
Formalising Concurrent UML State Machines

Using Coloured Petri Nets?

Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, Villetaneuse, France

Abstract. While UML state machines are widely used to specify dy-
namic systems behaviours, their semantics is described informally, which
prevents the complex systems veri�cation. In this paper, we propose a
formalisation of concurrent UML state machines using coloured Petri
nets. We consider in particular concurrent aspects (orthogonal regions,
forks, joins, shared variables), the hierarchy induced by composite states
and their associated activities, internal/external/local transitions, and
entry/exit/do behaviours.

1 Introduction

UML [OMG12] became the de facto standard for modelling systems, and fea-
tures a very rich syntax with di�erent diagrams to model the di�erent aspects of
a system. UML behavioural state machine diagrams (SMDs) are transition sys-
tems used to express the behaviour of dynamic systems in response to external
interactions. Although UML is widely used in the industry, its semantics is not
formally expressed, which prevents formal veri�cation to be performed.

Related Work. Veri�cation of SMDs has been often tackled. Some approaches
directly give UML a semantics. The closest to the set of syntactic constructs we
consider here is [JEJ04], where entry/exit behaviours, activities, synchronisation
and history states are considered; however, global variables are discarded, and
no model checking is performed. In [LLA+13], an operational semantics is pro-
posed for UML SMDs with synchronisation. Most syntactic aspects are taken
into account, except real-time aspects and object-oriented issues, such as dy-
namic invoking and destroying objects. A formalisation has also been proposed
using UML-B [SB06]. However, these approaches require the implementation of
a standalone, dedicated tool.

Other approaches translate UML speci�cation into an intermediate model
of some model checker. Most of these approaches consider quite restrictive sub-
sets of the UML syntax as de�ned by the OMG [OMG12] (see [LAC+14] for
a survey). Out of many approaches, for lack of space, we cite only the most
recent and related to our work. A translation of SMDs to SPIN is considered
? This is the author version of the paper of the same name accepted for publication
at the 6th International Conference on Knowledge and Systems Engineering (KSE
2014). The �nal version is available at www.springer.com.

1

www.springer.com


2

in [JDJ+06] with both hierarchical and non-hierarchical cases; history, fork, join
pseudo-states, entry and exit activities and complex data structures are not sup-
ported. A semantics is de�ned in [DJ07] for a syntax subset, including deferring
of messages, concurrent composite states and choice pseudo-state; veri�cation is
performed using NuSMV. An automated translation from SMDs into CSP] (an
extension of CSP) is proposed in [ZL10]; modelling techniques such as use of data
structures, join/fork, history pseudo-states, entry/exit behaviours (but with no
variable) are considered, and properties are checked using PAT [SLDP09]. Note
that these formalisms do not provide a graphical representation, in contrast
to CPNs. Other approaches (e.g. [KCBL10]) use an intermediary model (e.g.,
�at state machines) to formalise SMDs to coloured Petri nets (CPNs) [JK09].
In [KCBL10], concurrency (fork/join, concurrent composite states) is taken into
account. The main di�erence with our approach is that [KCBL10] requires to
�atten the SMD, hence losing the hierarchy. A translation from SMDs to Petri
nets is proposed in [CKZ11] were SMDs include synchronisation, limited aspects
of hierarchy, join and fork (with no inter-level transitions) but history pseudo-
states and variables are not considered.

Contribution. We introduce here a translation of concurrent SMDs into CPNs.
CPNs o�er a detailed view of the process with a graphical representation, and
bene�t from powerful tools (such as CPNTools [Wes13]) to test and check
the model. Our SMDs can communicate on synchronised events; we also take
into account the most common syntactic features, i.e. state hierarchy with en-
try/exit/do behaviours, history pseudo-states, synchronised events, fork/join,
shared variables and local/external/internal transitions. Our approach partially
relies on the work presented in [ACK12] where we proposed a �rst attempt of
formalising non-concurrent SMDs using CPNs. Here, we extend this previous
approach to the concurrency (forks, joins, nested composite states). We also add
internal transitions. The addition of concurrency was not easy, as the translation
scheme of [ACK12] heavily relied on the assumption of non-concurrency, and we
had to entirely reconsider our approach, and rewrite our translation algorithms.

Outline. We present in Section 2 the formalisms we use (viz. SMDs and CPNs).
In Section 3, we describe our translation: we �rst describe our general transla-
tion scheme, and recall the assumptions we make (Section 3.1); then, we de�ne
functions used in our algorithms (Section 3.2), and give in details our algorithms
translating states and behaviours (Section 3.3), and transitions (Section 3.4). We
conclude and give some perspectives in Section 4.

2 Basic Concepts Used in This Work

2.1 Our Assumptions on UML State Machine Diagrams (SMDs)

The underlying paradigm of UML SMDs [OMG12] is that of a �nite automaton,
that is each entity (or subentity) is in one state at any time and can move to
another state through a well-de�ned conditional transition. For lack of space,



3

Fig. 1. Example of a state machine diagram

we assume the reader's knowledge on SMDs, and we only present here tech-
nical issues required for our work. The UML provides an extended range of
constructs for SMDs, and we take into account the following syntactical ele-
ments: simple/composite states, entry/exit/do behaviours, concurrency (regions
in composite states, fork/join transitions), shared variables, shallow history pseu-
dostates (not detailed for lack of space) and hierarchy (of states and behaviours).
In the following, we recall these elements together with some assumptions we
need to set for our work. 1 We use the SMD in Fig. 1 as a running example.

States. We consider two kinds of states: simple and composite. A composite
state is a state that contains at least one region and can be a simple composite
state or an orthogonal state. A simple composite state has exactly one region,
that can contain other states, allowing to construct hierarchical SMDs. An or-
thogonal state (e.g. S1, S2 in Fig. 1) has multiple regions (regions can contain
other states), allowing to represent concurrency. regions(s) denotes the set of
regions in composite state s, and NbRegions(s) the number of regions in s. We
assume that a composite state must not be empty (�A composite State contains
at least one region� [OMG12, p.322]), and that each region contains at least one
state.

�Any state enclosed within a region of a composite state is called a substate

of that composite state. It is called a direct substate when it is not contained by
any other state; otherwise, it is referred to as an indirect substate.� [OMG12, Sec-
tionKinds of States, p.319]. Given a composite state s, we denote by SubStates(s)
the set of direct substates of s (including �nal states), and by SubStates∗(s) all
substates of s, both direct and indirect. If s is not contained in any state, we
call it a root state. Otherwise, parent(s) denotes the state containing s. The set
of all states of an SMD is denoted by S.

1 A summary of our assumptions is available in Appendix B.



4

Fig. 2. Example of transitions taken into account

Behaviours. Behaviour expressions may be de�ned when entering, exiting states
(or also when states have a do behaviour) or when �ring transitions. As in [ACK12],
we abstract behaviours using name b (corresponding to the actual behaviour ex-
pression) and function f to express changes induced on the system variables. The
behaviour is denoted by (b, f ). and when there are no modi�cations on variables
we set f to id (id is the identity function). When a transition has no behaviour
(b, f ) = (none, id). We assume that a do behaviour is an atomic behaviour that
can be executed as many times as wished. This is a rather strong assumption
in our setting. Furthermore, to simplify our algorithms (and avoid complicated
subcases), we make two further assumptions, (i) only simple states can have a
do behaviour, and (ii) each state (be simple or composite) always has an entry
and an exit behaviour. These two assumptions could be lifted with no di�culty.

Initial Pseudostates. We require that each region contains one and only one
(direct) initial pseudostate, which has one and only one outgoing transition. We
also consider that the active state of the system cannot be an initial pseudostate.
Note that this is a modelling choice only: if one wants to model an SMD where
the system can stay in an initial pseudostate, it su�ces to add another state
between the initial pseudostate and its immediate successor.

Final States. In each region r of a composite state, we allow exactly one �nal
state (denoted by rF ), whereas the speci�cation allows zero or one (�Each re-
gion [. . . ] may have its own initial Pseudostate as well as its own FinalState.�
[OMG12, p.321]) Note that �nal states are simple states, and thus are included
in relation SubStates. We de�ne function ToFinal(s) that returns the set of
simple states with transitions to �nal states of each region in composite state
s. Similarly, ToFinal∗(s) returns the set of composite states (including s) that
have transitions with the �nal states of each region in composite state s or its
substates.

Variables. We allow any kind of variables in any behaviour and transition guard.
Such variables (integers, lists, etc.) are often met in practice [OMG12].

Transitions. A transition can have a guard, a synchronization event, and a
behaviour; transitions can have as source and destination any (composite or



5

simple) state, with some restrictions (e.g. a transition from an initial state cannot
have a behaviour, etc.). Due to concurrency, various kinds of transitions exist:
completion transitions (e.g. the transition from Machine to Delivered in Fig. 2)
have no event and exit a composite state when all its regions are in their �nal
state. Exiting a composite state machine through an event (e.g. the transition
from Machine to Cancelled in Fig. 2) results �in the exiting of all substates
of the composite State, executing any de�ned exit Behaviors starting with the
innermost States in the active state con�guration� [OMG12, SectionTransitions,
p.325]. This is an exception-like transition. A join transition (e.g. the transition
from Checking and Authorizing to Rejected in Fig. 2) exits a given state
in each composite state region. All these transitions are taken into account in
our work. The �implicit join� (e.g. the transition from Waiting to Failure in
Fig. 2) exits some of the regions from a given state; the other regions are exited
whatever is their current active state. For readability sake, we do not take them
into account in our algorithms, but our general scheme can perfectly adapt to
this case.

Concurrency can also appear when entering a composite state (cf. left-most
transition in Fig. 2). �If the Transition terminates on the edge of the composite
State (i.e. without entering the State), then all the Regions are entered using
the default entry rule.� [OMG12, SectionEntering a State, p.323]. We take into
account forks (a transition with a given state in each region as destination),
but not �implicit forks� (where only some of the regions have an explicit des-
tination), although our algorithms could be trivially extended, at the cost of
more complicated subcases. We also take into account internal/external/local
transitions.

Finally, we make the following assumption: the execution of di�erent transi-
tions in di�erent regions of the same state is done in parallel. For instance, the
transition from Checking to Waiting in the upper region of Machine in Fig. 2
(and that could involve exit, do and entry behaviours) is performed in an in-
terleaving manner with, e.g. the transition from authorizing to authorized in
the lower region. Although this not entirely clear in [OMG12], this assumption
might not conform to the notion of run-to-completion step. We believe that in-
terleaving is indeed a natural mechanism between two subsystems executed in
parallel.

The set of transitions is denoted by T with transitions of the form t =
(S1, e, g, (b, f ), sLevel ,S2), where S1,S2 ⊆ S are the source and target set of
states respectively (S1 or S2 can contain at least one state � in the case of simple
transitions between two states � or more � in case of fork or join transitions), e
is the event, g is the guard, (b, f ) is the behaviour to be executed while �ring
the transition, and sLevel ∈ S is the level state containing the transition.

We introduce a documented way to travel in the hierarchy of states. We
indeed add the concept of level state (denoted by sLevel) of a transition from
s1 to s2, that is the innermost state in the hierarchical SMD structure that
contains the transition (the level state can be the SMD if s1 and s2 are root
states). For example, let us consider that S1 and S2 in Fig. 1 are root states



6

and the transition labelled by �a� between those states is encompassed by the
state machine S. Then S is the level state for this transition because it is the
innermost common ancestor of S1 and S2 that contains transition �a�. Similarly,
for the transition (say t) between S13 and S14, we have sLevel(t) = S1.

2.2 Coloured Petri Nets with Global Variables

CPNs [JK09] are also a kind of automaton represented by a bipartite graph with
two kinds of nodes, places (e.g. p1 in Fig. 3 (left)) and transitions (e.g. t in Fig. 3
(left)). Places hold tokens, possibly of a complex value, and that should be of
the place type (e.g. type N× B in Fig. 3 (left)).

p1 N

t[i 6= 2] v := v + i

p2 N× B

i

(i, true)

p1 N

t[i 6= 2]

p2 N× B

pv N
i

(i, true)

v

v + i

Fig. 3. Global variable notation (left) and corresponding semantics (right)

We use here the concept of global variables, a notation that does not add
expressive power to CPNs, but renders them more compact. Global variables
can be read in guards and updated in transitions, and are supported by some
tools (such as CPNTools). Otherwise, one can simulate a global variable using a
�global� place, in which a single token (of the variable type) encodes the current
value of the variable. An example is given in Fig. 3 (left). Variable v (of type N)
is a global variable updated to the expression v + i.

This construction is equivalent to the one in Fig. 3 (right). When a global
variable is read in a guard, the token with value v + i is put back in place pv.

The CPN current state (or marking) is the information on which tokens are
present in which places. The state evolves when a transition is �red, and tokens
are consumed from its source places (according to the input arc expressions) and
generated to its target places (according to the output arcs).

3 Translation of Concurrent State Machines

We �rst introduce our general translation scheme (Section 3.1). Then, we de�ne
functions used in our algorithms (Section 3.2). We then introduce the algorithms
translating states and behaviours (Section 3.3), and transitions (Section 3.4).

3.1 General Translation Scheme

In this section, we present the general view of our translation. We de�ne a trans-
lation scheme where simple states, �nal and history pseudostates are translated



7

into places, whereas behaviour expressions (entry, exit and do) and events are
translated into CPN transitions. Further places and transitions will also be de-
�ned to connect these places and transitions together. The �ring of transitions in
SMDs is represented by the �ring of transitions with tokens in CPNs. Note that
composite states will not be translated as such (no CPN place will correspond
to a composite state), but their behaviours and all their simple substates will be
considered. This is inline with the fact that the active state of an SMD is a (set
of) simple state(s). Similarly, initial pseudostates will not be translated as such.

Encoding and Factoring Transitions. A main issue in our translation is to encode
transitions between composite states with di�erent regions, in particular the
variants of forks and joins. Each such transition (in particular for joins) may in
fact correspond to a large number of transitions. For example, in Fig. 1, �ring
the transition labelled with event �a� corresponds to 18 di�erent ways to leave
S1 (3 possible active states in the upper region of S1, multiplied by 4 in S13 and
2 others in the lower region), and hence in 18 CPN transitions, together with all
the entry/exit behaviours. Given a transition t, let us denote by combinations(t)
the function that computes all possible combinations of outgoing substates. We
could translate each transition separately; but this would quickly result in an
explosion of the number of CPN transitions corresponding to the same entry/exit
behaviours and actions.

For sake of readability, maintainability, and size of the translated CPN, this
should be factored. Hence, as in [ACK12], we shall propose a scheme such that
each behaviour is encoded into only one CPN transition. Since many SMD tran-
sitions go through the same behaviours, we need a �memory� mechanism to
remember from which place we originate so as to �nd the correct target. Unfortu-
nately, the factoring scheme of [ACK12] does not easily extend to the concurrent
case, and further studies showed us that it could lead to a state space explosion
when exploring branches that would lead to no end. We reuse the idea of having
one unique transition for each behaviour in the SMD, and we de�ne a structure
encoding the hierarchy of all entry (resp. exit) behaviours together, in a sort of
tree (resp. reversed tree). An example of two such trees will be given in Fig. 5,
with the blue part enclosed in a dashed box on the left (resp. turquoise part
enclosed in a dotted box on the right) corresponding to the entry (resp. exit)
behaviours. Now, in contrast from [ACK12], we will navigate in these �trees� of
behaviours using a memory mechanism, based on guards. For each possible way
to leave a composite state when �ring a transition, we will create a �path� in
these trees: this can be easily obtained using typed tokens (e.g. using a unique
integer identi�er for each transition), and guards checking the type of the token
along all the CPN transitions on the considered path. Checking a guard is very
cheap when doing model checking, and this mechanism avoids state space ex-
plosion, while keeping the CPN small. For example, in Fig. 5, when exiting from
pF11 and pF12, the token will reach tbEn2, and will be duplicated in two tokens
in pbEn2; then, although there are three possible outputs, i.e. tbEn21, tbEn22
and tbEn23, we expect from our translation that one token �res tbEn21 and the
other one tbEn22, since these transitions correspond to the entry behaviours of



8

the initial states of the two regions of S2. (For sake of conciseness, we do not
depict explicitly in the �gures this mechanism based on guards and tokens.)

Note that, in the case of the 18 combinations corresponding to the transition
labelled with event �a�, we still have 18 CPN transitions; but all exit and entry
behaviours are factored, which considerably reduces the resulting CPN size.

Finally, we add a synchronisation CPN transition (e.g. TEnS2_t1 in Fig. 5)
just before entering the places corresponding to the destination simple states,
which ensures that only one transition �res at a time in a given region (di�erent
transitions can still �re in an interleaving manner in di�erent regions).

Encoding Shared Variables. In [ACK12], the non-concurrency allowed us to store
the value of all shared variables in a single token that encoded also the current
active simple state of the SMD. In the concurrent case, this approach is no longer
possible since several simple states can be active at the same time; encoding the
values of the same shared variables in di�erent tokens would lead to consistency
problems. Hence, we use global variables in CPNs (see Section 2.2) to encode the
value of shared variables. Note that concurrent reading/writing of such variables
can lead to �strange� executions (when a region reads a variable and then imme-
diately changes its value, but in between another region concurrently changed
its values), but these executions are also possible in the UML semantics.

3.2 Functions

We now describe the functions used in our algorithms. First, we consider two
special places pin (resp. pout), corresponding to the root of the tree of entry (resp.
exit) behaviours, that will be used by our algorithms. We assume function p as-
sociates place p(s) with each state s, and place p(b) to each behaviour b. We also
assume function t associates CPN transition t(b) with each behaviour b. Func-
tions SupEN (s) and SupEX (s) return the places representing entry behaviour
(p(bEN )) and exit behaviour (p(bEX )) of a given state, respectively. Function
SubEN (s) returns the transition encoding the entry behaviour in case of a sim-
ple state, or the entry behaviour of each substate in case of a composite state.

In the hierarchy of entry or exit behaviours, we need to know from which
behaviour we enter and from which behaviour we leave the state. This depends
on the level of the transition. We thus de�ne two functions OutTo(sLevel , s1)
and InFrom(sLevel , s2) that return the entry and exit behaviour to enter/leave
the hierarchy, respectively. Note that s1 of OutTo(sLevel , s1) (respectively s2 of
InFrom(sLevel , s2)) can be a set of states if the transition is a fork transition
(respectively a join transition).

OutTo(sLevel , s1) =

{
pout When sLevel is the overall SMD
SupEX (sLevel)) otherwise

InFrom(sLevel , s2) =

{
pin When sLevel is the overall SMD
SupEN (sLevel) otherwise

We �nally assume a function init∗(s) that returns the initial state of s, or
the (recursive) set of initial states of the initial state if s is composite.



9

entry/bEN

do/bDO

exit/bEX

s

entry/bEN

do/bDO

exit/bEX

s

Fig. 4. A simple state (left) and its translation (right)

3.3 Translating States and Behaviours

We describe here the translation of the states and their behaviours (do, entry and
exit). One the one hand, we translate each simple, �nal and history (pseudo)state
into a place. On the other hand, we translate the purely hierarchical structure
of the SMD, so that to get a tree of entry and exit behaviours, that will be
used later when connecting transitions. Each behaviour expression is represented
by a transition and a place connected by an arc. We also connect the places
corresponding to simple states with their �do� behaviour, if any. Connecting the
entry/exit behaviours with the places corresponding to simple states depends on
the transitions and will be done by Algorithm 2.

First, as an example, Fig. 4 shows a state s and its translation into a CPN.
State s is represented by place p(s), its entry behaviour bEN is represented by
place pbEn and transition tbEn, and its exit behaviour bEX is represented by
place pbEx and transition tbEx. If the state has a do behaviour bDO then it will
be represented by transition tbDo.

We use in our algorithms the following graphical notation. Places and transi-
tions generated at a given point are denoted by a solid line, whereas places and
transitions already generated are denoted by a dotted line.

Algorithm 1 translates states and behaviours. Two places pin and pout are
created (line 1), then there are two main steps: Step 1 generates the CPN part
corresponding to do/entry/exit behaviours as well as history pseudostates and
�nal states. Step 2 is composed of 3 substeps. Step 2.1 adds an arc between the
entry behaviour place of a composite state and the entry behaviour transitions of
its substates. This represents the fact that, after executing an entry behaviour,
we will execute the entry behaviours of the substates. Step 2.2 adds an arc from
place pin to the entry behaviour transitions of the root states, and from the exit
behaviours of the root states to place pout . Step 2.3 adds an arc from the exit
behaviour transition to the exit behaviour place of its parent.

After executing Algorithm 1, we apply the following initialisations to the
result of the translation: All guards are initialised to false (and may be later
modi�ed during the translation).

Fig. 5 shows the application of Algorithm 1 to a part of the example in
Fig. 1. The blue part enclosed in a dashed box on the left of Fig. 5 represents the
entry behaviours of S2 in Fig. 1. The dotted/turquoise part on the right of Fig. 5



10

Algorithm 1: Encoding the states and behaviours

1 Add
pin pout

// Step 1

2 foreach state s ∈ S do

3 Add p(bEN )t(bEN )
NbRegions(s)

and p(bEX ) t(bEX )
NbRegions(s)

4 if s is a simple state and has a �do� behaviour (p(bDO), fDO) then

5 Add p(s) t(bDO ) fDO

6 foreach region r ∈ regions(s) do
7 if r has a (direct) history pseudostate then Add p(rH)

8 if r has a (direct) �nal state then Add p(rF )

// Step 2

9 foreach state s ∈ S do

10 if s is a composite state then

// Step 2.1

11 foreach s′ ∈ SubStates(s) do

12 foreach transition t
′
∈ SubEN (s′) do connect p(bEN ) t

′

13 if s is root then connect poutt(bEX )pin t(bEN ) // Step 2.2

14 else Add SupEX (parent(s))t(bEX ) ; // Step 2.3

represents the exit behaviours of S1 in Fig. 1. We also added places to represent
�nal states (e.g. pF11), history pseudostates (pH11) and states (e.g. pS11, pS22).

3.4 Translating Transitions

Algorithm 2 describes the translation of UML transitions, using three steps fol-
lowed by an initialisation function. Step 1 deals with exit behaviours: Step 1.1
deals with event triggered transitions, while other transitions are processed in
Step 1.2 (exit from a composite state) and 1.3 (exit from a simple state). For
a given transition, Step 2 establishes the connection between its source state
exit behaviour and its destination state entry behaviour. Step 3 expresses the
destination state entry.

Line 19 updates all relevant guards, so as to guide the token within the hierar-
chy of behaviour places and transitions. Finally, we use a function Initialisation()
for token initialisation (line 20) to model the initial state in the global SMD.

Fig. 5 shows the application of Algorithms 1 and 2 to S1 and S2 and also
the transition without an event in Fig. 1. In this translation, we consider only
the entry behaviours of S2, the exit behaviour of S1, the �nal states of S1, to
get a clear picture to illustrate the algorithm. Step 1 adds transition TExSF_t1
between places pF11 and pF12 (that correspond to the region �nal states) and
place pbEx1 that correspond to the exit behaviour of S1. Step 2 adds transition



11

Fig. 5. Application of Algorithms 1 and 2

transit_t1 to connect exit place Pout to entry place Pin. Step 3 adds the
transition TEnS2_t1 to link places of S2 substates and their entry behaviour.

4 Conclusion and Future Works

We present here a formalization of UML concurrent SMDs by translating them
into CPNs. We take into account di�erent syntactic elements in our translation,
specially the concurrency, including simple and composite states, most kinds
of transitions (including forks and joins), behaviours (entry, exit, do), history
pseudo-states, etc. Once our implementation is completed (see below), this will
allow for automated model checking of SMDs.

Our main future work is to develop a tool automating the translation so
as to be able to perform formal veri�cation of SMDs. We implemented a �rst
prototype using Acceleo, but this technology turned out to be slightly inaccurate
for our framework [ABC14]. Although we could translate toy examples, we will
likely build a home-made tool. Of course, this implementation must extend to
the general case the assumptions made in order to simplify the description of our
algorithms (e.g. each state always has both an entry and an exit behaviours).

Most syntactic aspects not taken into account in our work (see Appendix A)
could be added in a rather straightforward manner � except for timing aspects.
Adding them to our translation is an interesting future work. Recall that some
tools (including CPNTools) allow one to de�ned time(d) coloured Petri nets.

Finally, although it goes beyond of the scope of this paper, a challenging
future work would be to formally prove the equivalence between the original
SMD and the resulting CPN. Of course, the problem is that the OMG does
not formally de�ne a formal semantics for SMDs. However, we could reuse the



12

Algorithm 2: Encoding the transitions

1 foreach transition t = (S1, e, g, (b, f ), sLevel ,S2) ∈ T do

// Step 1

2 if t has an event e then
// Step 1.1

3 foreach c ∈ combinations(t) do

4 Add e

V := f(V )

5 foreach simple state s ∈ c do

6 Add
p(s) SupEx(s)e

7 else

// Step 1.2

8 if S1 is a composite state then

9 Add TExS1_t

10 foreach state s ∈ ToFinal(S1) do

11 Add
p(s) SupEx(S1)TExS1F_t

12 else

// Step 1.3

13 Add
p(S1) SupEx(S1)TExS1_t

// Step 2

14 Add OutTo(sLevel,S1) InFrom(sLevel,S2)transit_t

// Step 3

15 Add TEnS2_t

16 foreach state s2 ∈ S2 do
17 foreach simple s ∈ init∗(s2) do

18 Add SupEn(s) p(s)TEnS2_t

19 Update all relevant guards

20 Initialisation()

operational semantics that we recently proposed for SMDs [LLA+13], and de�ne
a trace equivalence taking into account active states, behaviours and events.

References

ABC14. Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy. Trans-
lating UML state machines to coloured Petri nets using Acceleo: A report.
In ESSS. EPTCS, 2014. 11

ACK12. Étienne André, Christine Choppy, and Kais Klai. Formalizing non-
concurrent UML state machines using colored Petri nets. ACM SIGSOFT
Soft. Eng. Notes, 37(4):1�8, 2012. 2, 4, 7, 8, 14



13

CKZ11. Christine Choppy, Kais Klai, and Hacene Zidani. Formal veri�cation of
UML state diagrams: a Petri net based approach. ACM SIGSOFT Soft.
Eng. Notes, 36(1):1�8, 2011. 2

DJ07. Jori Dubrovin and Tommi A. Junttila. Symbolic model checking of hierar-
chical UML state machines. Technical Report B23, Helsinki University of
Technology, 2007. 2

JDJ+06. Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala, and Ivan Porres.
Model checking dynamic and hierarchical UML state machines. In MDV,
2006. 2

JEJ04. Yan Jin, Robert Esser, and Jörn W. Janneck. A method for describing the
syntax and semantics of UML statecharts. Software and System Modeling,
3(2):150�163, 2004. 1

JK09. Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets � Modelling
and Validation of Concurrent Systems. Springer, 2009. 2, 6

KCBL10. Elhillali Kerkouche, Allaoua Chaoui, El Bay Bourennane, and Ouassila Lab-
bani. A UML and colored Petri nets integrated modeling and analysis ap-
proach using graph transformation. Journal of Object Technology, 9:25�43,
2010. 2

LAC+14. Shuang Liu, Étienne André, Christine Choppy, Jin Song Dong, Yang Liu,
Jun Sun, and Bimlesh Wadhwa. Formalizing UML state machines semantics
for formal analysis � A preliminary survey, 2014. Research report, available
at lipn.fr/~andre/UML-SMD-survey.pdf. 1

LLA+13. Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh
Wadhwa, and Jin Song Dong. A formal semantics for the complete syntax of
UML state machines with communications. In iFM, volume 7940 of LNCS,
pages 331�346. Springer, 2013. 1, 12

OMG12. OMG. Uni�ed Modeling Language Superstructure, Version 2.5, beta 1.
http://www.omg.org/spec/UML/2.5/Beta1/PDF/, oct 2012. 1, 2, 3, 4, 5,
14, 15

SB06. Colin F. Snook and Michael J. Butler. UML-B: Formal modeling and design
aided by UML. ACM TSEM, 15(1):92�122, 2006. 1

SLDP09. Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards �exible
veri�cation under fairness. In CAV, volume 5643 of LNCS. Springer, 2009.
2

Wes13. Michael Westergaard. CPN Tools 4: Multi-formalism and extensibility. In
Petri Nets, volume 7927 of Lecture Notes in Computer Science, pages 400�
409. Springer, 2013. 2

ZL10. Shaojie Zhang and Yang Liu. An automatic approach to model checking
UML state machines. In SSIRI-C, pages 1�6. IEEE, 2010. 2

lipn.fr/~andre/UML-SMD-survey.pdf
http://www.omg.org/spec/UML/2.5/Beta1/PDF/


14

A Summary of the Syntax Taken into Account

We recall in Table 1 the syntactic elements we consider in our translation. Deep
history pseudostates, submachine states (�semantically equivalent to a composite
state�) and implicit forks/joins were discarded for sake of simplicity but can be
added in a very straightforward manner, and will be part of our implementation.
Also note that shallow history pseudo states can be considered in our work
by directly importing the mechanism from [ACK12], as this mechanism is not
impacted by the addition of concurrency. We did not consider entry/exit points
and choice/merge pseudostates, but we believe that there would be no di�culty
for adding them to our scheme. Deferred events and timing aspects were not
considered at all, and may require more work, or even lead us to reconsider
parts of our translation scheme.

Element Considered?

Simple / composite states Yes
Orthogonal regions Yes
Initial / �nal (pseudo)states Yes
Terminate pseudostate No (but trivially extensible)
Shallow history states Identical to [ACK12]
Deep history states No (but trivially extensible)
Submachine states No (but trivially extensible)
Entry / exit points No (but probably easy)
Entry / exit / do behaviours Yes
Shared variables Yes
External / local / internal transitions Yes
Basic fork / joins Yes
Implicit fork/joins No (but trivially extensible)
Choices / merges No (but probably easy)
Deferred events No
Timing aspects No

Table 1. Summary of the syntactic aspects considered

B Assumptions

We recall here the assumptions we made regarding [OMG12]. We give for each
of them the reason for the assumption (e.g. unclarity in [OMG12]) and mention
whether this is or not a strong assumption in our translation.

States. We require that each region of a composite state contains one and only
one initial pseudostate, which has one and only one outgoing transition. In the



15

speci�cation, it not compulsory: each region �may have its own initial Pseu-
dostate as well as its own FinalState� [OMG12, SectionRegions, p.318]. Fur-
thermore, a state that becomes active with no initial pseudostate is a semantic
variation point. It seems natural to us to require exactly one initial pseudostate
with one and only one outgoing transition. This is also a strong assumption in
our setting.

Similarly, we also assume that each region in a composite state must contain
exactly one �nal state. Again, this seems to be a very natural assumption; note
that it is a less strong assumption in our setting, since our translation would still
work without �nal states.

We also consider that the active state of the system cannot be an initial
pseudostate. (The speci�cation is rather unclear about it.) Note that this is a
modelling choice only: if one wants to model an SMD where the system can
stay in an initial pseudostate, it su�ces to add another state between the initial
pseudostate and its immediate successor.

We also assume that each region in a composite state contains at least one
region (�A composite State contains at least one region� [OMG12, p.322]), and
that a region contains at least one state. The speci�cation does not explicitly
mention this latter point, but the cardinalities in [OMG12, p. 317] seem to allow
0 state in a region. It seems natural to us that a region must be non-empty. This
is also a rather strong assumption in our setting.

Behaviours. We assume that do behaviour are atomic behaviours that can be
executed as many times wished; this may go against [OMG12] that seems to
rely on the notion of a �continuous� behaviour. This is a strong assumption in
our setting, partially coming from the fact that CPNs are a discrete model. This
assumption could be lifted with the introduction of timing aspects.

Furthermore, we assume that only simple states can have a do behaviour; this
assumption could be lifted without any di�culty but simpli�es our algorithms.

Transitions. It is clear that, when in the �nal state in a region r of a composite
state s, one can still perform an outgoing transition from s. It also seems clear
that an external self-transition on s can be performed. However, although it is
not explicit in [OMG12], we believe that, considering the semantics of internal
transitions and of �nal states, an internal self-transition on s cannot be per-
formed when the active state of the system is rF . This assumption was made
only because the speci�cation is unclear about this, and either interpretation
could be considered in our translation.

Finally, we make the following assumption: the execution of di�erent transi-
tions in di�erent regions of the same state is done in parallel. For instance, the
transition from Checking to Waiting in the upper region of Machine in Fig. 2
(and that could involve exit, do and entry behaviours) is performed in an in-
terleaving manner with, e.g. the transition from authorizing to authorized in
the lower region. Although this not entirely clear in [OMG12], this assumption
might not conform to the notion of run-to-completion step. We believe that in-



16

terleaving is indeed a natural mechanism between two subsystems executed in
parallel.


	Formalising Concurrent UML State Machines Using Coloured Petri Nets

