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Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
e-mail: Etienne.Andre@lipn.univ-paris13.fr

Christine Choppy
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1 Introduction

Business processes are collections of related and structured activities or tasks, pro-
ducing a specific service or product. Being able to model and to analyze business
processes is of paramount importance, not only for the design of such processes, but
also in the field of the software development whenever the SOA (Service Oriented
Architecture) paradigm [9] is followed. The most common modeling notations for
business processes are the BPMN3 and the UML [1] activity diagrams. We consider
in this paper the UML since it offers also many other diagrams (classes, state ma-
chine, etc.), providing an integrated way to model all the aspects of a business as the
used data and the participant entities; also it may be used in all the other phases of
the software development. Furthermore, there is no relevant difference between the
readability of the UML and of the BPMN (see, e.g., [17]).

Although UML diagrams are widely used, they suffer from some drawbacks. In-
deed, since UML specification is documented in natural language, inconsistencies
and ambiguities may arise. First, their rich syntax is quite permissive, and hence
favors common mistakes by designers. Second, their informal semantics in natu-
ral language prevents the use of automated verification techniques, that could help
detecting errors as early as the modeling phase.

Our contribution is twofold. First, we define precise activity diagrams for mod-
eling business processes. These precise activity diagrams are based on patterns, that
can be inductively composed so as to build complex activity diagrams. Our ap-
proach also takes classes into account. We have selected a minimal subset of the
useful UML activity diagram constructs (viz., sequence, fork, join, choice, merge,
loops). This paper does not consider accept and timed event, which is the subject of
ongoing work. Second, we give a semantics to these patterns, by translating them
into Colored Petri Nets (CPNs) [12] in a modular way. Petri net is a natural formal-
ism as result of the translation: the UML specification explicitly mentions them, and
the informal semantics of activity diagrams is given in terms of token flows.
Related Works. The first issue we address is that of an adequate notation and ap-
proach for business process modeling. [19, 6] compare different styles of activity di-
agrams (precise, “ultra-light”) in experiments. The workflow pattern initiative [20]
issued a collection of workflow patterns for business modeling. These patterns ad-
dress the modeling of control, data, etc., and are expressed in Petri nets.

Another issue is to propose a formal associated semantics to UML diagrams us-
ing a formal notation, which is important to allow for automated verification [10].
This has been addressed in quite a variety of works using automata, different kinds
of Petri nets, etc., so we mention only a few. Instantiable Petri nets are the target of
transformation of activity diagrams in [13], and this is supported by tool BCC (Be-
havioral Consistency Checker); however they do not consider data, whereas we do.
In [8, 4], the issue is performance evaluation, from activity diagrams and others (use
case, state diagrams, etc.) to stochastic Petri nets. In [21] and [2], various syntactic
features of UML state machines are translated into CSP# and colored Petri nets,

3 http://www.bpmn.org/
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respectively. Also note that [11] proposes an operational semantics of the activity
diagrams (for UML 2.2). Börger [5] and Cook et al. [7] present other formaliza-
tions of the workflow patters of [20] using formalisms different from Petri nets,
viz., Abstract State Machines and Orc, respectively. In [16], patterns for specifying
the system correctness are defined using UML statecharts, and then translated into
timed automata. The main differences with our approach are that the authors mainly
focus on real-time properties, and the patterns of [16] do not seem to be hierarchi-
cal: the “composition” of patterns in [16] refers to the simultaneous verification of
different properties in parallel. In [15], a reactive semantics is defined for a subset of
UML activities, which makes it a precise design language for reactive systems. The
same authors also define in [14] an automated compositional mechanism for UML
activities together with an interface (a so-called External State Machine), seen as
building blocks.
Outline. Section 2 presents our UML-based modeling for business processes (static
view, activity diagram, etc.), details the activity diagram features we consider, and
describes how to compose them in a modular way. Then, we provide a translation
of the considered activity diagrams into colored Petri nets in Section 3 (activity
diagram) and Section 4 (static view). We use as a running example an electronic
commerce system EC. Section 5 concludes, gives some hints on our implementation,
and sketches future directions of research.

2 Business Process Modeling

2.1 Precise Business Process Models

Business processes are collections of related and structured activities or tasks, pro-
ducing a specific service or product. In this section, we consider precise models of
business processes. The word “precise” means here that we define such models in
a sharper way than usual; the word is used in several related works on models (see,
e.g., [19]). A precise model of a business process consists of (1) the static view, i.e.,
a class diagram defining the types of all the entities in the process; (2) the list of the
process participants and of the used data typed using the classes and the datatypes
in the static view; and (3) an activity diagram representing the process behavior.

The process participants are entities taking part in a process, and can be classified
as: (i) business worker, if they correspond to human beings acting in the process,
(ii) system, if they are software or hardware systems with a role in the process,
and (iii) business object, when they are passive entities used in the activities of the
workers and of the systems. The classes in the static view may be stereotyped by
<<worker>>, <<system>> and <<object>> to explicit which kind of entities they
model. A class with these stereotypes is called an entity class.

The operations of the classes stereotyped by either <<worker>> or <<system>>

represent the atomic activities that they are able to perform in the business process.
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Fig. 1 EC example: static view

These classes may have also some auxiliary operations stereotyped by <<aux>>

not modeling any activity.
The operations of the classes stereotyped by <<object>> represent the atomic

activities that may be performed over them. The constructor operations for any class
have the stereotype <<create>>.

We consider an e-commerce EC as a running example of a precise business pro-
cess. Fig. 1 presents its static view, while Fig. 2 presents its activity diagram and the
list of the participants with the used data.

The EC business process has seven participants, and two of them, ORDER and
PACK, are created during the process execution. Two boolean values, ANS and RES,
are set during the process execution. It is important to note that the listed partici-
pants and data are not specific individuals, but roles that can be instantiated in many
different ways. If a participant/data is marked by <<out>>, then it means that it is
created/defined during the process execution.

The static view should be complemented with methods defining the meaning of
the operations of the datatypes, of the classes stereotyped by <<object>>, and of
any operation stereotyped by <<aux>> or <<create>>. In Fig. 1, the various meth-
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ods are reported in notes attached to the corresponding classes. The behavior of the
classes stereotyped by <<worker>> or <<system>> will be defined by state ma-
chines, where all events are calls of their operations not stereotyped by <<aux>>.
In the case of the EC process, these state machines are not shown here. They have
a simple “daisy form”, with a unique state and with a transition leaving and enter-
ing this state for any operation. This corresponds to say that the instances of these
classes may perform anytime any atomic activity represented by an operation.

Fig. 2 EC example: activity diagram

The following subsection describes
how the business process behavior is
modeled by a precise activity diagram.

2.2 Precise Activity Diagrams

2.2.1 UML Activity Diagrams

We first briefly recall UML activity di-
agrams [1]. They feature in particular
an initial node (e.g., the top node in
Fig. 2), and two kinds of final nodes:
activity final, that terminate the activ-
ity globally (“final1” and “final2” in
Fig. 2), and flow final, that terminate the
local flow [1, p.340]. They also fea-
ture choice (e.g., “dec1”), i.e., the abil-
ity to follow one path among different
possibilities, depending on guards, and
merge (e.g., “Merge1”), i.e., the con-
verse operation. They also feature fork,
i.e., the ability to split the flow into dif-
ferent subactivities executed in parallel
(e.g., the large line below “Merge1”),
and join, i.e., the converse operation
(the large line below “Merge3”).

2.2.2 Activity Diagrams Patterns

General Scheme for Patterns. We
now introduce precise activity dia-
grams. Whereas UML activity dia-
grams provide a lot of freedom in the
syntax, we give here precise rules for
building activity diagrams in an itera-
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tive and modular way. First, from years
of experience in the area of modeling, we believe that some of the syntactic features
of UML activity diagrams are not often used in practice, or are ambiguous, and are
then discarded here. Second, some constructions can reflect ill-formed diagrams.
For example, we make here compulsory that a fork must always be eventually fol-
lowed by a join, except in very particular cases. Hence, following these patterns can
help the designer to avoid common mistakes (see, e.g., [18]). Providing these pre-
cise activity diagrams with a semantics will be the subject of Section 3. Note that,
different from software engineering design patterns, that can be inserted into freely
written code, precise activity diagrams are exclusively made of activity diagram
patterns composed with each other.
Inductive Rules. We assume the static view and the list of the participants of the
business process are already defined. Now, the set PACT of the precise activity
diagrams is inductively defined below using a set of rules. Each rule defines an
activity diagram pattern. For each activity diagram pattern in PACT , we define a
begin node and an end node. Either the begin or the end node may be undefined, but
not both. When composing the activity diagram fragments, we denote by ⊥ the fact
that a fragment has no end node.

In the following EXP denotes the set of the OCL (Object Constraint Language)
expressions built on the participant names, the operations of the datatypes defined in
the static view, and the operations of the entity classes appearing in the static view
stereotyped by <<aux>>. Such expressions are without side-effects on the process
since the stereotype <<aux>> requires an operation to be a query.

Rules 1–4 define simple patterns, whereas rules 5–8 define complex patterns by
composing fragments built using the patterns. We also compare our patterns with
those of [20], when applicable.
Rule 1: Initial. The initial node belongs to PACT , and its begin node is undefined,
while its end node is itself.
Rule 2: Activity final. belongs to PACT , and its begin node is itself, while its
end node is undefined.
Rule 3: Flow final. belongs to PACT , and its begin node is itself, while its end
node is undefined.
Rule 4: Action. If X is a participant of the process, Exp, Exp1, . . . , Expn belong
to EXP , and op is an operation of a class stereotyped either by <<worker>>,
<<system>>, <<object>> in turn not stereotyped by <<aux>> or <<create>>,
then X := Exp (4a) , X := Exp.op(Exp1, . . . ,Expn) (4b), and Exp.op(Exp1, . . . ,Expn) (4c) be-
long to PACT , and their begin and end nodes coincide with themselves.
Rule 5: Sequence. This pattern corresponds to pattern 5 (“sequence”) in [20]. If

A1

(with a defined end node) and A2 (with a defined begin node) belong to

PACT , then

A1

A2 belongs to PACT , and has the begin node of A1 and the end
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node A2, if they exist. Note that A1 and A2 represent here activity diagrams frag-
ments inductively defined using our set of rules. The begin node of A1 (resp. end
node of A2) is not depicted: this means it can either be defined or not. These con-
ventions will be used throughout this section.
Rule 6: Decision/merge. Let n≥ 1, m≥ 0, n+m≥ 2.

If
A1

, . . . ,
An

,
An+1
⊥ , . . . ,

An+m

⊥ belong to PACT , if An+1, . . . , An+m
have no defined end node, and if cond1, . . . , condn+m belong to EXP such that

∨
i=1,...,n+m condi = true, then

A1 An An+1 An+m· · · · · ·
⊥ ⊥

[cond1]

[co
nd

n
] [cond

n+
1 ]

[condn+m ]

belongs to
PACT . Its begin node is the decision node, and its end node is the merge node. This
pattern can be seen as a combination and a generalization of patterns 4 (“exclusive
choice”) and 5 (“simple merge”) in [20]. However, there are several differences: (1)
we make the merge compulsory after a choice; (2) we allow some activities (n+ 1
to n+m) not to merge, providing they terminate (which is encoded by the fact that
they have no end node); and (3) our choice is not exclusive (several guards may be
true simultaneously, in which case the choice is nondeterministic).

Rule 7: Loop. If
A1

and A2 belong to PACT , and cond1, cond2 belong to

EXP with cond1∨cond2 = true, then
A1 A2

[cond1]

[cond2]

and

A1

A2

[cond2]

[cond1]

belong to PACT ; their begin node is the merge node, and their end node is the end
node of A2. We name these two rules 7a (“while”) and 7b (“repeat until”) respec-
tively. Rule 7a (resp. 7b) is similar to the while variant (resp. repeat variant) of
pattern 21 (“structured loop”) in [20].
Rule 8: Fork/join. Let n≥ 0, m≥ 0, n+m≥ 2.

If
A1

, . . . ,
An

,
An+1
⊥ , . . . ,

An+m

⊥ belong to PACT , if An+1, . . . , An+m have

no defined end node, then

A1 An An+1 An+m· · · · · ·
⊥ ⊥

belongs to PACT . Its
begin node is the fork node, and its end node is the join node if n > 0, otherwise
it is undefined. This pattern can be seen as a combination and a generalization of
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patterns 2 (“parallel split”) and 3 (“synchronization”) in [20]. However, we make
the join compulsory after a fork; and we allow some activities (n+ 1 to n+m) not
to join, providing they terminate.

3 Translation of the Activity Diagram

In the remaining of the paper, we consider the translation into a CPN of the business
process models introduced in Section 2. On the one hand, the translation of the static
view and of the lists of the participants of a business process will result in a set of
declarations of types and of functions over them defining a special type State, whose
values represent the current situation of the process participants and of the process
data during the process execution. On the other hand, the translation of the activity
diagram will result in a CPN. This CPN will use the type declarations and functions
in its inscriptions.

We first recall the formalism of CPNs (Section 3.1), and then introduce the trans-
lation of the activity diagram (Section 3.2). The translation of the static view will be
the subject of Section 4.

3.1 Colored Petri Nets with Global Variables

We briefly recall here colored Petri net (CPNs) [12] (for a precise definition, see [3]).
CPNs are an extension of Petri nets with color sets, or types. In CPNs, places, to-
kens and arcs have a type. In Fig. 3(a), place p1 has type N, whereas p2 has type
N×B. Arcs can be labeled with arc expressions modifying the (colored) token (e.g.,
(i, true) in Fig. 3(a)). Transitions can have a guard, hence enabling the transition
only if the guard is true (e.g., [i 6= 2]). We use for arc inscriptions and guards the
syntax of CPN ML, an extension of the functional programming language Standard
ML, and used by CPN Tools [12].

p1 N

[i 6= 2] v := v+ i

p2 N×B

i

(i, true)

(a) Global variables notation

p1 N

[i 6= 2]

p2 N×B

pv N
i

(i, true)

v

v+ i

(b) Corresponding semantics

Fig. 3 Example of a use of global variables
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We use here the concept of global variables, a notation that does not add expres-
sive power to CPNs, but renders them more compact. Global variables can be read
in guards and updated in transitions. Some tools (such as CPN Tools) support these
global variables. Otherwise, one can simulate a global variable using a “global”
place, in which a single token (the type of which is the variable type) encodes the
current value of the variable. An example of use is given in Fig. 3(a). The variable v
(of type N) is a global variable updated to the expression v+ i. This CPN construc-
tion is equivalent to the one in Fig. 3(b). The case where a global variable is read in
a guard is similar, with the difference that v is not modified.

3.2 Translation

The translation of the precise activity diagrams belonging to PACT (defined in Sec-
tion 2.2) will be given compositionally following the rules defined there.

3.2.1 Assumptions

We make the following choice: each translated activity diagram fragment must start
and finish with a place, so that the composition of the translations of the subparts is
straightforward: it suffices to connect the places the same way as for the nodes we
defined for the activity diagram patterns.

We define two global variables go: BOOL and s (see Section 4). In particular,
variable go records whether the CPN should still execute, or should be completely
stopped. This go variable is used to encode the activity final pattern (rule 2); if such
a state is entered, then the whole process must immediately stop. Here, we assume
that, for each transition of the CPN, the guard includes a check [go=true] (for sake
of conciseness, this variable will not be depicted in our graphics). This go variable
is initialized with true, and will be set to false when entering the CPN transition
encoding the activity final state (see Fig. 4(c)).

Note that all edges and places have type “UNIT”, i.e., the same type as in
place/transition nets (we omit that type in Fig. 4 for sake of conciseness). Never-
theless, our CPN is still colored because of the use of global variables, guards in
transitions, and functions updating the variables in transitions.

3.2.2 Translation of the Rules

We now give in Fig. 4 the translation of the rules from Section 2.2.2. The translation
of each activity diagram pattern will result in a CPN fragment having the shape of
Fig. 4(a). Modular composition is performed using the begin and end nodes, using
the same way as for activity diagram patterns in Section 2.2.2.

9



Tr(A)

(a) CPN fragments shape

initi

s := InitState

(b) Rule 1

go := false

(c) Rule 2 (d) Rule 3

Tr(A1)

Tr(A2)

(e) Rule 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X := Exp

s := setX
(

s,
TrE(Exp,s))

(f) Rule 4a

X := Exp.op(Exp1, . . . ,Expn)

let (s′,v) = setX
(

s,op
(
TrE(Exp,s),

TrE(Exp1,s), . . . ,TrE(Expn,s)
))

in s := setX(s′,v)

(g) Rule 4b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exp.op(Exp1, . . . ,Expn)
s := op

(
TrE(Exp,s),

TrE(Exp1,s),
. . . ,TrE(Expn,s)

)
(h) Rule 4c

Fork

join

Tr(A1) Tr(An) Tr(An+1) Tr(An+m)

· · · · · ·

(i) Rule 8: fork/join
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cond1 [TrE(cond1,s)] condn [TrE(condn,s)] condn+1 [TrE(condn+1,s)] condn+m [TrE(condn+m,s)]

Tr(A1)

merge1

Tr(An)

mergen

Tr(An+m)Tr(An+1)· · · · · ·

(j) Rule 6: decision merge
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cond1 [TrE(cond1),s] cond2 [TrE(cond2),s]

Tr(A1)

merge

Tr(A2)

(k) Rule 7a: while

merge

Tr(A1)

cond1[TrE(cond1,s)] cond2 [TrE(cond2,s)]

Tr(A2)

(l) Rule 7b: repeat until

Fig. 4 Translating precise activity diagrams patterns into colored Petri nets fragments
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Rule 1: Initial. The initial state is encoded into an initial place, containing the only
initial token of the resulting CPN, followed by a transition assigning InitState to the
global variable s (InitState will be detailed in Section 4). Finally, an outgoing place
allows connection with the next component.
Rule 2: Activity final. An activity final pattern is translated into a transition updat-
ing the global variable go to false. Hence, since each transition has an implicit guard
checking that go=true, the execution of the CPN is immediately stopped.
Rule 3: Flow final. A flow final pattern is translated into a simple place; hence local
execution is terminated, without any consequence on the rest of the system.
Rule 4: Action. Recall from Section 2.2 that this rule translates the actions using
three different schemes (i.e., Rules 4a, 4b, and 4c).
Rule 5: Sequence. We translate A1 and A2 inductively, and we directly merge the
end node of A1 with the begin node of A2.
Rule 6: Decision/merge. Here, (only) one of the transitions will fire (depending on
the guards4). If the corresponding activity has an end node (activities 1 to n), then the
process continues afterwards from the outgoing place below; otherwise (activities
n+1 to n+m), it is stopped when the activity stops.
Rule 7: Loop. The translation of the while loop (resp. repeat until loop) is given in
Fig. 4(k) (resp. Fig. 4(l)).
Rule 8: Fork/join. The translation is quite straightforward. The n+m activities are
subject to a fork; then, only the n first activities are merged later.

A full translation of the activity diagram in Fig. 2 is available in [3].

4 Translation of the Static View and of the Participant List

In this section, we translate the static view and the participant list into a set of
CPN ML declarations. In particular, we translate the type (color set) State together
with a set of declarations of auxiliary types and of functions needed to handle them,
used by the CPN defined in Section 3. Recall that the values of State represent the
current situation of the process participants and of the process data during the exe-
cution of the process itself.

We first present the part of the translation generating the definition of State (Sec-
tion 4.1). Then we give the translation of the expressions (Section 4.2). We termi-
nate with the part concerning the definition of the initial state (Section 4.3), the
particular value of State representing the situation at the beginning of the process
execution. We use the EC example to illustrate our approach throughout the section.
The complete model can be found in [3].

In the following E1: T1, . . . , En: Tn are the participants of the business process,
Class1, . . . , Classm are all the entity classes introduced by the static view (i.e., those

4 If several guards are true simultaneously, the choice is nondeterministic, according to the CPN
semantics.
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stereotyped by <<object>>, <<worker>> or <<system>>), and Datatype1, . . . ,
Datatypeh are all datatypes included in the static view.

4.1 State Definition

Decls(Datatype1) . . . Decls(Datatypeh); Decls(Class1) . . . Decls(Classm)

Comp(E1: T1) . . . Comp(En: Tn); Comp(Class1) . . . Comp(Classm)

colset State = record
E1: CompType(T1) * . . . * En: CompType(Tn)
class1s: CompType(Class1) * . . . * classms: CompType(Classm); ;

(a) State translation

let att1: T1, . . . , attk: Tk be the attributes of Class
colset ClassID = int;
if Class is stereotyped by <<object>> then
colset ClassState = record att1: TrType(T1) * . . . * attk: TrType(Tk);
otherwise
colset ClassControl = with s1 | . . . | sh;
colset ClassState = record att1: TrType(T1) * . . . * attk: TrType(Tk) * control: ClassControl;
where s1, . . . , sh are the states of the state machine associated with Class

(b) Definition of Decls(Class)

let att1: T1, . . . , attk: Tk be the attributes of Datatype
colset DatatypeVal = record att1: TrType(T1) * . . . * attk: TrType(Tk);
for any op(T1, . . . , Tn): T operation of Datatype
op: TrType(T1) * . . . * TrType(Tn)→ TrType(T)
these operations must be defined by looking at the associated methods in the static view

(c) Definition of Decls(Datatype)

fun setE: State × TrType(T)→ State
(d) Definition of Comp(E: T)

colset Classes = list product ClassID * ClassState;

upClass: Classes * ClassID * ClassState→ Classes
getClass: Classes * ClassID→ ClassState
for any op(T1, . . . , Tn) operation of Class
op: State * ClassID * TrType(T1) * . . . * TrType(Tn)→ State
for any op(T1, . . . , Tn): T operation of Class not marked by <<aux>>
op: State * ClassID * TrType(T1) * . . . * TrType(Tn)→ (State * TrType(T))

for any op(T1, . . . , Tn): T operation of Class marked by <<aux>>
op: State * ClassID * TrType(T1) * . . . * TrType(Tn)→ TrType(T)

(e) Definition of Comp(Class)

Fig. 5 Translation of the static view
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As mentioned earlier, the values of type State represent all possible states of the
process participants during the process execution. State is defined by the list of type
and function declarations shown in Fig. 5(a). The first n components of State are
used to record the associations between the names of the participants (E1, . . . , En)
and the CPN ML value identifying them; whereas, given Class a class, then classes:
CompType(Class) is the component of State recording all existing instances (objects)
of the class Class with their current states. Function CompType returns the proper
types for the various components of State. Comp generates all the functions and
type declarations needed to handle the State component corresponding either to a
process participant or to all the instances of a class, whereas Decls generates the
data structures and the relative functions needed to represent a class/dataype.

We give below the definition of State in the case of the EC example.
colset State = record

CLIENT : ClientID * EC : ECommerceID * WH : WarehouseID *
CARRIER : CarrierID * CC : CreditCardID * PP : PaypalID *

ORDER : OrderID * PACK : PackageID * ANS : BOOL *
RES : BOOL * clients : Clients * eCommerces : ECommerces *

warehouses : Warehouses * carriers : Carriers * creditCards : CreditCards *
paypals : Paypals * orders : Orders * packages : Packages;

Function Decls (defined in Fig. 5(b) and 5(c)) transforms a class/datatype present
in the static view into the set of CPN ML type and function declarations needed to
represent its values and to handle them. The values of a datatype Datatype are repre-
sented by the type DatatypeVal, i.e., a record having a component for each attribute
of Datatype. A class Class determines a set of objects having an identity, typed by
ClassID, and a local state typed by ClassState. The local state is a record having a
component for each attribute of Class and, in the case of active objects and extra
component corresponding to the control state, typed by ClassControl, and defined by
the state machine associated with Class.

In the EC example, the WarehouseState is defined as follows:
colset WarehouseState = record control: WarehouseControl;

As all identifiers, the WarehouseID is an integer: colset WarehouseID = int;
And the WarehouseControl is an enumerated type with (in this case) only one

value: WarehouseControl = with Warehouse0;
Function Comp (defined in Fig. 5(d) and 5(e)) transforms a process participant

declaration (resp. a class) in the static view into a set of the type and function decla-
rations needed to define and handle component State recording the participant state
(resp. the states) of all class instances. The set of the states of the instances/objects
of a class is realized by a list of pairs, made of an object identity and an object state.

For example, type Warehouses is defined as a list of pairs of WarehouseID and
WarehouseState: colset Warehouses = list product WarehouseID * WarehouseState.

The function corresponding to an operation op of a class in the static view is
defined by looking either at the method associated with op in the static view, in
case of business object classes and of <<aux>> operation of workers and system
classes, whereas for the other operations of the workers and system classes they are
defined using the state machines associated with that class. By looking at the state
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machine transitions, it will be possible to know how these operation calls modify the
attribute values and the control state. In particular, our mechanism defines functions
set to set a value inside a record (e.g., “State.set CLIENT s id” sets field CLIENT to
id in state s), as well as functions to get a value from the record, and to update it.
The definitions of these set, get and upd functions are omitted here; their definition
for the EC example can be found in [3].

Finally, the TrType function translates a UML type into its corresponding CPN ML
type. Native types (string, boolean, integer) are translated to CPN ML types (viz.,
STRING, BOOL, int respectively). Then, we have TrType(Class) = ClassID, where
Class is the name of a UML class of the static view. And TrType(Datatype) =
DatatypeVal, where Datatype is the name of a UML datatype.

4.2 Expressions

We give here the translation of the expressions of EXP into CPN ML expressions,
since they will appear in the activity diagrams as conditions on the arcs leaving the
merge nodes, as well as in the action nodes. We define below by cases the translation
function TrE(Exp,s), that associates a CPN ML with an OCL expression Exp, given
the current state s.

• TrE(X,s) = #X(s), if X is a participant of the process, (#X is the CPN ML opera-
tion selecting a record type component), e.g. CLIENT is translated to #CLIENT(s);

• TrE(C,s) =C, if C is a primitive data type constant;
• TrE(op(Exp1, . . . ,Expn),s) = op′(TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an op-

eration of a primitive type, op′ will be either op itself or it will be defined case
by case in case of name mismatch between the operations on the UML primitive
types and the corresponding ones of CPN ML;

• TrE(op(Exp1, . . . ,Expn),s) = op(TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an oper-
ation of a datatype defined in the static view;

• TrE(Exp.op(Exp1, . . . ,Expn),s)= op(s,TrE(Exp,s),TrE(Exp1,s), . . . ,TrE(Expn,s)),
if op is an operation of a class defined in the static view of kind query.

For example, the translation of the guard [RES = true] in Fig. 2 using function
TrE results in the CPN ML expression [#RES(s) = true]. And the OCL expression
CARRIER.deliver(PACK) is translated to deliver(s,#CARRIER(s),#PACK(s)).

4.3 Initial Process Execution State

In order to translate a business process into CPNs, and specifically define the initial
execution state of the process itself, we also need a specific list of individual par-
ticipants. Recall that the names in the participant list part of the process model are
roles, not specific individuals.
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If n is the number of participants and data not marked by <<out>>, we call a
business process instantiation a list of n ground OCL expressions defined using the
data type defined in the static view, and the constructors of the classes in the static
view itself (operations stereotyped by <<create>>).

Given the business process instantiation (i.e., a list of ground expressions G1,
. . . , Gn), the function Initialize returns the CPN ML expression defining the initial
state, where the participants not marked by <<out>> are initialized with the values
determined by the process instantiation. The other ones are initialized with some
standard default values depending on their type (e.g., 0 for int, false for booleans, nil
for list types, etc.), and the components corresponding to the objects of the various
classes just contain the states of the objects appearing in the process instantiation.
Hence, we have: val InitState = Initialize(C1, . . . , Cn); Initialize is defined using TrE
(details can be found in [3]).

5 Conclusion and Future Work

In this work, we define precise business models, where the activity diagrams are
inductively defined using a set of patterns combined in a modular way. Hence, we
characterize a set of commonly used behaviors in activity diagrams. Moreover, our
patterns provide the designer with guidelines, thus avoiding common modeling er-
rors. Our second contribution is to provide the activity diagrams built using these
patterns with a formal semantics using colored Petri nets, hence allowing the use of
automated verification techniques.
Implementation. Following our algorithm, we implemented (manually) the EC ex-
ample into the CPN Tools model checker [12]. This results in a CPN containing 24
places, 25 transitions and about 500 lines of CPN ML code; the detailed CPN de-
scription is available in [3], and the CPN Tools model is available online5. Such an
implementation allows for automated verification techniques; among the properties
are for example the fact that the various final nodes may be reached in any case, and
hence that the process is well-formed. Automatizing the translation process from
a precise activity diagram to a CPN using model-driven methods and technologies
does not raise any particular theoretical problem, and is the subject of ongoing work.
Future Works. Among directions for future research is the comparison of our se-
mantics given in terms of CPNs where the process execution state is modeled by
colored tokens, with existing (partial) semantics, such as [15] and [11] (a source
of inspiration for our work). Furthermore, integrating accept and timed events to
our approach is an interesting direction of research. Finally, we aim at finding the
properties relevant for the business process, and providing guidelines to prove them.

Also note that the resulting CPN (including the functions) may be simplified in
some cases. First, some places and transitions added by the translation may be un-
necessary. This is the case, e.g., of a decision/merge pattern with only one activity

5 http://lipn.univ-paris13.fr/˜andre/activity-diagrams-patterns/
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on the left side, and one on the right side (n = m = 1). In that case, the only ac-
tivity synchronizing in the merge is the left one; hence, the transition “merge1” in
Fig. 4(j), as well as the place below, are unnecessary. Second, some functions could
be simplified for similar reasons. These simplifications, that are beyond the scope of
this paper, could help to speed up the automated verification of the resulting CPN.
Acknowledgment. We wish to thank Michael Westergaard for his kind help when
using CPN Tools, and anonymous reviewers for their helpful comments.
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