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Abstract—Cyber-physical systems involve both discrete actions
and real-time that elapses depending on timing constants. In this
paper, we introduce a formalism for such systems containing both
real-time parameters in linear timing constraints and switchable
(Boolean) actions. We define a new approach for synthesizing
combinations of parameter valuations and allowed actions, under
which the system correctness is ensured when expressed in the
form of a safety property. We apply our approach to a railway
crossing system example with a malicious intruder potentially
threatening the system safety.

Keywords—Time synthesis, action synthesis, parametric timed
automata, parametric safety

I. INTRODUCTION

Model checking consists in formally verifying whether a
model of a system satisfies a property expressed using a for-
mula. Beyond model checking, parameter synthesis consists in
synthesizing valuations for some parameters so that the system
satisfies the formula. Several recent works tackle parameter
synthesis problems as they provide flexibility in the design
of real-time systems while still guaranteeing their expected
properties.

Among parametric synthesis approaches, two are of partic-
ular interest here as they consider different and complementary
kinds of parameters: time (e.g. [AHV93]) and actions (e.g.
[KMP15]). Operating on an extension of timed automata
(finite state automata extended with clocks) where clocks can
be compared to parameters, and properties of the system,
synthesis of timing parameters provides a set of constraints
the timing parameters should satisfy for the property to hold.
On the other hand, starting from an (untimed) automaton and
a property, action synthesis examines all possible behaviours
in order to deduce which sets of actions should be enabled or
disabled for the property to hold.

It is thus quite obvious that these two approaches are
complementary as they consider very separate aspects of a
system. Therefore, combining them is appealing. Furthermore,
such a combination is worthy within a practical design pro-
cess. Indeed, the designer of a system may be faced with
multiple design choices, controlling some actions, or selecting
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components with specific time characteristics. Our aim by
combining action and time synthesis is to provide designers
with tools supporting their decision making. For example
components with different timings might have different prices
while controlling some actions is not always easy to set.
Providing constraints on both time and actions allows to
improve the choices according to criteria like components cost
or feasibility.

Contribution: In this paper, we introduce a framework
to synthesize both actions (seen as parameters) and timing
constants (seen as another kind of parameters) for safety
properties. We propose a procedure that, given a set of discrete
states (“locations”) to avoid, synthesizes a constraint on action
and timing parameters such that, for any timing parameter
valuation satisfying this constraint, and for any set of actions
enabled or disabled according to the constraint, the system is
safe, i.e. the discrete states to avoid are not reachable. We
choose as a basis formalism of an extension of parametric
timed automata (PTA), where actions can be (statically) con-
trolled, i.e. may be enabled or disabled (once for all). Our
procedure is a semi-algorithm, i.e. it is not guaranteed to
terminate, but the result is correct whenever it does. We apply
our approach to a railway crossing system example with a
malicious intruder potentially threatening the system safety.
We show that, depending on timing constants chosen, some
actions (e.g. the fact that the intruder can commit certain
actions) may have to be disabled in order to guarantee the
system safety.

Related works: Synthesis of timing parameters for
PTA has recently drawn a lot of attention: procedures (al-
gorithms or semi-algorithms) were proposed to synthesize
all parameters leading to some location [AHV93], preserve
the time language [ACEF09], synthesize integer-valued pa-
rameters using bounded model checking techniques [KP12],
or synthesize bounded valuations satisfying reachability or
unavoidability [JLR15], [ALRI15].

In addition to the action parameter synthesis proposed
in [KMP15], synthesis of discrete parameters is often under-
stood in terms of number of processes; the goal is to prove that
a system is correct for any number of processes (possibly be-
yond a threshold). Common techniques include regular model
checking (see e.g. [Abd12]) and verification of many identical
processes (see e.g. [DSZ10]). Action synthesis is also concep-
tually related to the problem of (discrete) controller synthesis,
such as in the Ramadge-Wonham framework [RW87].
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However, little has been done to combine different types
of parameters, typically discrete (actions) and continuous
(timing) together. A notable exception is [DKRT97] where
constraints are derived to ensure the correctness of the bounded
retransmission protocol (BRP); one of them involves a discrete
parameter (an integer-valued maximum number of retransmis-
sions) multiplied by a continuous timing parameter. However,
the procedure proposed seems to be specific to this case study.

Outline of the paper: First, Section II recalls the
notions and techniques our approach bases on, i.e. Parametric
Timed Automata, time parameter synthesis and action synthe-
sis. Then, Section III shows how they can be combined for
synthesis of both time and actions. This approach is put into
practice on a detailed example in Section IV, using tool support
that provides adequate results for an engineer to tune his/her
system design. Finally, Section V summarises the contributions
and opens some perspectives.

II. BACKGROUND

In this section, we recall the notions and techniques neces-
sary to build our synthesis approach. First, the basic definitions
of Parametric Timed Automata which base on the use of
clocks and parameters are recalled. PTA are extended to APTA
(Action-controllable Parametric Timed Automata) that consti-
tute a unified framework for time and action synthesis. The
synthesis of time parameters leads to expressing constraints
on their values in order to guarantee that the model satisfies
the expected properties. Then, synthesis of actions is presented
that allows for pruning the paths that invalidate properties by
disabling controllable actions.

A. Clocks, Parameters, Actions, and Constraints

Let B, N, Z, Q4, and R, denote the sets of Booleans,
non-negative integers, integers, non-negative rational numbers,
non-negative real numbers, respectively.

Throughout this paper, we assume a set X = {z1,..., 25}
of clocks, i.e. real-valued variables that evolve at the same rate.
A clock valuation is a function w : X — R,. We identify
a clock valuation w with the point (w(x1),...,w(zg)). We
write X = 0 for A\j,cg2; = 0. Given d € Ry, w+d
denotes the valuation such that (w + d)(z) = w(z) + d, for
all x € X. We also use a special zero-clock x, always equal
to 0 (as in, e.g. [HRSVO02]).

Let P = {p1,...,pnm} be a set of timing parameters, i.e.
unknown timing constants. A timing parameter valuation v is
a function v : P — Q4. We identify a valuation v with the

point (v(p1),...,v(prm))-

Let ActVars be a set of action variables. An action valu-
ation is a function £ : ActVars — B. Given £ and an action
variable «, we say that « is enabled in & if £(«) = true, and
disabled otherwise. The set of all action valuations is denoted
by ActVals. With a slight notational abuse we sometimes treat
& as the set of the actions enabled by this valuation.

In the following, let zplt denote a linear term over X U P
of the form ZlgigH Vi +Zl<]§M Bjp; +d, with z; € X,
pi € P, and v;, B;,d € Z. Let plt denote a parametric linear
term over P, that is a linear term without clocks (y; = 0 for
all 7).

An AXT-constraint (or constraint on the action parameters,
clock parameters, and timing parameters) over ActVarsUX U P
is defined by the following grammar:

¢:=9¢N¢|=¢|alzplt~0,

where ~ € {<,<,>,>}, a € ActVars. Disjunction (V) is
defined as usual; observe that, due to the negation, we allow
for non-convex constraints. An axt-valuation is a function at :
ActVarsUX UP — BUR, UQ4 such that at(«) € B for all
a € ActVars, at(xz) € Ry for all z € X, and at(p) € Q4 for
all p € P.

A zone C'is a convex AXT-constraint over X U P (hence
without action variables) such that each of its linear conjuncts
can be written in the form x; — z; ~ plt, where z;,z; €
X U{xo}. A guard g is a zone such that each of its linear
conjuncts can be written in the form x; ~ plt.

Given a timing parameter valuation v and a clock valuation
w, we denote by w|v the valuation over X U P such that for
all clocks z, w|v(z) = w(x) and for all timing parameters p,
wlv(p) = v(p). Given a zone C, we use the notation w|v = C
to indicate that valuating each clock variable = with w(z) and
each timing parameter p with v(p) within C, evaluates to true.
We say that C' is satisfiable if Jw, v s.t. wjv |= C. We define
the time elapsing of C, denoted by C”, as the constraint over
X U P obtained from C' by delaying all clocks by an arbitrary
amount of time; this can be obtained by adding a new variable
to all clocks, ensuring that this variable is non-negative, and
eliminating it (see, e.g. [ACEF09]). Given R C X, we define
the reset of C, denoted by [C]g, as the constraint obtained
from C' by resetting the clocks in R, and keeping the other
clocks unchanged. We denote by C|p the projection of C
onto P, i.e. obtained by eliminating the clock variables (e.g.
using Fourier-Motzkin elimination).

A P-constraint K is an AXT-constraint over P defined
by inequalities of the form plt ~ 0. We denote by T p (resp.
1 p) the parametric constraint that corresponds to the set of all
possible (resp. the empty set of) timing parameter valuations.

An A-constraint is an AXT-constraint that contains actions
only. An a-valuation is defined naturally from actions to B. We
denote by T 4 the A-constraint /\ae Actvars @ = true, and by
1 4 the A-constraint /\ae Acvars @ = false. Let att denote
the a-valuation assigning true to all variables.

An AT-constraint is an AXT-constraint without clock, i.e.
with zplt instead of plt in the grammar. An at-valuation is
defined similarly to axt-valuation, but without clocks. Given an
AT-constraint AT and an at-valuation at, we write at = AT
if the expression obtained by replacing in AT any parameter
and action variable by its valuation as in at evaluates to true.
We denote by T 47 the at-constraint corresponding to the set
of at-valuations {at | Vo € ActVars : at(a) = true} (i.e. the
set of valuations for which all timing parameter valuations are
possible, and all action variables evaluate to true); we denote
by L 47 the at-constraint Lp A A cscvus @ = false, ie. the
constraint satisfied by no timing parameter valuation and only
by the false action variables.

B. Action-Controllable Parametric Timed Automata

Parametric timed automata (PTA) extend timed automata
with parameters within guards and invariants in place of inte-
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Figure 1: A parametric timed automaton

ger constants [AHV93]. We extend this concept by allowing
controllable actions.

Definition 1. An Action-controllable PTA (APTA) is a tuple
APTA = (X, ActVars, L,ly, X, P,1,E), where: i) X is a
finite set of non-controllable actions, ii) ActVars is a finite set
of action variables (that can be controlled), iii) L is a finite
set of locations, iv) lg € L is the initial location, v) X is a set
of clocks, vi) P is a set of parameters, vii) I is the invariant
Sunction, assigning to every | € L an invariant 1(1), viii) E
is a set of edges e = (l,g,a,R,l') where 1,I' € L are the
source and target locations, g is a guard, a € X U ActVars,
and R C X is a set of clocks to be reset.

A PTA is an APTA without action variables.

a) Valuation of an APTA: Given an APTA APTA =
(X, ActVars, L, 1y, X, P, I, E) and an a-valuation &, we denote
by £(APTA) the PTA PTA = (X', L,ly, X, P,1,E’), where
Y = XU {«a € ActVars | £(a) = true}! and E' = E\
{(l,g,a, R,I') € E | « € ActVars N (o) = false}.

Example: Figure 1 presents a simple PTA modelling
a train circulating on a railway with a gate. This model
will be enhanced in the case study of Section IV. It uses 3
parameters (p_far, p_approaching and p_very_near) and 1
clock (x_train). Initially, the train is far from the gate and
remains far for as long as p_far. Then it triggers sensor_far
and starts approaching the gate, resetting the clock. The
approach lasts p_approaching but when only p_very_near
time units remain, sensor_close is triggered. Finally, the train
can pass the gate and be gone.

b) Valuation of a PTA: Given a PTA PTA and a
timing parameter valuation v, we denote by v(PTA) the timed
automaton (TA) obtained from P7T.A by replacing in P7T.A each
timing parameter p with its valuation v(p).

Given an at-valuation at, let v be the projection of
at onto P, and ¢ its projection onto ActVars. Then

IStrictly speaking, action variables and actions are of different types; we
assume that each action variable valuated with true is added to the set of
actions.

given an APTA APTA, we denote by at(APTA) the TA
v(E(APTA)).

c) Concrete semantics of a TA:

Definition 2 (Semantics of a TA). Given a PTA PTA =
(%,L,1l0, X, P, I, E), and a timing parameter valuation v, the
concrete semantics of v(PTA) is given by the timed transition
system (Q, qo, —), with

e Q={(w) e LxRY [wlv = I(1)} . g0 = (lo, X = 0)
e — consists of the discrete and continuous transition

relations:

o discrete transitions: (I, w) 5 ", if
(l,w),(I',w") € Q, there exists e = (I, g,a,R,l') € E,
w' = [w]g, and wlv = g.

o delay transitions: (I, w) & (l,w+d), with d € Ry, if
vd'  [0,d], (lw + ) € Q.

Moreover we write (I,w) += (I',w’) for a sequence of
discrete step and time elapsing where ((I,w),e, (I, w’)) € —

if 3d,w” : (1Lw) S 1 w") S 1, w).

Given a TA ov(PTA) with the concrete semantics
(Q, g0, —), we refer to the states of ) as the concrete states
of v(PTA). A concrete run of v(PTA) is an alternating
sequence of concrete states of v(PTA) and edges starting
from the initial concrete state gy of the form qq 3 ¢ =
i Gm, such that for all i =0,...,m — 1, ¢; € E, and
(8iy€i,8i41) € —. Given a state ¢ = (I, w), we say that ¢ is
reachable (or that v(PTA) reaches ¢) if ¢ belongs to a run of
v(PTA). By extension, we say that [ is reachable in v(PTA).

d) Symbolic semantics of a PTA: Let us now recall the
symbolic semantics of PTA. A symbolic state is a pair (I, C)
where [ € L is a location, and C its associated parametric
zone. The initial symbolic state of PTA is sg = (lp, (X =
0)7" A I(lo))-

The symbolic semantics exploits the Succ operation. Given
a symbolic state s = (I,C) and an edge e = (I, g,a, R,l'),
Succ(s,e) = (I',C"), with C" = ([(C’ A g)]R)/ N I(l"). That
is, we first intersect the constraint of the source symbolic state
with the outgoing guard, then reset the clocks of the transition,
then let time elapse, and finally intersect with the invariant of
the target location.

A symbolic run of a PTA is an alternating sequence of
symbolic states and edges starting from the initial symbolic
state, of the form sg SO O st Sm, such that for all
t=0,....,m—1, e; € E, and s;4; belongs to Succ(s;,e).
Given a symbolic state s, we say that s is reachable if s belongs
to a run of PTA. In the following, we simply refer to symbolic
states belonging to a run of P7A as symbolic states (or, when
clear from the context, just as states) of PTA.

Given a concrete (respectively symbolic) run (lg, X =
0) &3 (I, wy) S - rst (I, wy,) (respectively (Io, Cop) <2
(l1,Ch) a4 . st (Im, Cm)), its corresponding discrete
sequence is [ 2L 32 .. gt l;n- Two runs (concrete

or symbolic) are said to be equivalent if their corresponding
discrete sequences are equal.



C. Mixed Transition Systems

Mixed Transition Systems [PR0O6] (MTS) are essentially
Kripke structures with transitions labelled by actions.

Definition 3 (MTS). Let PV be a set of propositional vari-
ables. A mixed transition system (MTS) is a 5-tuple M =
(S,s°,%,T,V,), where: i) S is a non-empty finite set of
states, ii) Y € S is the initial state, iii) ¥ is a non-empty
finite set of actions, iv) T C S XX X S is a transition relation,
V) Vs 0 S — 2PV is a (state) valuation function.

We write s = s if (s,a,8') € T.Let x C ¥ be a
nonempty set of actions and = = (so,ap,s1,a1,...) be a
finite or infinite sequence of interleaved states and actions. By
|| we denote the number of the states of 7 if 7 is finite,
and w if 7 is infinite. A sequence 7 is a path over x iff
s; 2 si41, a; € x for each i < |7|, and either 7 is infinite
or its final state does not have a x-successor state in S, i.e.
m = (S0, a0, 81,01, -..,Sn) for some m € N and there is no
s € S and a € x such that s,, — 5. In general, for all
i € N, we denote by m; the state of 7 at rank ¢ (m; = s; in
the sequence above).

The set of all paths over x in a mixed transition system
M is denoted by TI(M, x), whereas the set of all paths 7 €
II(M, x) starting from a given state s € S is denoted by
II(M, x, s). We omit the symbol M if it is clear from the
context, simply writing II(x) and II(y, s).

D. Parametric Reachability

In [KMP15] a parametric extension of Action-Restricted
Computation Tree Logic [PR06], ARCTL, is presented. The
language of ARCTL consists of CTL-like branching-time
formulae where each path quantifier is subscripted with a set of
actions. The subscripts are used in path selection, for example:
Eiefi,righty G (E{forwaray F'safe) may be read as “there exists a
path over left and right, on which it holds globally that a state
satisfying safe is reachable along some path over forward”. In
Parametric ARCTL (denoted by pmARCTL), special variables
ranging over sets of actions are allowed in the superscripts. In
this paper we deal only with the parametric reachability, i.e.
with the formulae of type Ez F'pv, where pv € PV. As we do
not permit for nesting of modalities, the superscript is usually
omitted and we simply write EF'pv.

We interpret the formulae with respect to action valuations.
Formally, given a MTS M = (S,s°, %, T,V,), and pv € PV,
we say that EF'pv holds in s € S under an a-valuation £ €
ActVals iff there exists a path m € II({, s) such that pv €
Vs(m;) for some ¢ € N. This is denoted by M, s =¢ EF pv.

E. Action Synthesis

Action synthesis for ¢ € pmARCTL builds an indicator
function f,: & — 24¢Vals guch that for all s € S we
have: s |=¢ @ iff & € f,(s). Intuitively, f,(s) consists of
all action valuations under which ¢ holds in state s. As
shown in [KMPI15], similarly to CTL, pmARCTL has a
fixed-point characterisation, which allows for building efficient
procedures for action synthesis, based on Binary Decision
Diagrams (BDDs). Such a framework for action synthesis
was implemented in the standalone tool SPATULA [Kna].

In what follows, given an MTS M and pv € PV, by
synthpmARCTL(M, EFpv) we denote the result of the pro-
cedure synthesising all minimal sets of actions under which
EFpv holds in the initial state of M (e.g. using SPATULA).
Formally: synthpmARCTL(M, EFpv) is the smallest subset
of 2% such that: (1) ¢ € synthpmARCTL(M, EFpv) implies
M,s® ¢ EFpo, and (2) if M,s® ¢ EFpv, then there
exists & € synthpmARCTL(M, EFpv) satisfying £ C ¢’

III. THE MIXED SYNTHESIS PROBLEM: COMBINING
TIMING AND ACTION SYNTHESIS
A. Objective

Our main goal is to synthesize parameters seen as both
timing constants (a la [AHV93]) and switchable actions that
can be enabled or disabled once for all (a la [KMP15]).

Action and time synthesis problem:

INPUT: an APTA APTA and a set of locations Lpqq
PROBLEM: Synthesise an AT-constraint A7 such that,
for all at = AT, no location in Ly,q is reachable in

at(APTA).

As this is a safety problem, it is bad-state driven. Hence, in
the following, we refer to locations of Ly,q as bad locations,
and to the states the location of which belongs to Ly,q as bad
states.

B. General Approach

We follow an approach where we first handle a parametric
timed model in which we assume all actions to be enabled;
then, from the state space of this model, we synthesise actions
together with timing parameter constraints. Enabling all actions
in the first phase allows for synthesising all timing parameter
constraints for all possible actions, and then combining these
constraints with action parameters in the second phase.

The steps of this approach are as follows:

1) Model the system using an APTA.

2) Considering the PTA with all actions enabled, generate
a sufficient subpart of the state space reaching bad loca-
tions.

3) Using this state space seen as an MTS, synthesize actions
ensuring unreachability of the bad states.

4) Process the result to get a linear constraint both on timing
parameters and actions.

Each of these steps is detailed in the following subsections.

C. A Labelled Parametric State Space

Starting from an APTA model APTA, we first enable all
actions, so as to get the PTA atT(APTA). We then generate
an MTS augmented with parameter constraints. Each state of
this MTS corresponds to a symbolic state of the PTA; each
transition of this MTS corresponds to a transition of the state
space with the action label. We do not generate the entire state
space, but locally stop the exploration whenever a bad state is
reached (while still exploring other branches).

Algorithm 1 presents our semi-algorithm genMTS to gen-
erate the MTS from the PTA atT(APTA). It takes as argu-
ments a PTA and the set L;,q of bad locations, and builds



Algorithm 1: genMTS(PTA, Ly.q)

input : PTA PTA with initial state sg
input : Set of locations Ly.q
output: MTS M

1 S — Qa Squeue — {SO};
2 while S e # 0 do

3 Pick a state s = (I, C) from Sgyeye
/* If s is bad state x/
4 if [ € Ly,q then
/+ Label this state as bad */
s V,(s) « {bad}
6 else
/+ Compute successors */
7 foreach state s' € Succ(s) such that s = s' do
/* Enqueue unless met earlier */
8 if s’ ¢ Syueue U S then
9 L Squeue <~ Squeue U {5/}
/+ Add transition to MTS */
10 T+ TU{(s,a,s)}

) return M = (S, {s0}, 5,7, Vs)

-

(a part of) the symbolic semantics of the PTA. Algorithm
genMTS maintains two local variables: the set S of processed
states, and the set Sgycqye Of states to be processed. Observe
that if Sgueue is implemented using a queue, then genMTS
can be seen as a breadth-first search algorithm. Additionally,
T denotes the list of transitions of the resulting MTS (initially
empty) and V its labelling function (initially assigning to each
state no label).

While the set of states to be processed is not empty (line 2),
genMTS selects an unprocessed state s (line 3). If this state
is a bad state (line 4), it is labelled as such (line 5); we use
notation Vs (s) < {bad} to denote that function V; is updated
so that bad is the (unique) label of state s. If this state is a
bad state, its successors are not computed, i.e. the algorithm
stops exploring this branch. Otherwise, the successors of s are
computed (line 7) and, for each of them, they are added to
the set of states to be processed (line 9), unless they were met
earlier. Finally, the corresponding transitions are added to the
MTS (line 10).

Eventually genMTS returns a MTS made of the set S of
states, the initial state sg, all actions of the PTA, the transitions
of the state space, and the function V, that labels the bad states.

Example 1. Consider the PTA PTA in Figure 2a. Assume
Lyaqg = {la,15}. The MTS generated by genMTS(PTA, Lpaq)
is given in Figure 2b; note that, for better understanding, for
a state (I,C'), we give the location 1 in the upper part, and
the constraint projected onto P (i.e. C'|p) in the lower part;
moreover, we add the label (bad) to the upper part after the
location name. Observe that locations beyond a bad location
in Figure 2a (e.g. l7) are not part of the MTS, as genMTS
does not explore states beyond bad states.

D. Synthesising Action and Timing Parameters

Let us now synthesise the actions and timing parameters
ensuring the (un)reachability of the bad states. Let us consider

the pmARCTL formula EF'bad, i.e. the formula stating that
there exists a path eventually reaching a bad state. From the pa-
rameter valuations reaching the bad state, we can easily retrieve
the complement set for which the bad state is unreachable.
Applying directly action synthesis techniques of [KMP15] to
the MTS obtained from Algorithm genMTS would not be
satisfactory: this would yield the minimal sets of actions for
which bad states are reachable, independently of the timing
parameter valuations.

Here, we aim at synthesising an at-constraint on the timing
parameters and action parameters guaranteeing the unreacha-
bility of L;,q. More precisely, for each occurrence of a bad
state on a given path, at least one of the actions in each minimal
set of actions leading to this state should be disabled, or the
timing parameter constraint allowing this reachability should
be negated. Let us explain this part in more details in the
following.

Algorithm 2: synthActTime(M)

input : MTS M = (S,s%, %, T, V,)
output: AT-constraint guaranteeing unreachability

of Lpaq

1 AT + Lap; i+ 1
2 foreach s = (I,C) € S such that bad € V(s) do

/* Generate a dedicated label for s */
3 Vs(s) «+ {bad;}
4 ActsSets + synthpmARCTL(M, EFbad,}
5 AT < ATV (O‘LP A \/ActseActsSets (/\aeActs Oé))
6 141+ 1

7 return —AT

Algorithm 2 presents our procedure to synthesize an AT-
constraint guaranteeing the non-reachability of L. The
algorithm synthActTime(M) maintains two variables: the
AT-constraint (initially false), and an integer ¢ (just used to
generate unique labels). Note that the AT-constraint in fact
ensures the reachability of at least one of the bad states; it
eventually is negated to ensure non-reachability. For each bad
state of the MTS (i.e. labelled with bad), we generate a unique
label for this state (line 3). Then, we synthesize the set of
minimal sets of actions for this unique label to be reachable,
i.e. such that this state s is reachable. We then refine the AT-
constraint as follows: the constraint is augmented (in the sense
of the disjunction) with a constraint ensuring the reachability of
the current state s, i.e. the timing parameter constraint allowing
the reachability of this state, together with at least one of the
minimal sets of actions allowing its reachability (line 5). The
negation of the AT-constraint is eventually returned (line 7).

2. Consider again the APTA APTA in
Figure 2a, and assume all actions are controllable,
ie. ActVars = {a,b,c,d}. The MTS M generated by
genMTS(atT(APTA), Lyaq) is given in Figure 2b. Let us
apply synthActTime to M. Initially, AT is L op. Let us
consider as the first bad state the unique state whose location
is ly in Figure 2b. synthActTime adds to that state a label
bad;. Then, the result of synthpmARCTL(M, EFbad;)
is {a,b}. Hence, synthActTime adds to AT the following
at-constraint: 3 < p < 4 AN a Ab. Let us consider the

Example
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Figure 2: A PTA and its MTS

second bad state, i.e. the unique state whose location is 5.
synthActTime adds to that state a label bads. Then, the
result of synthpmARCTL(M, EFbad,) is {a,c}. Hence,
synthActTime adds to AT the following at-constraint:
p =2 AaA c. Eventually, synthActTime returns the negation
of AT, ie.:

(p<3Vp>4V-aV-b)A(p#2V-aV-c).

Sufficient conditions to ensure the satisfaction of this constraint
are for example p = 1, or a is disabled, or p = 2 and c is
disabled.

Let us now examine a variant of this example where action
c is not controllable. The final result obtained is:

(p<3Vp>4V-aV-b)A(p#2V-a)

In this case, p = 1, or a is disabled are still sufficient
conditions, while p = 2 is not.

E. Soundness and Completeness
We now prove that our approach is sound and complete.

Theorem 1 (soundness). Let APTA be an APTA,
and Lyp,q be the set of locations to avoid. Assume
genMTS(atT(APTA), Ly,q) terminates with result M. Let
Res = synthActTime(M). Then, for all at |= Res, locations
Lyqq are unreachable in at(APTA).

Proof: We first need to recall two lemmas relating sym-
bolic and concrete runs (proved in, e.g. [HRSV02], [ACEF09]).

Lemma 1. Let PTA be a PTA, and v be a timing parameter
valuation. Let p be a run of PTA reaching a symbolic state
(I,C). Then there exists an equivalent run in the TA v(PTA)
reaching a concrete state (I,w), for some w = C, iff v E

Clp.

Lemma 2. Let PTA be a PTA, and v be a timing parameter
valuation. Let p be a run of the TA v(PTA) reaching a
concrete state (l,w). Then there exists an equivalent run
in PTA reaching a symbolic state (1,C) such that v |= Clp.

Let Res = synthActTime(M). Let us reason by reductio
ad absurdum, and assume that a state s = (I, w) with [ € Lpgq
is reachable in at(APTA), for some concrete run. Let £ be
the projection of at on actions. Assume this state is the first
bad state along this run (if it is not, then consider the first
bad state instead of s). From Lemma 2, we have there exists

an equivalent symbolic run in the PTA £(APTA) reaching a
state (I,C) for some C' such that v = C'lp. Since genMTS
only stops exploring a branch whenever a symbolic state has
no successor or when a bad state is met, then (I,C) was
necessarily met by genMTS, and hence is part of M, where
it is labelled with bad. Then, in synthActTime(M), the
set ActsSets of minimal sets of actions leading to (I,C) is
synthesized, and the constraint AT is updated with (C’ip A

\/ActseActsSets.(/\aeActs a)) In the en(.l’ SynthACtTime_re-
turns the negation of AT, i.e. a conjunction of the constraints

of the form (ﬁC\LP v /\ActsEActsSets(voceActs —@4)), This is
to say that a valuation satisfying the result of synthActTime
either does not satisfy C| p, or at least one action in each set of
minimal sets of actions allowing the reachability of (I,C) is
disabled. Recall that we assumed at = synthActTime(M).
If the former statement (at = —Clp) is true, then from
Lemma 1 no concrete run of at(APTA) reaches a concrete
state equivalent to (I,C'), which contradicts the hypothesis
that (I, w) is reachable in at(APTA). Otherwise, if the latter
statement is true, then one action is disabled in any symbolic
path that could lead to ([, C), and hence again this contradicts
the hypothesis that (I, w) is reachable in at(APTA). [

Theorem 2 (completeness). Let APTA be an APTA,
and Lyp,q be the set of locations to avoid. Assume
genMTS(at1(APTA), Lysq) terminates with result M. Let
Res = synthActTime(M). Let at be an at-valuation such
that locations Lyp,q are unreachable in at(APTA). Then
at = Res.

Proof: Let at be an at-valuation such that locations
Lyqq are unreachable in at(APTA). Let us reason by re-
ductio ad absurdum, and assume that at = Res. Recall that
synthActTime returns the negation of AT, i.e. a conjunction
of constraints, each corresponding to the handling of one
bad state. Since at [~ Res, then there exists at least one
such constraint that is not satisfied by at. Consider one of
these constraints not satisfied by at; this constraint is of
the form (ﬁC*LP v /\ActsGActsSets(VOzGActs ﬁOé))’ where C
is the constraint of a symbolic state (I,C) (with | € Lygq)
of TA(APTA), and ActsSets is the set of minimal sets
of actions allowing this set to be reachable. Since we have
at % (_\C‘LP v /\ActseActsSets(VaeActs _\Oé)) then we have
at }: (C‘I’P/\VActsEActsSets(/\aeActs OZ)) That iS, at ': Oi’P
and there exists a minimal set of actions in ActsSets that are
all enabled in at. Consider the symbolic run leading to (I, C)
using this minimal set of actions. Since at = C|p, from



Lemma 1 we have that there exists an equivalent concrete
run in at(APTA). In addition, since all actions along this
run are enabled in at, then [ is reachable in at(APTA),
which violates the assumption that all locations of L. are
unreachable in at(APTA). Hence at |= Res. |

FE. Discussion: Approximated Synthesis

Most decision problems are undecidable for PTA (see e.g.
[And15] for a survey), including the emptiness of the valuation
set such as a given set of locations is reachable. Hence, exact
synthesis is ruled out. Still, subclasses of PTA such that exact
synthesis can be achieved exist. First, for acyclic systems (i.e.
such that no loops exist, or with a limited number of iterations
only), most problems are decidable, and synthesis can often
be achieved. Applications include most hardware problems,
as empirical knowledge show that most hardware verification
problems can be carried out for a limited number of hardware
clock cycles (typically two); some scheduling problems can
also be analysed over a limited number of periods that can
be statically computed beforehand. In addition, reducing the
number of clocks and/or of parameters can lead to decidability
(see [And15]).

However, in the general case, exact synthesis is not nec-
essarily possible, and algorithms may not terminate. With-
out surprise, genMTS(T 4(APTA), Ly,q) may not terminate,
since it computes (a subpart of) the state space of a PTA,
which is infinite, and for which no finite abstraction can be
computed (since the underlying decision problem is unde-
cidable). However, approximations can be used. A possible
approximation is to bound the analysis (e.g. using a maximum
number of explored states, a maximum exploration depth,
or a maximum computation time), in which case the state
space explored by genMTS is a subset of the actual state
space; in that case, the parameter constraint ensuring the
reachability of the bad locations is an under-approximation.
Using this constraint in synthActTime is not valid: because
of the negation (line 5 in Algorithm 2), synthActTime would
yield an over-approximation of the good valuations, violating
the soundness (Theorem 1). A safe option is to consider that
any unexplored state is a bad state, i.e. to add to C| p at line 5
in Algorithm 2 the projection to P of any state (I, C’) the
successors of which is unexplored. In that case, the result
output by synthActTime is a sound under-approximation of
the safe action and parameter valuations.

Note however that, in all our experiments, genMTS always
terminated without the need to use approximations.

IV. APPLICATION AND EVALUATION

In this section, we apply the approach presented in Sec-
tion III to a concrete example of an enhanced version of the
classical railway gate controller (see, e.g. [AHV93]). We start
with the detailed description of our model.

A. Running example: An intruder in a railway gate controller

The system itself comprises two components: the train,
and the gate controller. A sensor is located far from the gate,
which sends a signal to inform the controller that a train is
approaching (so that the controller starts lowering the gate).
Another sensor is located close to inform the gate that the train

x_train = p_far
A sensors_active = 1
sensor_far
x_train : =0

x_train = p_far
A sensors_active = 0
x_train : =0

approaching W

ij,rztiu < p_approaching — 1)7\'(‘1')‘711(*:\1)
x_train = p_approaching — p_very_near
sensor_close
( very_near )
x_train < p_approaching
X_train = p_approaching x_train = p_approaching
A gate_down =1 A gate_down =0

pass pass

x_train := 0 x_train := 0
gone crash

Figure 3: APTA train

choose_sensor
choose_house

( walking_sensor
L}(jnh‘udcr < p_wal king;.r‘ns(nj

( walking_house
inintrudcr < 1)7\&‘;\llcilngl(\lls(j
x_intruder = p_walking_sensor

break_sensor
x_intruder := 0
sensors_active := 0

intruder_done

x_intruder = p_walking_house
power_cut
x_intruder := 0
sensors_active := 0

Figure 5: APTA intruder

is very near, triggering an emergency lowering if the gate is
not yet closed.

Let us consider that an intruder can sabotage the system by
either disabling the far sensor, thus preventing the detection of
an approaching train, or cut the power supply in the gate house,
hence preventing the gate to lower. Moreover, the gate has a
security mechanism that automatically lowers the gate some
time after the power has been shut off, and another security
mechanism with an emergency gate lowering when the train
is very near.

This system is modelled by three APTAs that model the
train (Figure 3), the gate (Figure 4) and the intruder (Figure 5)
respectively. They comprise parameters (in brown), clocks (in
blue), actions (in green), and discrete values® (in purple). Each
location has a name indicated in the upper part of the node,
and its associated invariant is in the lower part.

The parameters allow for analysing a general model, where
the values are not yet known at the design time:

e train parameters:

2Though not part of the (A)PTA model, discrete values are integer-valued
variables often supported by tools, and that are syntactic sugar for locations.



sensor_far
x_gate :=0

power_cut

x_gate := 0

Sﬂ!lﬁ()l'i(fll)ﬁe
x_gate :=0

pass
x_gate :=0

power_cut
x_gate := 0

power_cut

sensor_c losé

x_gate : =0
— = = -8 -
waiting x_gate := 0 ( n()ipml((m ) ( emergency_lowering W
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lowering
sensor_close -
x_gate < p_lowering

power_cut X

x_gate = p_lowering
end_lowering

x_gate :=

gate_down := 1

pass
x_gate :=0

sensor_close

start_lowering
x_gate := 0

x_gate = p_emergency_lowering
end_lowering

gate_down :=1

power_cut

Figure 4: APTA gate

o p_far: time taken between being far and approaching;
o p_approaching: time between the approach stage and
passing the gate;
o p_very_near: time between being very near and pass-
ing the gate.
e gate parameters:
o p_waiting: time between sensor activation and begin-
ning of gate lowering;
o p_emergency_waiting: time between power shutdown
and beginning of gate lowering;
o p_lowering: time to lower the gate;
o p_emergency_lowering: time to lower the gate in
emergency mode.
e intruder parameters:

o p_walking_sensor: time to walk and disable the sensor;
o p_walking_house: time to walk and cut the power.

Clocks are associated with the train (x_train), the gate
(x_gate) and the intruder (x_intruder).

Let us now detail the train APTA in Figure 3. Initially,
the train is far, and remains far until it has travelled for
p_far time. At that date, it becomes approaching. Note that
there are two similar transitions from location far to location
approaching. One considers the sensor is active, and thus
triggers the sensor_far action, while the other caters for the
inactive sensor case (disabled by the intruder). In both cases,
the train clock is reset to count time elapsed from then
on. When the train becomes very_near, the APTA changes
location again, by triggering sensor_close. Note that here there
is only one transition as the intruder cannot tamper with the
close sensor. Then the last part of the train approach takes
place, and when it reaches the gate, it results in two different
states according to the status of the gate. If gate_down is
false, there is a crash, otherwise the train resumes its journey.
Both end states block time to avoid unnecessary state space
explosion during the analysis.

The intruder (Figure 5) starts in an urgent location where
(s)he has to choose immediately between the two sabotage
possibilities. Although the actions are different (break_sensor
and power_cut), they both deactivate the sensors as the
communication between sensors and gate is broken.

The gate APTA is presented in Figure 4. Initially the
barrier is up, and can change on reception of a sensor_far
or a sensor_close signal or detecting a power_cut, leading to
locations waiting, emergency_lowering or no_power, respec-
tively. In all cases, the clock starts ticking. After some time,
the gate starts lowering until it is down. The power_cut can
also happen anytime, leading to the no_power location. After
a power shutdown, the emergency procedure states that if the
power is not back an emergency_lowering takes place. It is
also the case if the sensor_close is triggered while the train
should still be approaching. Finally, when the train has passed
the crossing, the barrier gets back up.

In the initial configuration, the train is far, the intruder is
ready for choosing and the gate is up. The discrete variables
are also initialised: gate_down = 0, sensors_active = 1.

B. Tool Support

Our toolchain, depicted in Figure 6, consists of three tools
coordinated by the interface IF.
| SPATULA | 1731

N

PTA model —>| IMITATOR | 1 IF ]

Figure 6: Tool support

The synthesis process starts with the generation of the
state space (Section III-C) by using IMITATOR [AFKSI12],



a tool for parameter synthesis for real-time systems modelled
by PTA. The version used is 2.7.3 (build 1338). IF accepts
the output of IMITATOR and prepares a set of programs
for SPATULA [KMPI15], a tool implementing the action
synthesis for pmARCTL. In order to transform the timed
state space graph into a mixed transition system, IF performs
constraint simplification and analysis, employing the Z3 SMT-
solver [dMBO08].

C. Experimental Results and Interpretation

We synthesise constraints under which the location crash
is avoidable, despite of the presence of the intruder, depending
on the extent of the capabilities of the latter, i.e. the enabled
actions. For practical purposes, our toolchain accepts the set of
controllable actions, denoted by Cntr. Intuitively, these are the
only actions that are allowed to be switched on and off in the
considered model. As the goal of analysis is the safety from the
activities of the malicious intruder, we assume that its actions
constitute the set of controllable transitions, i.e. Cntr =
{choose_house, choose_sensor, break_sensor, power_cut}.

Firstly, the input model is handled by IMITATOR to
produce the MTS according to Algorithm 1. In repeated
experiments, this step took approximately 2s, on average. The
MTS is then additionally processed by IF with the help of
the Z3 solver. Finally, the program IF follows Algorithm 2 to
build the set of at-constraints under which a state labeled with
crash is reachable. To this end, IF prepares a set of programs
for SPATULA, which corresponds to calling the external
procedure synthpmARCTL in Algorithm 2. The second part
of the process took approximately 1s, on average.

Timing parameter constraints Actions

Ky = {k1,ko, ks, ka, ks} Acts; = {choose_house, power_cut}
Ko = {ke, k7} Actss = {choose_sensor}

K3 = {ks, ko} Actsz = {choose_house}

Ky = {kio, k11, k12, k13, k14 } Actsy = {break_sensor, choose_sensor}

Table I: Constraints for reachability of the crash location

k1 = p_walking_house > p_far A p_walking_sensor > 0

A p_lowering > p_emergency_lowering A p_very_near > 0
A p_emergency_lowering > p_very_near A p_far > 0

A p_very_near + p_emergency_waiting

+ p_walking_house > p_far + p_approaching

A p_far+p_approaching > p_walking_house+p_very_near

A p_far + p_waiting > p_walking_house

Figure 7: Exemplary parameter constraint k

In Table T we collect the result of the synthesis for the
reachability of the crash location. The left column of the
table contains sets of indices of constraints on time parameters.
Due to the space limits we present only exemplary constraint
in Figure 7. The right column of the table contains sets of
actions. For a given row 1 <4 < 4, a state labeled with crash
can be reached under a given at-valuation at if it satisfies one
of constraints from K; and enables all the actions from Acts;.

The information presented in Table I is exhaustive, i.e. crash
is reachable iff at satisfies:
4

ReachCrash = \/( \/ kA /\ a). ()

=1 keK; a€Acts;

Hence the system is safe from the malicious attempts of the
intruder iff the at-constraint AvoidCrash := —ReachCrash
is satisfied. Let 1 < ¢ < 4. With a slight notational abuse
let us denote K; := A, g, ~k and Acts; == =\, c 4op, @
Observe that K; represents the set of parameter valuations that
invalidate all of the constraints of K;. We interpret Acts; as
all the subsets of Cnir that do not subsume Acts;. We can
now write:

4
AvoidCrash := /\ (K\/ Actsi). (W)

i=1

For the sake of presentation and readability, we specialize
the considered problem by assuming from now on the fol-
lowing values of the train and gate parameters: p_far = 3,
p_approaching = 2, p_very_near = 1, p_waiting =
1, p_emergency_waiting = 1, p_lowering = 2, and
p_emergency_lowering = 1. For each constraint & we denote
by k the result of substituting the above parameters with the
appropriate values. Then, the constraints kq,...,k;4 can be
presented as shown in Figure 8.

]'%1 = p_walking_sensor > 0 A 4 > p_walking_house > 3,
ko = p_walking_sensor > 0 A p_walking_house = 3,
ks = p_walking_sensor > 0 A 5 > p_walking house > 4,
754 = p_walking_sensor > 0 A p_walking_house = 4,
7%6 = p_walking_house > 0 A p_walking_sensor > 5,
7{:‘8 = p_walking_sensor > 0 A p_walking_house > 5,
]'4';10 = p_walking_house > 0 A 4 > p_walking_sensor > 3,
k1o = p_walking_house > 0 A 5 > p_walking sensor > 4,
kg = p_walking_house > 0 A p_walking_sensor = 4,

kf) = 7%37k7 = k}67k9 = k87].€.11 = k’l()u le = k127

Figure 8: Parameter constraints under partial substitution

In a natural way we define K; := /\keKi -k, forall 1 <3 <4
(see Figure 9). Let us show how we can employ these
constraints to analyse safety of the system under selected ca-
pabilities of the intruder. Assume that the intruder can gain an
access to the gate house and cut the power supply, but (s)he is
not aware of the sensor, or the sensor cannot be disabled. This
corresponds to enabling Acts; = {choose_house, power_cut}
in the model. As this set subsumes Acts3 (see Table I),
by Condition & we have AvoidCrash = Ki; N K3 =
p_walking_house < 3.

D. Performance Evaluation

To the best knowledge of the authors, there is no other
tool allowing for mixed action-parameter synthesis for APTA.
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Figure 10: Parametric synthesis vs brute-force

Therefore, following the methodology presented in [KMP15],
in Figure 10 we compare the efficiency of our approach to the
brute-force solution, where IMITATOR is iteratively called on
all the non-empty subsets of the controllable actions. We scale
the benchmark with respect to the number of actions that allow
to choose the sensor. The advantage of our approach is clearly
visible and follows from the fact that SPATULA is tailored
towards handling a large number of action variables. It should
be noted, however, that our earlier experience with synthesis
based on Binary Decision Diagrams (see [KMP15], [JKPL12])
allows us to hypothesise that the practical complexity of the
solution presented in this paper is also exponential in the
number of actions, albeit with a much smaller steepness than
in the case of brute-force.

All the experiments have been performed on an Intel i5
quad-core 2.6 GHz machine with 4 GiB RAM, running Linux
3.13 operating system.

V. CONCLUSION AND PERSPECTIVES

We presented an original framework to synthesise two
kinds of parameters, i.e. action parameters and timing param-
eters, in a unified manner. The resulting constraint aims at
helping designers to tune their system depending on cost or
availability constraints, and at providing designers with tools
supporting their decision making. We exemplified our approach
on a proof-of-concept case study.

So far, we have considered only reachability-like prop-
erties. Although some properties go beyond the class of
reachability properties, a quite large number of properties
(including time properties such as deadlines) fall into the class
of properties that can be encoded into reachability testing (see
[ABBLI9S] for a study of its expressive power). Our longer-
term goal is of course to generalize our results to deal with
more complex, ideally full pmARCTL.
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