Robustness analysis. Finally, we can perform robustness analysis: often, TAs and
their extension are not by default robust, i. e., they can require infinitely pre-
cise behaviors. It may happen that a property holds only if all timing constants
are implemented exactly as they were specified. In contrast, robustness analysis
(see, e. g., [BMS13]) consists in checking whether there exists some ε > 0 for
which, when all guards may be enlarged by ε, the system still meets its prop-
erty. To check whether Fig. 1 is robustly schedulable, we modify the system as

3 Sources, binaries, models and results are available at https://www.imitator.fr/

static/FMICS17.

13

https://www.imitator.fr/static/FMICS17
https://www.imitator.fr/static/FMICS17

(a) Fig. 2 (b) Fig. 1
(c) Fig. 1 (robust)

Fig. 3: Visualization of parametric schedulability zones

follows: any constraint (in both A and Aenc(Sch)) of the form x ≤ z, x ≥ z,
or x = z, where z ∈ Q+ ∪ P, is transformed into x ≤ z + ε, x ≥ z − ε, or
z − ε ≤ x ≤ z + ε, respectively (and similarly for strict constraints). Applying
this modification to Fig. 1 with p = 10 and p′ = 4, by adding a fresh parameter ε,
gives the constraint ε = 0: that is, this system is not robustly schedulable. Any
modification (even infinitesimal) of the timing constants may render the system
non-schedulable.

We can combine parametric schedulability with robustness analysis: keeping
both p and ε gives

p ≥ 9 ∧ ε = 0 ∨ ε ≤ 2

5
∧ p ≥ 20 + 5ε ∧ p ≥ 19 + 8ε

That is, the system is not schedulable for p < 9, is schedulable but not robustly
for p ∈ [9, 20] and becomes robust from 20. Note that our constraint even gives
by how much the guards can be enlarged (the value depends on p and never
exceeds 2

5). A graphical representation output by IMITATOR is given in Fig. 3c.

7 Conclusion

We introduced a unified and concise model for parametric schedulability analysis
for (non-)preemptive strategies on a monoprocessor. While the general case is
undecidable, we exhibited a decidable subclass, and our implementation termi-
nates with an exact result on benchmarks even outside of the decidable class.

While formal methods with timing parameters might not scale to verify the
schedulability of very large systems with all details, we believe they can provide
designers with first schedulability results on subparts of the system, or to de-
rive timing bounds on abstractions of it. Designing ad-hoc abstractions for our
framework is on our agenda.

There is still some open space between our decidability result (Theorem 4)
and our undecidability results (Theorem 3). A promising way to improve the

14

knowledge of decidability would be to show that L/U-parametric timed automata
with bounded subtractions are decidable, which would allow to extend our de-
cidable subclass of PTaskA. Conversely, a good candidate for undecidability is
non-preemptive strategies without the schedulable-boundedness assumption.

So far, whereas the scheduler is automatically generated, the PTaskA still
needs to be manually constructed. A natural future work is therefore to propose
on the one hand a library of patterns (periodic tasks, sporadic tasks. . .), and on
the other hand an automated translation from existing formalisms.

Of course, handling multiprocessor scheduling is on our agenda, as well as
mixed-criticality scheduling. Finally, we would also like to consider a parameter-
ization of a recent extension of TaskA [FLSC16].

References

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMI-
TATOR 2.5: A tool for analyzing robustness in scheduling problems. In FM,
volume 7436 of Lecture Notes in Computer Science, pages 33–36. Springer,
2012.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993.

ALS15. Étienne André, Giuseppe Lipari, and Youcheng Sun. Verification of two
real-time systems using parametric timed automata. In WATERS, 2015.

AM02. Yasmina Adbeddäım and Oded Maler. Preemptive job-shop scheduling using
stopwatch automata. In TACAS, volume 2280 of Lecture Notes in Computer
Science, pages 113–126. Springer-Verlag, 2002.

And16. Étienne André. What’s decidable about parametric timed automata? In
FTSCS, volume 596 of Communications in Computer and Information Sci-
ence, pages 52–68. Springer, 2016.

BHJL13. Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Didier Lime.
Parametric interrupt timed automata. In RP, volume 8169 of Lecture Notes
in Computer Science, pages 59–69. Springer, 2013.

BHZ08. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhe-
dra Library: Toward a complete set of numerical abstractions for the analy-
sis and verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008.

BMS13. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in timed
automata. In RP, volume 8169 of Lecture Notes in Computer Science, pages
1–18. Springer, 2013.

CL00. Franck Cassez and Kim Guldstrand Larsen. The impressive power of stop-
watches. In CONCUR, volume 1877 of Lecture Notes in Computer Science,
pages 138–152. Springer, 2000.

CPR08. Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic compu-
tation of schedulability regions using parametric timed automata. In RTSS,
pages 80–89. IEEE Computer Society, 2008.

FKPY07. Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task automata:
Schedulability, decidability and undecidability. Information and Computa-
tion, 205(8):1149–1172, 2007.

15

FLSC16. Bingbing Fang, Guoqiang Li, Daniel Sun, and Hongming Cai. Schedulabil-
ity analysis of timed regular tasks by under-approximation on WCET. In
SETTA, volume 9984 of Lecture Notes in Computer Science, pages 147–162,
2016.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 52-53:183–220, 2002.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for timed automata. IEEE Transactions on Software Engineering,
41(5):445–461, 2015.

Mil00. Joseph S. Miller. Decidability and complexity results for timed automata
and semi-linear hybrid automata. In HSCC, volume 1790 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

NWY99. Christer Norström, Anders Wall, and Wang Yi. Timed automata as task
models for event-driven systems. In RTCSA, pages 182–189. IEEE Computer
Society, 1999.

SSL+13. Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André, and Lau-
rent Fribourg. Parametric schedulability analysis of fixed priority real-time
distributed systems. In FTSCS, volume 419 of Communications in Com-
puter and Information Science, pages 212–228. Springer, 2013.

16

	A unified formalism for monoprocessor schedulability analysis under uncertainty

