
Consistency in Parametric Interval Probabilistic Timed Automata
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Abstract—We propose a new abstract formalism for proba-
bilistic timed systems, Parametric Interval Probabilistic Timed
Automata, based on an extension of Parametric Timed Au-
tomata and Interval Markov Chains. In this context, we con-
sider the consistency problem that amounts to deciding whether
a given specification admits at least one implementation. In
the context of Interval Probabilistic Timed Automata (with no
timing parameters), we show that this problem is decidable and
propose a constructive algorithm for its resolution. We show
that the existence of parameter valuations ensuring consistency
is undecidable in the general context, but still propose a semi-
algorithm that resolves it whenever it terminates.

Keywords-parametric verification; timed probabilistic sys-
tems; parametric probabilistic timed automata;

I. INTRODUCTION

Motivation: Nowadays, automata-based modeling and
verification methods are mainly used in two different ways:
for designing digital systems based on (mostly informal)
specifications expressed by the end-users of these systems
or from the knowledge designers have of their environment;
and in order to abstract existing (not necessarily software)
systems that are too complex to comprehend in their entirety.
In both cases the complexity of the systems being designed
calls for increasingly expressive abstraction artifacts such
as time and probabilities. Timed automata [AD94] are a
widely recognized modeling formalism for reasoning about
real-time systems. This modeling formalism, based on finite
control automata equipped with clocks, which are real-
valued variables which increase uniformly at the same rate,
has been extended to the probabilistic framework in [GJ95],
[KNSS02]. In this context, discrete actions are replaced
with probabilistic discrete distributions over discrete actions,
allowing to model uncertainties in the system’s behavior.
This formalism has been applied to a number of case
studies [KNPS06].

Unfortunately, building a system model based either on
imprecise specifications or on imprecise observations often
requires to fix arbitrarily a number of constants in the model,
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which are then calibrated by a fastidious comparison of the
model behavior and the expected behavior. This is the case
for instance for timing constants or transition probability
values. In order to incorporate these uncertainties in the
model and to develop automatic calibration, more abstract
formalisms have been introduced separately in the timed
setting and in the probabilistic setting.

In the timed setting, parametric timed automata [AHV93]
allow using parameter variables in the guards of timed
transitions in order to account for the uncertainty on their
values. Parametric probabilistic timed automata were pro-
posed in [AFS13] to answer the following question: given a
parameter valuation, what are other valuations preserving the
same minimum and maximum probabilities for reachability
properties as the reference valuation? Parametric probabilis-
tic timed automata were then given a symbolic semantics
in [JK14]; a method has been proposed in that same work
to synthesize optimal parameter valuations to maximize or
minimize the probability of reaching a discrete location.

In the pure probabilistic setting, Interval Markov Chains
(IMCs for short) have been introduced [JL91] to take into
account imprecision in the transition probabilities. IMCs
extend Markov Chains by allowing to specify intervals of
possible probabilities on transitions instead of exact values.
Methods have then been developed to decide whether there
exists Markov Chains with concrete probability values that
match the intervals specified in a given IMC [DLL+12].

Contribution: In this paper, we propose to combine
both abstraction approaches into a single specification
theory: Parametric Interval Probabilistic Timed Automata
(PIPTAs for short). In this setting, parameters can be used
in order to abstract timed constants on transition guards
while intervals can be used to abstract imprecise transition
probabilities. As for IMCs, it is important to be able to
decide whether the probability intervals that are specified
in a model allow defining coherent probability distributions
(i. e., can be matched in a real-life implementation). This is
called the consistency problem. In the context of Interval
Probabilistic Timed Automata with no timing parameters
(IPTAs for short), we propose an algorithm that resolves
this problem. In our setting, since the behavior of the system
is conditioned by the calibration of parameter values, it is
therefore necessary to decide whether there exist parameter
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values that ensure consistency of the resulting model (and
synthesize these values when this is possible). We show that
the existence of such parameter valuations is undecidable in
the general context of PIPTAs. Still, we propose a semi-
algorithm that synthesizes, whenever it terminates, the set
of parameter values that ensure consistency of the resulting
IPTA.

Outline: We start Section II with preliminary def-
initions and then introduce the concepts of IPTAs and
PIPTAs. In Section III, we study the consistency problem
for IPTAs and propose a constructive algorithm based on
the zone-graph construction that decides whether an IPTA is
consistent and produces an implementation if one exists. In
Section IV, we move to the general problem of consistency
of PIPTAs. We first show that this problem is undecidable in
general and then propose a semi-algorithm that synthesizes,
whenever it terminates, the set of parameter values ensur-
ing consistency of the resulting IPTA. Finally, Section V
concludes the paper.

II. PRELIMINARIES

A. Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative
integers, integers, non-negative rational numbers and non-
negative real numbers respectively. Given an arbitrary set
S, we write Dist(S) for the set of probabilistic distributions
over S.

Throughout this paper, let X = {x1, . . . , xH} be a set
of clocks, i. e., real-valued variables that evolve at the same
rate, and Γ = {γ1, . . . , γM} be a set of parameters, i. e.,
unknown constants.

A clock valuation is a function w : X → R+. We identify
a clock valuation w with the point (w(x1), . . . , w(xH)). We
write ~0 for the valuation that assigns 0 to each clock. Given
d ∈ R+, w+d denotes the valuation such that (w+d)(x) =
w(x) + d, for all x ∈ X . Given ρ ⊆ X , we define [w]ρ as
the clock valuation obtained by resetting the clocks in ρ and
keeping other clocks unchanged.

A parameter valuation v is a function v : Γ →
Q+. We identify a parameter valuation v with the point
(v(γ1), . . . , v(γM )).

In the following, we assume ≺ ∈ {<,≤} and ∼ ∈ {<
,≤,≥, >}. lt denotes a linear term over X ∪ Γ of the form∑

1≤i≤H αixi +
∑

1≤j≤M βjγj + d, with xi ∈ X , γj ∈ Γ,
and αi, βj , d ∈ Z. plt denotes a parametric linear term over
Γ, that is a linear term without clocks (αi = 0 for all i).
A constraint C over X ∪ Γ is a conjunction of inequalities
of the form lt ∼ 0 (i. e., a convex polyhedron). Given a
parameter valuation v, v(C) denotes the constraint over X
obtained by replacing each parameter γ in C with v(γ).
Likewise, given a clock valuation w, w(v(C)) denotes the
expression obtained by replacing each clock x in v(C)
with w(x). We say that v satisfies C, denoted by v |= C,
if the set of clock valuations satisfying v(C) is nonempty.

Given a parameter valuation v and a clock valuation w,
we denote by w|v the valuation over X ∪ Γ such that for
all clocks x, w|v(x) = w(x) and for all parameters γ,
w|v(γ) = v(γ). We use the notation w|v |= C to indicate
that w(v(C)) evaluates to true. We say that C is satisfiable
if ∃w, v s. t.w|v |= C. We define the time elapsing of C,
denoted by C↗, as the constraint over X and Γ obtained
from C by delaying all clocks by an arbitrary amount of
time. Given ρ ⊆ X , we define the reset of C, written [C]ρ, as
the constraint obtained from C by resetting the clocks in ρ,
and keeping the other clocks unchanged. We denote by C↓Γ
the projection of C onto Γ, i. e., obtained by eliminating the
clock variables (e. g., using the Fourier-Motzkin algorithm).

A guard g is a constraint over X ∪Γ defined by inequal-
ities of the form x ∼ z, where z is either a parameter or a
constant in Z.

A zone is a polyhedron over a set of clocks in which all
constraints on variables are of the form x ∼ k (rectangular
constraints) or xi − xj ∼ k (diagonal constraints), where
xi ∈ X , xj ∈ X and k is an integer. Operations on zones
are well-documented (see e. g., [BY03]).

A parametric zone is a convex polyhedron over X ∪ Γ
in which all constraints on variables are of the form x ∼
plt (parametric rectangular constraints) or xi − xj ∼ plt
(parametric diagonal constraints), where xi ∈ X , xj ∈ X
and plt is a parametric linear term over Γ. We denote the
set of all parametric zones by Z .

B. Timed Probabilistic Systems

We review the definition of timed probabilistic systems,
as defined in [KNSS02]. A timed probabilistic system (TPS)
is a tuple T = (S, s0,Σ,⇒) where S is a set of states,
s0 ∈ S is the initial state, Σ is a finite set of actions, and
⇒ ⊆ S × R+ × Σ × Dist(S) is a probabilistic transition
relation.

C. Probabilistic Timed Automata

Probabilistic timed automata [GJ95], [KNSS02] are an
extension of classical timed automata [AD94] with discrete
probability distributions

1) Syntax:

Definition 1. A Probabilistic Timed Automaton (PTA) P
is a tuple (Σ, L, l0, X, prob), where: i) Σ is a finite set of
actions, ii) L is a finite set of locations, iii) l0 ∈ L is the
initial location, iv) X is a finite set of clocks, v) prob is a
probabilistic edge relation consisting of elements of the form
(l, g, a, µ), where l ∈ L, g is a constraint on the clocks X ,
a ∈ Σ, and µ ∈ Dist(2X × L).

Note that we use no invariant; this is an important
condition for the correctness of our techniques. However,
invariants can be eliminated (moved to the guards prior to
the transition), following classical techniques defined for
(probabilistic) timed automata.
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We use the following conventions for the graphical rep-
resentation of probabilistic timed automata: locations are
represented by nodes, within which name of the location
is written; probabilistic edges are represented by arcs from
locations, labeled by the associated guard and action, and
which split into multiple arcs, each of which leads to a
location and which is labeled by a set of clocks to be reset
to 0 and a probability (probabilistic edges which correspond
to probability 1 are illustrated by a single arc from location
to location).

Example 1. 1a presents an example of a PTA with two
clocks x and y. For example, l0 can be exited whenever
y < 2; then, with probability 0.4 the target location becomes
l2, resetting x; or with probability 0.6 the target location
is l1, resetting y. The transition from l2 can be explained
similarly.

2) Semantics of PTAss: A PTA can be interpreted as
an infinite TPS. Due to the continuous nature of clocks,
the underlying TPS has uncountably many states, and is
uncountably branching.

Definition 2 (Concrete semantics of a PTA). Given a PTA
P = (Σ, L, l0, X, prob), the concrete semantics of P is given
by the timed probabilistic system TP = (S, s0,Σ,⇒), with

• S = {(l, w) ∈ L× RH+} , s0 = (l0,~0)
• ((l, w), d, a, µ) ∈ ⇒ if both of the following conditions

hold:
– time elapse: ∀d′ ∈ [0, d], (l, w + d′) ∈ S, and
– edge traversal: there exists a probabilistic edge e =

(l, g, a, η) ∈ prob such that w+d |= g and, for each
l′ ∈ L and ρ ⊆ X , η(ρ, l′) = µ(l′, [w + d]ρ).

Note that, due to the fact that we have no invariants, the
first condition (time elapse) is always trivially true.

D. Parametric Interval Probabilistic Timed Automata

In this section, we introduce basic definitions for (para-
metric) interval probabilistic timed automata, that extend
(parametric) probabilistic timed automata by providing in-
tervals for transition probabilities instead of exact proba-
bility values. In the spirit of (parametric) Interval Markov
Chains [Del15], [DLP16], (parametric) interval probabilistic
timed automata are used for specifying potentially infinite
families (sets) of probabilistic timed automata – those whose
exact probability values match the specified intervals – with
a finite structure of similar form.

1) Syntax: Given an arbitrary set S, we call an interval
distribution over S a function Υ that assigns to each element
of S an interval of probabilities [a, b] ⊆ [0, 1]. Intuitively,
an interval distribution Υ over S represents the set of all
distributions µ ∈ Dist(S) that assign to each element s ∈ S a
probability µ(s) such that µ(s) ∈ Υ(s). Formally, we define
the implementation of an interval distribution as follows.

Definition 3 (Implementation of an interval distribution).
Let S be an arbitrary set. Given an interval distribution Υ ∈
Int[0,1](S), µ ∈ Dist(S) is an implementation of Υ, written
µ ∈ Υ iff, for all s ∈ S, we have µ(s) ∈ Υ(s).

In the rest of the paper, we write Int[0,1](S) for the set of
interval distributions over S. We now move to the definition
of (parametric) interval probabilistic timed automata.

Definition 4. A Parametric Interval Probabilistic Timed Au-
tomaton (PIPTA) PIP is a tuple (Σ, L, l0, X,Γ, I), where:
i) Σ is a finite set of actions, ii) L is a finite set of locations,
iii) l0 ∈ L is the initial location, iv) X is a finite set of
clocks, v) Γ is a finite set of parameters, vi) I is an interval-
valued probabilistic edge relation consisting of elements of
the form (l, g, a,Υ), where l ∈ L, g is a guard, a ∈ Σ, and
Υ ∈ Int[0,1](2

X × L) is an interval distribution.

Given a PIPTA PIP = (Σ, L, l0, X,Γ, I) and a parameter
valuation v, the valuation of PIP with v, written v(PIP),
is an Interval Probabilistic Timed Automaton (IPTA) IP =
(Σ, L, l0, X, I′), where I′ is obtained by replacing within I
any occurrence of a parameter γ with v(γ) and removing
all transitions (l, g, a,Υ) such that v(g) ≡ ⊥ (technically,
this latter part is not strictly speaking necessary, but it
syntactically reduces a bit the model).

Remark that IPTAs are very similar to PTAs: the only dif-
ference is that probabilistic edges are labeled with intervals
instead of exact probability values.

Once a parameter valuation is fixed, the resulting IPTA
represents a potentially infinite set of PTAs. In order to
relate a given IPTA with the PTA it represents, we use the
notion of implementation defined hereafter. This notion is
similar to the one defined in the context of (parametric)
Interval Markov Chains [Del15], [DLP16]. Remark that a
PTA implementing an IPTA needs to conserve the exact
same clocks, guards and resets.

Definition 5 (Implementation of an IPTA). Let P =
(Σ, L, l0, X, prob) be a PTA and IP = (Σ, L′, l′0, X, I) be
an IPTA.

We say that P is an implementation of IP , written
P |= IP , iff there exists a relation R ⊆ L′ × L, called
an implementation relation s. t. (l′0, l0) ∈ R and, whenever
(l′, l) ∈ R, we have
• ∀(l′, g′, a, µ) ∈ prob,∃(l, g′, a,Υ) ∈ I s. t. µ �R Υ,

and
• ∀(l, g, a,Υ) ∈ I,∃(l′, g, a, µ) ∈ prob s. t. µ �R Υ.

where µ �R Υ iff ∃δ ∈ Dist(L′ × L) s. t.
• ∀(ρ′, l′) ∈ 2X×L′, µ(ρ′, l′) > 0⇒

∑
l∈L(δ(l′, l)) = 1,

• ∀(ρ, l) ∈ 2X × L,
∑
l′∈L′(µ(ρ, l′) · δ(l′, l)) ∈ Υ(ρ, l),

and
• δ(l′, l) > 0⇒ (l′, l) ∈ R.

Given an IPTA, deciding whether the family it represents
is nonempty is a nontrivial problem. Indeed, the inter-
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Figure 1: Examples

val distributions used throughout its structure could repre-
sent contradictory constraints on the transition probabilities,
therefore preventing any PTA from implementing it.

Definition 6 (Consistency of an IPTA). An IPTA is consis-
tent if it admits at least one implementation.

Example 2. Consider the PIPTA PIP given in Figure 1b,
and containing a single parameter γ. When the interval
associated with a distribution is reduced to a point (e. g.,
[0.9, 0.9] from l2 to l5), we simply represent it using its
punctual value (i. e., 0.9). When a distribution is made of
a single target location with probability 1, we simply omit
the distribution (e. g., between l3 to l4).

Let v1 be the parameter valuation such that v1(γ) = 1.
In the IPTA v1(PIP), the transition outgoing from l1
can never be taken, as its guard becomes 2 ≤ x ≤ 1,
which is unsatisfiable. Then, it is clear that the PTA P
given in Figure 1a is an implementation of v1(PIP). As
a consequence, v1(PIP) is a consistent IPTA.

An important problem is therefore to decide whether a
given IPTA is consistent, which we address in the next
section.

III. THE CONSISTENCY PROBLEM FOR IPTAS

In this section, we address the problem of deciding
whether a given IPTA is consistent. Unlike in the context of
IMCs, where it is proven that a given IMC is consistent
iff it admits an implementation with the same structure,
a given IPTA can be consistent but still not admit any
implementation that respects its structure. Since transitions
can be removed because their guard becomes unsatisfiable
due to parameter valuations, the structure of implementations
can differ from the one of the specification. Algorithms
such as those proposed for deciding consistency of (p)IMCs
in [DLP16] therefore cannot be directly adapted to the IPTAs
setting as they are dependent on this property.

Fortunately, the operational semantics of IPTAs can be
expressed in terms of Interval Markov Decision Processes
(IMDPs), which are similar to IMCs and satisfy the same
structural properties regarding consistency. We therefore
propose an algorithm for deciding consistency of IPTAs
based on the consistency of their symbolic IMDP seman-
tics. We start with preliminary definitions on IMDPs, then
formally define the symbolic semantics of IPTAs and finally
propose an algorithm for deciding whether a given IPTA is
consistent.

A. Preliminary Definitions

An IMDP is a tuple (S, s0,Σ, T ) where S is a set of
states, s0 ∈ S is the initial state, Σ is a finite set of actions
and T ⊆ S × Σ × Int[0,1](S) is a probabilistic (interval)
transition relation.

Example 3. Figure 2b depicts an example of an IMDP.
Just as for IPTAs, when the interval associated with a
distribution is reduced to a point (e. g., [0.9, 0.9] from s2

to s5), we simply represent it using its punctual value (i. e.,
0.9). When a distribution is made of a single target location
with probability 1, we simply omit the distribution (e. g.,
between s3 to s4).

An MDP is an IMDP such that for each (s, a, [m,n]) ∈ T ,
we have m = n, and for each s ∈ S,

∑
(s,a,s′,[m,n])∈T m =

1.

Example 4. Figure 2a depicts an example of an MDP.

Definition 7 (implementation of an IMDP). Let IM =
(S, s0,Σ, T ) be an IMDP. Let M = (S′, s′0,Σ, T

′) be an
MDP. We say that M is an implementation of IM, written
M |= IM, if ∃R ⊆ S′×S s. t. (s′0, s0) ∈ R and (s′, s) ∈ R
if

• ∀(s′, a, µ) ∈ T ′,∃(s, a, I) ∈ T s. t. µ �R I , and
• ∀(s, a, I) ∈ T, ∃(s′, a, µ) ∈ T ′ s. t. µ �R I .
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Figure 2: Examples

As for IPTAs, we say that an IMDP is consistent iff it
admits at least one implementation.

Example 5. The IMDP given in Figure 2b admits no
implementation: indeed, on the (single) transition labeled
with e2, no valuation of the two intervals [0, 0.3] and [0, 0.2]
is such that the sum of both valuations is equal to 1. In
addition, the transition from s0 to s1 cannot be eliminated
by assigning a 0-probability to that target state; although
this would be compatible with the interval (0 ∈ [0, 1]), the
second interval (to s2) does not accept a 1-probability since
its probability must be within [0, 0.5].

As said above IMDPs satisfy the same structural property
as IMCs concerning implementations: they are consistent iff
they admit at least one implementation that respects their
structure. This result is formalized in the following lemma.

Lemma 1 (structure of an implementation). An IMDP IM
is consistent iff there exists an MDP M with the same
structure s. t. M |= IM.

Proof:
Let IM = (S, s0,Σ, T ) be an IMDP.
One direction of this result is trivial: if there exists an

MDP M with the same structure as IM s. t. M |= IM,
then IM is clearly consistent.

The reverse implication is more involved. Assume that
IM is consistent, i. e., there exists an MDP M =
(S′, s′0,Σ, T

′), with no assumption on its structure, such
that M |= IM. We then have to build an MDP M∗ =
(S, s0,Σ, T

∗) such thatM∗ andM have the same structure.
Observe that S and s0 must be identical to that of IM
because they have the same structure.

Let R be the relation witnessing that M |= IM and let
f : S → S′ be a partial function that associates to each
state in IM one of the states from M that contributes to
its implementation, if any. Formally, for all s ∈ S, if f(s)
is defined then (f(s), s) ∈ R.

The transition relation T ∗ of M∗ is constructed as
follows: For each state s that is implemented, i. e., such

that f(s) is defined, and probabilistic interval transition
(s, a, I) ∈ T in IM, we build a corresponding transition
(s, a, µI) in M∗ from the transitions in M that implement
(s, a, I). States that are not implemented do not serve for
consistency and are therefore not considered.

Formally, let (s1, a, I) ∈ T be a probabilistic interval
transition in IM. From Definition 7, we know that there
exists (f(s1), a, µ) ∈ T ′ s. t. µ �R I . Let δ be the function
given by µ �R I . The distribution µI is then constructed as
follows: for all s2 ∈ S, let µI(s2) =

∑
s′∈S′ µ(s′)·δ(s′, s2).

By definition of δ, observe that µI(s2) ∈ I(s2) for all
s2 ∈ S and that, whenever µI(s2) > 0, f(s2) is defined.

Clearly,M∗ is therefore an implementation of IM, with
witnessing relation R∗ the identity relation on the set of
states s ∈ S such that f(s) is defined.

B. A Symbolic Semantics for IPTAs

We equip IPTAs with a symbolic semantics, defined
below. Basically, it is inline with the symbolic semantics
defined for timed automata, with the addition of probabilistic
intervals on the edges; as a consequence, the semantics
becomes not an LTS, but an IMDP.

Definition 8 (Symbolic semantics of an IPTA). Given an
IPTA IP = (Σ, L, l0, X, I), the symbolic semantics of IP
is given by the IMDP (S, s0,Σ, T ), with
• S = {(l, C) ∈ L×Z}, s0 = (l0, (

∧
1≤i≤H xi = 0)↗),

• (s, e,Υ′) ∈ T if e = (l, g, a,Υ) ∈ I and for all l′ ∈ L,
for all ρ ⊆ X such that Υ(l′, ρ) > 0, C ′ =

(
[C∧g]ρ

)↗
,

and Υ′((l′, C ′)) = Υ(l′, ρ).

Observe that, whenever an IPTA has no probabilistic
choice, then the IMDP becomes a labeled transition system,
and the symbolic semantics matches that of timed automata
given in the form of a zone graph [BY03]. It is well-know
that the zone graph of a timed automaton can have an
infinite number of states; however, applying the classical
k-extrapolation (that basically splits zones between a part
where the clock constraints are smaller or equal to k and
a part where constraints are larger than k, where k is the
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State Location C
s0 l0 x = y ∧ x ≥ 0
s1 l1 0 ≤ x− y < 2 ∧ y ≥ 0
s2 l2 0 ≤ y − x < 2 ∧ x ≥ 0
s5 l5 0 ≤ y − x ≤ 1 ∧ x ≥ 1
s6 l2 1 ≤ y − x ≤ 2 ∧ x ≥ 0
s7 l5 y ≥ 2 ∧ y = x+ 1
s8 l2 y ≥ 2 ∧ y = x+ 2

Table I: Description of the states in Figure 2a

largest integer-constant in the timed automaton) yields ter-
mination (see, e. g., [BBLP06]). In the following, we apply
the classical k-extrapolation to the symbolic constraints of
the semantics of an IPTA IP , and therefore the number of
states in the IMDP described in Definition 8 is finite. We
refer to the symbolic semantics of IP as the probabilistic
zone graph of IP .

Remark that the probabilistic zone graph is defined for
IPTAs in the form of an IMDP; a PTA can be understood
as an IPTA, and its associated zone graph becomes an MDP.

Example 6. The probabilistic zone graph of the PTA in
Figure 1a is the MDP given in Figure 2a. The symbolic
states si = (li, Ci) are expanded in Table I.

C. Reconstructing a PTA from a Probabilistic Zone Graph

It is well-known that, given a timed automata A and its
zone graph, a second timed automaton A′ can be recon-
structed from the zone graph, with the same structure as the
zone graph, and such that the zone graph of A′ is the same
as that of A. We extend this technique here to PTAs.

Let P be a PTA and let M be its probabilistic zone
graph. Let us build a second PTA P ′. Each state of M
is translated into a location of P ′. Then, for each transition
(s, e,Υ′) ∈ T in M, where e = (l, g, a,Υ), we create a
transition (l, g, a,Υ), where Υ is defined exactly as in P ,
except that the target location matches the target state inM
(a single location in P can yield different states in M).
Following results for timed automata, the probabilistic zone
graph of P ′ is M.

Example 7. The PTA reconstructed from the probabilistic
zone graph in Figure 2a is given in Figure 3. Its probabilistic
zone graph is again that of Figure 2a.

D. An Algorithm for the Consistency of IPTAs

We start with the following observation: by construction,
the purpose of the symbolic semantics of IPTAs is to
represent, at a lower level of abstraction, the same set of
objects. Intuitively, the symbolic IMDP semantics of a given
IPTA should therefore be consistent iff the original IPTA
is itself consistent. This result is formally proven in the
following theorem.

Theorem 1. An IPTA IP is consistent iff its probabilistic
zone graph is consistent.

Proof:
⇒ Assume IP is consistent, and let us show that its

probabilistic zone graph is consistent. From the defi-
nition of consistency, there exists a PTA P such that
P |= IP . Let IM (resp. M) be the probabilistic
zone graph of IP (resp. P). From Definition 5, P
simulates in part the transition relation of IP while
matching its probability intervals. As a consequence,
M will also simulate in part the transition relation of
IM while matching its probability intervals. Hence,
from Definition 7, we have M |= IM.

⇐ Assume the probabilistic zone graph of IP is con-
sistent, and let us show that IP is consistent. Let
IM be the probabilistic zone graph of IP . Since
IM is consistent, from Lemma 1, there exists an
implementation of IM with the same structure. Let
M be that implementation of same structure. Let P
be the PTA reconstructed from the probabilistic zone
graph M, following the construction in Section III-C.
Observe that, since M and IM have the same struc-
ture, the probabilistic zone graphs of P and IP are
equal (except for the value of the probabilities). Now,
since M |= IM, then we also have P |= IP .

Given the results presented in Lemma 1 and Theorem 1,
deciding whether a given IPTA IP is consistent can be done
by deciding whether its probabilistic zone graph admits at
least one implementation that preserves its structure.

Such an algorithm was provided in [Del15] in the context
of IMCs instead of IMDPs. We show how this algorithm
can be adapted to our context. As for IMCs, we say that
a state is locally inconsistent in a given IMDP iff one of
its outgoing probabilistic (interval) transitions cannot be
implemented, i. e., if there is no distribution that matches
the specified intervals. Let IM = (S, s0,Σ, T ) be the IMDP
symbolic semantics of a given IPTA. The algorithm proceeds
as follows:

Algorithm 1: Consistency of IMDPs

1 Let Inc be the set of locally inconsistent states in IM
and Passed = ∅.

2 while s0 /∈ Passed and Inc 6= ∅ do
3 Let s ∈ Inc and Passed = Passed ∪ {s}.
4 Replace all transitions (s′, a, I) such that

I(s) 6= [0, 0] with (s′, a, I ′) where
• I ′(s′′) = I(s′′) for all s′′ 6= s,
• I ′(s) = [0, 0] if 0 ∈ I(s), and
• I ′(s) = ∅ otherwise.

Update Inc ⊆ (S \ Passed).

The algorithm is based on the following principle: as soon
as a locally inconsistent state is detected, it is either made
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Figure 3: A PTA reconstructed from the probabilistic zone graph in Figure 2a

unreachable by forcing incoming interval probabilities to
[0, 0] whenever this is possible (which might create new
local inconsistencies in predecessor states) or by enforcing
predecessor states to be inconsistent by modifying the inter-
val probabilities to ∅ when 0 is not an admissible transition
probability.

In the context of IMCs, it is proven in [Del15] that this
algorithm converges and that the original IMC is consistent
iff the initial state is not locally inconsistent in the resulting
IMC. The proof from [Del15] can be trivially adapted to the
context of IMDPs.

IV. CONSISTENCY-EMPTINESS AND SYNTHESIS FOR
PIPTAS

We now move to the parametric setting and consider the
following two problems:

Consistency-emptiness problem: Given a PIPTA PIP ,
does there exist a parameter valuation v such that v(PIP)
is consistent?

Consistency-synthesis problem: Given a PIPTA PIP ,
find all parameter valuations v for which v(PIP) is con-
sistent.

In the following, we first address the consistency-
emptiness problem and show that this problem is undecid-
able in the general context of PIPTAs. We then propose a
semi-algorithm for the consistency-synthesis problem based
on an adaptation of the parametric zone-graph construction
for parametric timed automata and the decision algorithm
for IPTAs presented in Section III. This semi-algorithm
only terminates when the parametric probabilistic zone-
graph construction of the original PIPTA is finite. When this
is the case, the set of parameter values that are synthesized is
exactly those that ensure consistency of the resulting IPTA.

A. Undecidability of the Emptiness Problem

The undecidability of the consistency-emptiness for
PIPTAs follows from the undecidability of the reachability
emptiness for parametric timed automata.

Theorem 2. The consistency-emptiness for PIPTAs is unde-
cidable.

Proof: The reachability emptiness for parametric timed
automata (i. e., the existence of at least one parameter valua-
tion for which a given location is reachable) is undecidable.
This result comes with various “flavors” in the literature
(numbers of clocks or parameters, dense or discrete time,
strict or non-strict inequalities in guards, use or not of
invariants, etc. – see [And16] for a survey), but all use a
reduction from the halting problem of a 2-counter machine,
which is undecidable. All these reductions define a matching
between a state of the machine and a location of the
parametric timed automaton (PTA). Clearly, one can use any
of these encodings of a 2-counter machine to conclude that
the consistency-emptiness for PIPTAs is undecidable. Let us
reuse the proof of undecidability given in [BBLS15] for two
reasons. First, it is the best known proof over discrete time,
and one best proof over dense time, in terms of number
of clocks used in the reduction (three, all compared to
parameters). Second, it uses no invariant, which is inline
with our setting.

Let us reuse the PTA encoding a 2-counter machine
proposed in [BBLS15]. (The reader can refer to [BBLS15]
for details.) We modify that encoding as follows. In the PTA
location encoding the unique halting state of the 2-counter
machine, we add a transition to a new location for which
no implementation exists (for example a single transition la-
beled with [0.5, 0.5]). Hence the halting location is reachable
iff the underlying IPTA admits no implementation. Hence
the 2-counter machine halts iff there exists no parameter
valuation for which there exists an implementation.

The undecidability of the consistency-emptiness problem
rules out the possibility to, in general, compute a solution
to the consistency-synthesis problem. In the following, we
will still address this computation problem by proposing an
algorithm based on the parametric probabilistic zone graph;
if this latter graph is finite, then our algorithm is exact.

B. A Symbolic Semantics for PIPTAs

We equip PIPTAs with a symbolic semantics, defined
below. Basically, it is inline with the symbolic semantics
defined for parametric timed automata (see e. g., [ACEF09],
[JLR15]), with the addition of probabilistic intervals on the
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State Location C C↓Γ
s0 l0 x = y ∧ x ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s1 l1 0 ≤ x− y < 2 ∧ y ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s2 l2 0 ≤ y − x < 2 ∧ x ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s3 l3 2 ≤ x− y ≤ γ ∧ y ≥ 0 γ ≥ 2
s4 l4 x = y ∧ x ≥ 0 ∧ γ ≥ 2 γ ≥ 2
s5 l5 0 ≤ y − x ≤ 1 ∧ x ≥ 1 ∧ γ ≥ 0 γ ≥ 0
s6 l2 1 ≤ y − x ≤ 2 ∧ x ≥ 0 ∧ γ ≥ 0 γ ≥ 0
s7 l5 y ≥ 2 ∧ y = x+ 1 ∧ γ ≥ 0 γ ≥ 0
s8 l2 y ≥ 2 ∧ y = x+ 2 ∧ γ ≥ 0 γ ≥ 0

Table II: Description of the states in Figure 2b

edges; as a consequence, the semantics becomes not an LTS,
but an IMDP.

Definition 9 (Symbolic semantics of a PIPTA). Given a
PIPTA PIP = (Σ, L, l0, X,Γ, I), the symbolic semantics
of PIP is given by the IMDP (S, s0,Σ, T ), with
• S = {(l, C) ∈ L×Z}, s0 = (l0, (

∧
1≤i≤H xi = 0)↗),

• (s, a,Υ′) ∈ T if there exists (l, g, a,Υ) ∈ I such that
for all l′ ∈ L, for all ρ ⊆ X such that Υ(l′, ρ) > 0,
C ′ =

(
[C ∧ g]ρ

)↗
, and Υ′((l′, C ′)) = Υ(l′, ρ).

Observe that, whenever a PIPTA has no probabilistic
choice, then the IMDP becomes a labeled transition system,
and the symbolic semantics matches that of parametric timed
automata. We refer to the symbolic semantics of PIP as the
parametric probabilistic zone graph of PIP .

Just as in parametric timed automata, the number of
symbolic states in a PIPTA can be infinite in general.

In parametric timed automata, the reachability condi-
tion is the projection onto the parameters of a parametric
zone [JLR15]. It is well-known that, given a symbolic run
of a parametric timed automaton leading to a symbolic
state (l, C), there exists an equivalent concrete run iff
γ |= C↓Γ [HRSV02]. Since our definition of zones matches
that of [HRSV02], this results extends to PIPTAs in a
straightforward manner.

Lemma 2. Let PIP be a PIPTA. Consider a run in
the parametric probabilistic zone graph of PIP reaching
state (l, C). Let v be a parameter valuation. Then, there
exists an equivalent run in v(PIP) iff v |= C↓Γ.

By equivalent run, we mean (just as for parametric
timed automata) an identical discrete structure (locations and
edges).

Example 8. The parametric probabilistic zone graph of the
PIPTA in Figure 1b is the IMDP given in Figure 2b. The
symbolic states si = (li, Ci) are expanded in Table II. In
addition, we also give the reachability condition of each
state, i. e., the projection onto the parameters of the zone
(C↓Γ).

C. A Semi-Algorithm for Consistency-Synthesis for PIPTAs
Unlike for IPTAs / IMDPs where inconsistent states can

only be avoided by enforcing their incoming probabilities

to 0, there are two ways of avoiding inconsistent states
in PIPTAs. Indeed, while imposing a 0 probability to all
transitions going to inconsistent states is a safe choice,
it is also possible to avoid inconsistent states by cleverly
choosing parameter values such that the guards of transitions
potentially going to these states are never satisfied.

The algorithm we propose for synthesizing parameter
valuations ensuring consistency of a given PIPTA is based
on the following observation: Since parameters only occur
in transition guards, the choice of parameter values cannot
interfere with the choice of probability distributions match-
ing (or not) the specified intervals. That comes from the fact
that, given a state s, all successors of this state via a given
transition have the same parameter constraint (this would not
hold with invariants). As a consequence, states that can be
made unreachable through probabilistic choice can be made
so regardless of the choice of parameter values.

Algorithm 2 is therefore constituted of two main parts.
The first part (while loop – lines 5–14) is similar to
Algorithm 1 presented earlier. The main difference is that
the loop from Algorithm 2 does not entirely remove in-
consistent states. Instead of systematically making locally
inconsistent states unreachable whether this is allowed or
not according to the specified intervals, this version marks
inconsistent states (with marking function λ) but only makes
them unreachable when this is allowed, i. e., when replacing
incoming transition probability intervals with [0, 0] does
not make predecessor states inconsistent. If this is not the
case, then the incoming transitions are left untouched but
the predecessor states are marked as inconsistent with λ.
If they can be made unreachable without creating new
inconsistencies, then they will be made so in a later pass.
Otherwise, locally inconsistent states will be “removed”
using parameter valuations in the second loop.

Once the first loop is processed, the only locally incon-
sistent states that remain are those that cannot be avoided
using probabilities.

The second part (lines 18–22) consists in removing pa-
rameter valuations that allow reaching locally inconsistent
states in the resulting IMDP. In fact, instead of removing the
inconsistent states, we remove their successors responsible
for making a state inconsistent (lines 19–21). Also note
that, due to the absence of invariants, all successors of a
state through a given probability distribution have the same
parameter constraint; it is hence sufficient to pick any of
them. Recall from Lemma 2 that the parametric zone C↓Γ
attached to a given symbolic state s = (l, C) in the IMDP
semantics of a given PIPTA PIP exactly represents the
parameter valuations for which the state s is reachable in the
resulting semantics. As a consequence, s will be reachable
in the IMDP semantics of the IPTA resulting from a given
parameter valuation iff this parameter valuation is in C↓Γ.
Remark that the order in which locally inconsistent states are
processed is not important. In fact, they can be all processed
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at once by removing all associated parameter zones.

Algorithm 2: Consistency of PIPTAs
Input: IMDP IM (semantics of a PIPTA PIP)
Output: Constraint K guaranteeing consistency

1 Let Inc be the set of locally inconsistent states in IM
and Passed = ∅.

2 λ((l, C)) =∞ for all (l, C) ∈ S \ Inc.
3 λ((l, C)) = 0 for all (l, C) ∈ Inc.
4 n = 0
5 while Inc 6= ∅ do
6 Pick (l, C) ∈ Inc s.t. λ((l, C)) 6=∞ is minimal
7 Passed = Passed ∪ {(l, C)}.
8 Inc = Inc \ {(l, C)}
9 for all transitions (s, a, I) such that s /∈ Passed

and I((l, C)) 6= [0, 0] do
10 if 0 ∈ I((l, C)) and I[(l, C)|[0,0]] is consistent

then
11 I((l, C))← [0, 0]
12 else
13 λ(s) = min(λ(s), λ((l, C)) + 1)
14 Inc← Inc ∪ {s}

15 if λ(s0) =∞ then
16 return >
17 Remove all unreachable states from IM
18 K ← >
19 for all locally inconsistent transitions (s, a, I) do
20 Pick a state (l, C) such that I((l, C)) 6= [0, 0]
21 K ← K \ C↓Γ
22 Remove in IM and Inc all states (l′, C ′) such that

C ′↓Γ ∩K = ⊥ (as well as transitions from and to
these states)

23 if s0 has been removed then
24 return ⊥
25 else
26 return K

Proposition 1 (Termination). Let PIP be a PIPTA, and
let IM be its parametric probabilistic zone graph. Assume
IM is finite. Then the application of Algorithm 2 to IM
terminates.

Proof: The first loop iterates on inconsistent states; at
each iteration, one state is removed from Inc, and one or
more states are added to Inc. In addition, exactly one state
is added to Passed; since a state in Passed can never be
added again to Inc, the first loop terminates.

The second loop iterates exactly once on each locally
inconsistent transition, of which there is a finite number.

Proposition 2 (Correctness). Let PIP be a PIPTA, and

let IM be its parametric probabilistic zone graph. Assume
IM is finite. Let K be the result of the application of
Algorithm 2 to IM. Let v |= K.

Then v(PIP) is consistent.

Proof (sketch): From Lemma 2 and the fact that any
inconsistent state has been removed, and therefore valuations
leading to inconsistent states are absent from K.

Proposition 3 (Completeness). Let PIP be a PIPTA, and
let IM be its parametric probabilistic zone graph. Assume
IM is finite. Let v be such that v(PIP) is consistent. Let
K be the result of the application of Algorithm 2 to IM.

Then v |= K.

Proof (sketch): From Lemma 2 and the fact that only
parameter valuations leading to inconsistent states (and for
which no implementation of interval distribution can be set)
are removed.

Remark 1. Algorithm 2 is an algorithm: it always termi-
nates, and its result is sound and complete. However, it
takes as input the parametric probabilistic zone graph of
the PIPTA, the computation of which may not terminate in
general. Hence, our entire procedure (computation of the
parametric probabilistic zone graph, and then application
of Algorithm 2) can be seen as a semi-algorithm: it may not
terminate but, if it terminates, then its result is correct.

Example 9. Let us apply Algorithm 2 to the PIPTA PIP
given in Figure 1b. Recall that the parametric probabilistic
zone graph of PIP is given in Figure 2b, with the descrip-
tion of the states given in Table II. Initially, Inc = {s1} and
λ(s1) = 0 (and ∞ for other states). In the first while loop,
setting to 0 the probability on the transition from s0 to s1

fails, because this does not satisfy the test “I[(l, C)|[0,0]] is
consistent” (line 10); indeed, the second probability leaving
s0 via action e1 can only be at most 0.5. Hence, s0 becomes
marked, and λ(s0) = 1.

Then, since the initial state is marked, we cannot conclude
yet, and we enter the second phase. We have a single locally
inconsistent transition, i. e., the one originating from s1.
We pick arbitrarily s3 (picking s4 is identical), project its
constraint onto Γ, which yields γ ≥ 2 according to Table II,
and perform the difference between K and γ ≥ 2. This yields
K : γ < 2. We then remove states for which the parameter
constraint is disjoint from K, i. e., s3, s4. Since s0 was not
removed, we return K : γ < 2. Hence, for any parameter
valuation v such that γ < 2, v(PIP) is consistent.

V. CONCLUSION

In this work, we provided abstractions to reason on
systems involving real-time constraints and probabilities:
first, by allowing probabilities to range in some intervals,
and, second, by allowing timing constants to be abstracted
in the form of parameters. Without parameters, we proposed
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an approach to decide whether an interval probabilistic timed
automaton is consistent, i. e., admits an implementation
based on a simulation relation. When adding parameters, the
mere existence of a parameter valuation yielding consistency
is undecidable. We proposed however a semi-algorithm to
synthesize valuations ensuring consistency.

Future works include the exhibition of subclasses of
PIPTAs for which exact synthesis can be achieved. In
addition, we are interested in considering higher-level ab-
stractions of probabilities, e. g., in the form of parameters
instead of intervals with constant bounds.
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