
Under consideration for publication in Formal Aspects of Computing

Formalising Concurrent UML State

Machines Using Coloured Petri Nets1

Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

Abstract. With the increasing complexity of dynamic concurrent systems, a phase of formal speci�cation
and formal veri�cation is needed. UML state machines are widely used to specify dynamic systems behaviours.
However, the o�cial semantics of UML is described in a semi-formal manner, which renders the formal
veri�cation of complex systems delicate. In this paper, we propose a formalisation of UML state machines
using coloured Petri nets. We consider in particular concurrent aspects (orthogonal regions, forks, joins,
variables), the hierarchy induced by composite states and their associated activities, external, local or inter-
level transitions, entry/exit/do behaviours, transition priorities, and shallow history pseudostates. We use a
CD player as a motivating example, and run various veri�cations using CPNTools.

Keywords: Modelling; State machines; Formalisation; Formal semantics; Coloured Petri nets

1. Introduction

The Uni�ed Modelling Language (UML) proposed by the Object Management Group (OMG) [OMG15]
became the de facto standard for modelling systems, both in the industrial and academic contexts. UML
features a very rich syntax with di�erent diagrams to model the di�erent aspects of a system. We consider
here the latest version of UML (i.e. 2.5), and we are interested here in UML behavioural state machine
diagrams (hereafter SMDs), that are transition systems used to express the behaviour of dynamic systems in
response to external interactions. A major problem with UML is that the o�cial speci�cation given by the
OMG in [OMG15] gives a formal syntax, but a semantics that is only described in natural language. Hence,
this prevents formal veri�cation techniques to be applied.

We assume that we can use communicating FSMs (�nite state machines) or UML state machines to
express systems. However FSMs are generally used to express small problems and they tend to become
unmanageable for complex systems (as mentioned, e.g. in [Sam09, Part 2: �UML extensions to the traditional
FSM formalism�]). We think that using UML state machines is easier to read and to use graphically.

As presented below, there are several ways to equip the UML, and SMDs in particular, with a formally
de�ned semantics, and we propose here a new translation of concurrent SMDs into coloured Petri nets
(hereafter CPNs) [JK09]. We chose CPNs because they o�er a detailed view of the process with a graphical

1 This manuscript is the author version of the manuscript of the same name published by Formal Aspects of Computing in
2016. The o�cial published manuscript can be found at https://link.springer.com/article/10.1007/s00165-016-0388-9.

https://link.springer.com/article/10.1007/s00165-016-0388-9

2 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

representation and a proper handling of concurrency and data, and they bene�t from powerful tools (such
as CPNTools [Wes13]) to test and check the models.

1.1. Related Works

There are several approaches to formally give a semantics to SMDs. However, most of these approaches
consider quite restrictive subsets of the UML syntax de�ned by the OMG [OMG15]. These approaches can
usually be classi�ed in two categories: approaches that directly de�ne an operational semantics, or approaches
that translate SMDs into a language equipped with a formal semantics.

1.1.1. Operational Semantics

Several works attempted to directly provide operational semantics for UML state machines. In [Bee02], an
operational semantics is provided for a subset of UML state machines. The approach uses terms to represent
states, and transitions are nested into Or-terms, which makes it hard to extend to support the other features,
especially compound transitions in the presence of fork and join pseudostates.

In [MPT03], a comparison between various interpretations of the statecharts semantics in the framework
of structural operational semantics is presented. However, beyond the fact that statecharts are quite di�erent
from the latest UML state machines speci�cation, only some syntactic aspects are covered.

In [Sch05], non-determinism is considered in orthogonal composite states, but only a subset of features is
supported, and neither the event pool mechanism nor the concept of run-to-completion step (an important
concept in SMDs) are discussed.

In [FS07], another formal semantics is de�ned for a subset of UML state machines features. The remaining
features are informally transformed to the formalised features. However, the informal transformation proce-
dure as well as the extra costs it introduces might make this approach not suitable for tool development and
formal veri�cation.

We believe the most complete work providing an operational semantics is [LLA+13], where we considered
the entire syntax of UML state machines, with the exception of timed aspects.

Limits of direct operational semantics approaches The drawbacks of providing an operational se-
mantics are twofold. First, these approaches require the development of an ad-hoc tool, which may be time
consuming. In contrast, translation approaches bene�t from state-of-the-art veri�cation tools (the only tool
to be implemented is the tool to perform the translation, which we believe is much less cumbersome than
implementing a model-checking tool). These state-of-the-art model checkers often bene�t from several years
of development and maturation, and embed many optimisations to perform e�cient veri�cation.

Second, these operational semantics approaches are less easy to maintain: in case of new syntactic con-
structs introduced by the OMG, or in case of changes of the syntax and/or the (semi-formal) semantics,
then not only the operational semantics shall be changed, but also the associated veri�cation tool.

1.1.2. Translation to Existing Formalisms

Considering translations, we consider in particular (variants of) CSP (Communicating sequential processes)
and Petri nets, as they are the most common target formalisms in the literature; furthermore, translations
to CSP and Petri nets are also quite complete works in terms of the subset of the UML syntax considered
in the translation. These two formalisms are also natural: CSP is a hierarchical language that captures the
hierarchy of SMDs, whereas Petri nets have a token system that captures the active state of SMDs. We also
report approaches translating SMDs into other formalisms such as extensions of automata, abstract state
machines or Promela (the input language of the SPIN model-checker).

Translation to CSP Ng and Butler [NB02, NB03] propose to translate UML state machines into CSP.
However, many features of UML state machines, such as the priority mechanism, are not modelled.

Zhang and Liu [ZL10] provide an approach which translates UML state machines into CSP], an extension
of the CSP language, which serves as the input modelling language of PAT [SLDP09]. Advanced modelling
techniques such as use of data structures, join/fork, history pseudostates, entry/exit behaviours (but with no

Formalising Concurrent UML State Machines Using Coloured Petri Nets 3

use of variables inside) are considered, and liveness and safety properties are checked using PAT. However,
the transition selection (including priorities) does not seem to be considered.

Jacobs and Simpson [JS15] present a translation of SysML activities and state machines into CSP, which
includes a limited set of syntactic constructs of UML state machines.

Note that CSP does not provide a graphical representation, in contrast to Petri nets.

Translation to Petri nets A natural target formalism for translating UML state machines is Petri nets
(and their extensions), as it is graphical, and the OMG mentions them in the UML speci�cation 1) when
mentioning that �Activities [are] de�ned using Petri-net-like graphs� [OMG15, p.283], and 2) when mentioning
that join pseudostates in state machines are �similar to junction points in Petri nets� [OMG15, p.311].

Several approaches use CPNs for modelling and analysing concurrent systems. The work proposed in
[PG00] presents an approach using CPNs to model and validate the behavioural characteristics of concurrent
object architectures modelled by UML. The authors discuss how to map active/passive objects as well as
message communications into CPNs. Though not speci�cally dealing with UML state machines, that paper
provides a general idea of transforming UML diagrams to CPNs. In [PG01], state-dependent objects with
their statecharts are mapped to CPNs. Each state-dependent object contains an encapsulated statechart
that will be used when receiving an event. In the approach, it is not clear which set of syntactic elements
for statecharts is taken into account during the mapping to CPNs. In the same manner, the work in [PG06]
consists in modelling and analysing concurrent object-oriented software using behavioural patterns and
CPNs. This approach uses collaboration diagrams to model a set of objects (each object has an associated
UML state machine diagram). Each object has a stereotype to indicate which patterns to use, knowing that
there is a set of de�ned patterns. In our work, we are interested in de�ning a semantics (using a translation
algorithm) of UML state machines.

Trowitzsch and Zimmermann [TZ05] propose to translate a subset of timed UML state machines into
stochastic Petri nets. The approach does not cover many UML state machines features, but timed events are
discussed.

Lian et al. [LHS08] present a tool that allows to perform di�erent operations to analyse UML statechart
diagrams at di�erent levels of model complexity. The analysis operations are based on the analysis of Petri
net models converted from UML statecharts.

Hillah and Thierry-Mieg [TH08] present an approach that translates UML models (activity diagrams,
etc.) to an instantiable Petri net. The translation is implemented using the BCC (Behavioural Consistency
Checker) prototype.

More recently, a translation from SMDs to Petri nets was proposed in [CKZ11] where SMDs include syn-
chronisation, limited aspects of hierarchy, join and fork (with no inter-level transitions); history pseudostates
and variables are not considered.

In [ACK12], we propose an approach di�erent from the work by [CKZ11], where we support a larger
subset of UML state machine features, including state hierarchy, local/external transitions, entry/exit/do
activities, etc. However, a limitation of that approach is that concurrency is left out: hence fork and join
pseudostates, as well as orthogonal composite states are not considered.

[ABC14a] extends [ACK12] by reintroducing the concurrency; hence [ABC14a] supports the syntactic
elements considered in [ACK12], with the addition of fork and join pseudostates, as well as some cases of
inter-level transitions. This paper builds on top of the work presented in [ABC14a].

Finally, Luciano et al. [BP01] propose another approach to formalize UML with high-level Petri nets, i.e.
Petri nets whose places can be re�ned to represent composite places. Note that high-level Petri nets are not
coloured Petri nets, but both high-level Petri nets and CPNs give a higher level of abstraction in Petri nets,
and lead to more compact models. In that work, class diagrams, state diagrams and interaction diagrams
are considered. Customisation rules are provided for each diagram. But the authors do not provide details
about those customisation rules; instead, they illustrate the steps with the hurried philosopher problem.
The analysis and validation are also discussed, especially how to represent in UML the properties (such as
absence of deadlocks, fairness etc.), as well as how to translate them into Petri nets representations.

Automata Other approaches translate UML speci�cation into an intermediate model of some model
checker, e.g. SPIN [Hol03]. The �rst work with SPIN as a target [LMM99] presents a translation scheme for
SMDs into a Promela model (the input language of SPIN), and then invokes SPIN for veri�cation; advanced
modelling technique such as fork, join, history pseudostates, entry and exit behaviour of states, variables
and multiple state machines are not considered. In [GLM02] an extension of [LMM99] is proposed to include

4 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

multiple UML state machines communicating asynchronously. This approach considers a subset of UML
state machines and does not consider the pseudostates (except the initial pseudostate) and actions.

A translation of SMDs to SPIN is also considered in [JDJ+06] with both hierarchical and non-hierarchical
cases; history, fork, join pseudostates, entry and exit activities are not supported. In [CJ09], a prototype tool
is designed to link SPIN with RSARTE (IBM Rational Software Architect RealTime Edition), a modelling
tool for UML diagrams. This work focuses on all kinds of RT-UML diagrams, i.e. UML diagrams related with
real-time features. As part of UML, state machines are also translated into Promela in their approach. Since
their work is not aiming at speci�cally model checking UML state machines, it does not provide detailed
discussions about each feature of UML state machines, but discusses the communications between di�erent
objects. In contrast, we do not focus here on real-time, but aim at considering most of the syntax of UML
state machines in our translation.

Knapp et al. [KMR02] present a work to verify real-time systems using UML state machines, UML
collaboration diagrams and UPPAAL timed automata. They propose a prototype tool called HUGO/RT
that veri�es automatically whether scenarios speci�ed by UML collaboration with time constraints are indeed
realised by a set of timed UML state machines. The tool implements the translation of timed UML state
machines into timed automata, and the time-annotated collaborations into an observer UPPAAL timed
automaton. The UPPAAL model checker [LPY97] is used to verify the timed automata representing the
model against the observer timed automaton.

Other translation approaches An approach proposed in [Per95] provides a representation of statecharts
using transitions structures. This approach considers a simpli�ed version of statecharts and does not consider
variables.

In [GP98] the authors propose a transformation of statechart diagrams into graphs to show the intended
semantics. However there is a lack of information about which elements are taken into account such as
entry/exit actions, internal transitions, or (fork/join, junction, choice) pseudostates.

A work proposed in [LBC99] de�nes a process-algebra semantics for statecharts. This semantics is ac-
companied with a language called SPL (statecharts process language). However, this approach takes into
account only subsets of Statecharts in which boundary-crossing transitions are disallowed.

In [BRS00], abstract state machines (ASMs) are used to formalise informal state requirements. ASMs al-
low to formulate conditions for system validation and veri�cation. The syntax model covers many UML state
machines features such as deferred events, completion events and internal activities. However, pseudostates
such as fork, join, junction, choice, terminate are not considered.

1.2. Contribution

We introduce here a new translation of concurrent SMDs into CPNs. We take into account most syntactic
features, i.e. state hierarchy with entry/exit/do behaviours, shallow history pseudostates, (synchronised)
events, fork/join, variables and local/external or inter-level transitions.

This translation represents our understanding of the state machine speci�cation (proposed by the OMG).
We use a tool (Papyrus) for the graphical representations of state machine diagrams that implements exactly
the constraints of the speci�cation proposed by the OMG. For the ambiguity parts of some elements in the
speci�cation of UML, we propose an interpretation.

We entirely revise the translation mechanism of [ABC14a], leading to what we think is a signi�cantly
clearer solution. This also leads to a simpler translation algorithm. In particular, in [ABC14a] we used a
�xed structure in CPNs to represent entry and exit behaviours of SMDs and this yielded an unwanted
complexity. This is now replaced by instructions associated with transitions. Another new contribution is
that in order to clarify our approach, we present in a systematic way some cases (in Section 4.5) to be taken
into account in order to translate a transition (triggered or not by an event) between two states, that may
be simple, composite, orthogonal etc., with/without entry/do/exit behaviours. We release the constraint we
had in [ABC14a] that was requesting all states to have entry and exit behaviours. In addition to the syntax
taken into account in [ABC14a], we also added history pseudostates. Our solution is also consistent with
the notion of run-to-completion step of UML SMDs, and we present an extension to take into account the
transition selection algorithm of the OMG speci�cation. We also present in a detailed way our case study,
and show how the associated CPN can be used to achieve some property veri�cation (properties were not
addressed in [ABC14a]).

Formalising Concurrent UML State Machines Using Coloured Petri Nets 5

We also give hints on how some of our assumptions can be lifted, and how to extend our translation to
the syntactic elements not considered in this work. Altogether, this makes our translation cover the vast
majority of syntactic constructs de�ned in [OMG15], with only two signi�cant exceptions: deferred events
and the integration of real-time constraints.

Outline We �rst present in Section 2 the formalisms we use (viz. SMDs and CPNs). We present in Section 3
a motivating example of a CD player, that is used throughout the article. In Section 4, we describe our
formalisation of UML state machines by translating them into coloured Petri nets. In Section 5, we extend
our approach so as to take into account the transition selection algorithm of the UML. In Section 6, we apply
our translation scheme to the CD player. We conclude and give some perspectives in Section 7.

2. Basic Concepts

2.1. UML State Machine Diagrams

In this section, we �rst recall state machines as proposed by the OMG (Section 2.1.1), and we then formalise
the syntax while introducing assumptions (Section 2.1.2). We put more focus on some points that require
some precise care, and do not present those that we do not consider (e.g. choice pseudostate, junction, entry
point, exit point, etc.).

2.1.1. Recalling UML State Machines

The underlying paradigm of UML SMDs [OMG15] is that of a �nite automaton, i.e. each entity (or subentity)
is in one state at any time and can move to another state through a well-de�ned conditional transition. The
UML provides an extended range of constructs for SMDs. In the following, we recall those elements. In
addition to our motivating example (depicted in Fig. 3 in Section 3), we also use an SMD (depicted in
Fig. 1) with the elements that we take into account. This example does not correspond to a real life case
study but contains most important subtle situations of SMDs (especially regarding transitions).

States UML de�nes three kinds of states, that may (or not) contain regions: simple states (e.g. S11 in
Fig. 1), composite states (e.g. S1 and S13 in Fig. 1) and submachine states.

A simple state has no region, and hence neither any internal state nor any transition. A composite state
is a state that contains at least one region and can be a simple composite state or an orthogonal state. A
simple composite state has exactly one region, that can contain other states, allowing to construct hierarchical
SMDs. An orthogonal state (e.g. S1 and S13 in Fig. 1) has multiple regions (regions can contain other states),
allowing to represent concurrency. Regions are separated using a dashed line. Each composite state must not
be empty, and each region contains at least one state. Given a region of a composite state, we refer to its
direct substates as the set of states immediately contained in this region (e.g. in Fig. 1 the direct substates
of the lower region of S1 are S13, S14 and the �nal state of the region), and to its indirect substates as the
transitive closure of the substate relation (e.g. in Fig. 1 the indirect substates of the lower region of S1 are
S13, S131, S132, S14, and three �nal states).

A submachine state refers to an entire State Machine that can be nested within a state.
A root state is a state that does not belong to any composite state (e.g. S1 and S2 in Fig. 1).

Final states A �nal state (e.g. the right-most state in the lower region of S2 in Fig. 1) is a special kind of
state which, when entered, signi�es that the enclosing region has completed.

Behaviours Behaviours may be de�ned when entering states, when exiting states, while being in states
(when states have a do behaviour) or when �ring transitions. The entry behaviour is executed either when
the state is entered through an external transition (i.e. when the arrow crosses the state border or touches it
from outside, see below), or if that state is the target of a transition from an initial pseudostate belonging to
a composite state that is itself entered through an external transition. The exit behaviour is executed either
when the state is exited through an external transition or, in the case of a state belonging to a composite
state, when that composite state is itself exited. The do behaviour is executed only after the execution of
the entry behaviour of the state, and continues to be executing (in parallel with others behaviours, if any)

6 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

Fig. 1. Example of a state machine diagram

until it completes or the state is exited. (In Section 4.4 we explain how to take into account concurrently
executable actions.)

PseudoStates The di�erence between a state and a pseudostate is that the active system state can be a
state (or several states), but not a pseudostate. UML de�nes di�erent kinds of pseudostates, described as
follows.

Initial An initial pseudostate is the starting point of a region. Each composite state (simple or orthogonal)
and each state machine may have an initial pseudostate. A transition outgoing from an initial pseudostate
may have an associated e�ect behaviour but not an associated event or guard.

History Only composite states can have, at most, one history pseudostate in each region. UML de�nes two
kinds of history pseudostate: shallow history pseudostates and deep history pseudostates.
A shallow history pseudostate �is a kind of variable that represents the most recent active state con�gu-
ration of its containing State, but not the substates of that substate� [OMG15, SectionPseudostate and
PseudostateKind, p.310], which means that the pseudostate saves only the latest visited state inside its
containing composite state. Shallow history pseudostates are depicted using an �H�. In Fig. 1, there is one
shallow history pseudostate in each of the two regions of S1.
In contrast, a deep history pseudostate saves the most recent active state con�guration of all visited states
inside the containing composite state (the state con�guration is restored when a transition is terminating
on the pseudostate).

Fork and join UML de�nes two kinds of pseudostates that allow the merge or the split of transitions.
The join pseudostate allows many transitions (originating from states of di�erent orthogonal regions) to
be merged into one transition. The outgoing transition from a join pseudostate is executed only after
the execution of all incoming transitions. The transitions that terminate on a join pseudostate cannot
have a guard and/or an event. The fork pseudostate allows one transition to be split into transitions
that terminate on states in regions. As the join pseudostate, the transition that terminates on the fork
pseudostate cannot have a guard or event. For example, in Fig. 1, when the system is jointly in states S21
and S23, the join pseudostate can directly lead to the root �nal state. We leave out �implicit� forks and
joins, i.e. that do not explicitly enter or exit all regions of a composite state. In a composite state with
three regions, an implicit fork could have two incoming transitions, one coming from the �rst region, one
coming from the second, but no transition coming from the third region.

Transitions UML de�nes three kinds of transitions: external, local and internal.
The UML speci�cation seems to be ambiguous w.r.t. transition kinds, with two contradictory de�nitions

(Section 14.2.3.8.1 on p.312 and Section 14.2.4.10 on p.332 in [OMG15]). We choose here to follow the
(informal) semantics de�ned in [OMG15, Section 14.2.4.10, p.332], as it refers to graphical examples that
make the illustration much more clear than the ambiguous text.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 7

An internal transition is not depicted explicitly in the SMD ([OMG15, p.332]); still, they can be de�ned
in internal transitions compartments ([OMG15, Section 14.2.4.5, p.317]) where they can have a guard and an
associated behaviour. In order to keep our translation simple, we leave internal transitions out, and discuss
in Section 4.6 how to integrate them back.

A local transition �can originate from the border of the containing composite State, or one of its entry
points, or from a Vertex within the composite State� ([OMG15, p.332]). It does neither execute the exit nor
the entry behaviour of its containing state; graphically, the arrow touches from inside but does not cross the
border of the containing composite state. For example, the transition to the history pseudostate of the lower
region of S1 and labelled with event b in Fig. 1 is a local transition.

An external transition is a transition that is neither an internal transition nor a local transition. For
example, the transition to the history pseudostate of the lower region of S1 and labelled with event c in
Fig. 1 is an external transition. All other transitions of Fig. 1 are external, with the exception of the transition
leading to the history pseudostate of the upper region of S1.

High-level transitions are transitions originating from a composite state.

We also emphasize the transitions called �inter-level transitions�, that are a kind of transitions that cross
the border of some composite state. For example, the transition from S14 to S21 in Fig. 1 is an inter-level
transition. Many works in the literature do not consider inter-level transitions (e.g. [PG00, NB02, TZ05,
CKZ11, JS15]), whereas our translation does.

Each kind of transition can have a guard (e.g. track 6= trackCount on the self-transition below BUSY in
Fig. 3), an event (e.g. stop on the top-most transition between BUSY and NONPLAYING in Fig. 3), a behaviour
(e.g. track++ on the self-transition below BUSY in Fig. 3), and can be a completion transition (a transition
without event) or a transition with event.

The order of exit behaviours execution while exiting a state by a transition is as follows: if the source
state of the transition (a completion transition or a transition with event) is a simple state then we need
to execute only the exit behaviour of this state. If the source state of the transition is a composite state, in
the case of a completion transition we only execute the exit behaviour of the composite state. In the case
of a transition with event, �When exiting from a composite State, exit commences with the innermost State
in the active state con�guration. This means that exit Behaviors are executed in sequence starting with the
innermost active State.� [OMG15, Section State, p.308] This rule is applied to each region of the composite
state, if it is an orthogonal state.

The order of entry behaviours execution while entering a state by a transition is symmetrical: if the target
state is a simple state then we execute the entry behaviour of this state. If the target state is a composite
state, then we execute at �rst its entry behaviour after which, for each of its regions, we execute in sequence
the entry behaviours of all (direct and indirect) substates of that region that are initial states (i.e. states that
are target of an initial pseudostate). The execution of the behaviours of the various regions of a composite
state is performed in a concurrent manner.

The run-to-completion step in the SMD is the full execution of the behaviours associated with a tran-
sition with an event, or a completion transition. That is, the guard is tested, the exit behaviours of the
source state(s) are executed (if any), the behaviour associated with the transition is executed, and the entry
behaviours of the target state(s) are executed (if any).

The UML speci�cation also de�nes a notion of transition selection: whenever an event is dispatched,
zero, one or more transition(s) can be executed. In short, completion events have dispatching priority, i.e.
they are dispatched ahead of any pending event occurrences in the event pool. However, the relative order
between completion transitions is unspeci�ed. For a given event, the enabled transitions are those who can be
triggered by this event, such that all source states are active, and the guard associated to which is satis�ed.
Then, a transition t can �re provided no transition is enabled in a (possibly indirect) substate of the source
state(s) of t. This has two implications: �rst, several transitions can �re together during the same run-to-
completion step, as long as they are in di�erent regions. Second, there may be some non-determinism, e.g.
in the case of a simple state with two outgoing transitions with the same trigger, and guards that may be
both satis�ed (in which case only a single transition will �re). Also note that, whenever a dispatched event
matches no enabled transition, then the event is just discarded.

8 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

2.1.2. Formalisation and Assumptions

Let us present the set of elements of UML SMDs that we take into account in our translation and the
assumptions that we made on some de�nitions of UML. The set of UML SMD elements that we consider in
this work is the following.

• Simple states, �nal states, simple composite states and orthogonal composite states;

• Entry, exit and do behaviours, involving variables;

• Initial, shallow history, fork and join pseudostates;

• Hierarchy of states and behaviours;

• Transitions: simple, with event, with guard and activity e�ect, local, external, inter-level, high-level.

Note that we will discuss how to lift some of our assumptions and how to consider more syntactic
constructs in Section 4.6.

States We take into account two kinds of states, viz. simple and composite. Submachine states are not
considered in our translation (see Section 4.6 for hints).

Behaviours As in [ACK12, ABC14a], we abstract behaviours using name b (corresponding to the actual
behaviour expression) and function f to express changes induced on the system variables, that we will
denote by V. This abstraction captures both behaviours described using expressions (e.g. fadein in the entry
behaviour of state PLAYING in Fig. 3), and behaviours involving modi�cations of variables (e.g. track++ in
the behaviour associated with the self-transition on state BUSY in Fig. 3). The set of all behaviour expressions
will be denoted by B; none denotes absence of behaviour expression.

The behaviour is hence denoted by (b, f) ∈ ((B ∪ {none}) × List(F)), i.e. a behaviour expression, and
an ordered list of functions in F , where F is the set of functions assigning to one variable of V a value
depending on the values of the other variables. We assume that a do behaviour is an atomic behaviour that
can be executed as many times as wished. This is a rather strong assumption in our setting; we discuss it in
Section 4.6. We also require that only simple states have a do behaviour (see Section 4.6 for a discussion).

Initial pseudostates We require that each region contains one and only one (direct) initial pseudostate,
which has one and only one outgoing transition. In accordance to the speci�cation [OMG15], we also consider
that the active state of the system cannot be an initial pseudostate. Note that this is a modelling choice
only: if one wants to model an SMD where the system can stay in an initial pseudostate, it su�ces to add
another state between the initial pseudostate and its immediate successor.

Recall that a transition outgoing from an initial pseudostate may have an associated e�ect behaviour; to
keep our translation simple, we leave out this aspect.

We assume a function init(s) (where s denotes a composite or simple state) that returns the set of
direct simple substates that are the target of an initial pseudostate transition, or {s} if s is a simple state.
Similarly, init∗(s) returns the set of all (direct and indirect) simple substates that are the target of an initial
pseudostate transition, or {s} if s is a simple state. We lift init∗ to sets of states by returning the union of
init∗ for each state in the set. By extension, we denote by init∗(SMD) the set of all (direct and indirect)
simple states that are the target of the (unique) initial pseudostate transition at the top level of the state
machine SMD .

History pseudostates In this work, we consider only shallow history pseudostates (deep history states
are discussed in Section 4.6). Furthermore, we rule out default shallow history transitions (transitions that
specify the system behaviour if the composite state was never entered, or when the latest state visited is the
�nal state). Given a history pseudostate H, we denote by r(H) the region of which H is a direct substate. The
SMD transitions of which H is the target can be of any kind (originating from simple or composite states,
local or external, join, inter-level), with a single exception: to keep our algorithm simple, we rule out fork
transitions of which one of the target states is a history pseudostate. Lifting this assumption can be done
easily, but at the price of more complicated algorithmic statements (see Section 4.6).

Final states �Each region [. . .] may have its own initial Pseudostate as well as its own FinalState.� [OMG15,
Section 14.2.3.2, p.304]: we allow zero or one �nal state(s) in each region of a composite state.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 9

We de�ne function final(s) that returns the set of direct �nal states of all regions in composite state s.
Similarly, final∗(s) returns the set of all (direct or indirect) �nal states of all regions in a (composite) state
s, or {s} if s is a simple state. We lift final∗ to sets of states by returning the union of final∗ for each state
in the set.

Variables We allow any kind of variables in any behaviour and transition guard. Such variables (Boolean,
integers, lists, etc.) are often met in practice (e.g. [ZL10, ACK12, OMG15]). We do not go into details, and
we assume that variables all have a type, and that expressions de�ned subsequently (guards, modi�cations
of the variables in behaviours) are well-typed.

Fork and join pseudostates Concerning fork and join pseudostates, we make a rather important change
w.r.t. the spirit of the speci�cation (though without impact on the semantics), as follows. Consider the join
pseudostate in Fig. 1 that joins transitions from states S21 and S23 to the root �nal state. In this situation, the
UML speci�cation considers one pseudostate (the join pseudostate) and three transitions, two leading to the
join pseudostate, and one originating from the join pseudostate. In contrast, we consider a single transition
with multiple source states (for join pseudostates) or multiple target states (for fork pseudostates). Then,
the join and fork pseudostates themselves will not be formalised in De�nition 1.

Transitions We take into account both external and local transitions; we also consider inter-level transitions
but with a restriction on concurrency: if the transition crosses the border of the source (resp. target) state,
then that state must not be an orthogonal composite state. Each transition can be labelled by one or more
event(s); in order to keep our algorithm simple, we consider only transitions with one event (details on how
to relax this assumption can be found in Section 4.6.1).

We reuse from [ABC14a] the concept of level state (denoted by sLevel) of a transition from s1 to s2,
that is the innermost state in the hierarchical SMD structure that contains the transition. For example, the
level state of the transition from state PLAYING to PAUSED in Fig. 3 is BUSY. The level state is the SMD
itself if both the source and the target of the transition are root states. For example, consider the transition
from BUSY to NONPLAYING labelled with event stop in Fig. 3: the level state of this transition is the state
machine itself. The concept of level state allows us to di�erentiate between local and external transitions.
For example, in Fig. 1, the level state of the transition labelled with b to the history pseudostate of the lower
region of S1 is S1 (since this transition is a local transition) whereas the level state of the transition labelled
with c to the same history pseudostate is S.

Often, the level state of a transition is also the least common ancestor of the source and target states, i.e.
LCA(S1, S2). (Recall that �the operation LCA(S1, S2) returns the Region that is the least common ancestor
of Vertices S1 and S2, based on the StateMachine containment hierarchy� [OMG15, p.356].) An example
where the LCA does not match the concept of level state is the transition labelled with c from S1 to the
history pseudostate H of the lower region of S1 in Fig. 1. Indeed, LCA(S1, H) is S1, whereas the level state of
the same transition is S (the SMD itself).

Formalisation of an SMD We formalise the syntax of state machines below. Our de�nition of the UML
state machines syntax does not di�er from the UML, with the exception of some syntactic constructs that are
discarded, and some assumptions that we made (and that are explicitly mentioned in our work). However,
our presentation of the syntax di�ers, so as to ease our subsequent translation. For example, forks and
joins in our de�nition are complex transitions (with multiple source and target states), whereas in the UML
speci�cation forks and joins are just pseudostates, i.e. nodes.

De�nition 1. A State Machine Diagram is a tuple
SMD = (S,B, E ,V,P,N ,X ,D,SubStates, T), where

1. S is a set of states (including pseudostates),

2. B is a set of behaviour expressions,

3. E is a set of events,

4. V = {V1, . . . , VNV
} is a set of NV variables (for some NV ∈ N),

5. P : S → Pr associates with each state a single property within Pr = {isSimpleNotFinal , isComposite, isFinal , isInit ,
isHistory},

10 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

p1 N

t[i 6= 2] v := !v + i

p2 N× B

i

(i, true)

(a) Global variable notation

p1 N

t[i 6= 2]

p2 N× B

pv N
i

(i, true)

v

v + i

(b) Corresponding semantics

Fig. 2. Global variable notation and corresponding semantics

6. N : S → ((B ∪ {none})× List(F)) associates with each state an entry behaviour, i.e. an ordered list of
functions in F , where F is the set of functions assigning to one variable of V a value depending on the
values of the other variables,

7. X : S → ((B ∪ {none})× List(F)) associates with each state an exit behaviour,

8. D : S → ((B ∪ {none})× List(F)) associates with each state a do behaviour,

9. SubStates : S → 2S associates with each state the set of its direct substates,

10. T is a set of transitions of the form t = (S1, e, g, (b, f), sLevel ,S2), where

• S1,S2 ⊆ S are the source and target set of states respectively, with the following constraints:

� S1 or S2 may contain exactly one state (in the case of simple transitions between two states), or
more than one state (in case of fork or join transitions);

� if S1 (resp. S2) contains more than one state, each of these states must be a direct substate of a
di�erent region of the same composite state; and this composite state cannot have more regions
than the number of states in S1 (resp. S2);

• e ∈ E ∪ {noEvent}, where noEvent is a special value denoting that the transition has no event,

• g is the guard (i.e. a Boolean expression over the variables of V),
• (b, f) ∈ ((B ∪ {none})× List(F)) is the behaviour to be executed while �ring the transition, and

• sLevel ∈ S is the level state containing the transition, and such that any state belonging to S1 ∪ S2

is a (possibly indirect) substate of sLevel .

Note that the functions mentioned earlier in this section (e.g. init∗, final∗, etc.) can be de�ned using the
elements of the tuple given in De�nition 1.

2.2. Coloured Petri Nets with Global Variables

Let N denote the set of natural numbers, and B the Boolean type.
Coloured Petri nets (CPNs) [JK09] are a kind of automaton represented by a bipartite graph with two

kinds of nodes, viz. places (drawn as circles with the name inside, e.g. p1 in Fig. 2(a)) and transitions (drawn
as rectangles with the name inside, e.g. t in Fig. 2(a)). Note that, in most of our �gures (exported from
CPNTools), places are often depicted using ellipses instead of circles. Places can contain tokens, possibly of
a complex value; the tokens in a place should be of the place type (e.g. type N× B in Fig. 2(a)). A special
type, null (denoted by •), is used for tokens that do not carry any value. Directed arcs connect places to
transitions (input arcs), and transitions to places (output arcs). Arcs are labelled by an expression where
some variables of the corresponding place type may appear (e.g. v + i in Fig. 2(b)). Transitions may have a
guard (e.g. [i 6= 2]), that is a condition to be met for the transition to �re (no guard shown means true).

Global variables and code segment We use here the concept of global variables, a notation that does
not add expressive power to CPNs, but renders them more compact. Global variables can be read in guards
and updated in transitions along a �code segment�. An example is given in Fig. 2(a): v is a global variable
of type N. This variable is updated in the code segment associated with transition t to the expression !v + i
(where i is the value of the token coming from p1); !v is the CPNML notation denoting an access to the
value of !v.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 11

Such global variables updated in code segments are supported by some tools (such as CPNTools, with
some limitations though). Otherwise, one can simulate a global variable using a �global� place, in which a
single token (of the variable type) encodes the current value of the variable.

This construction is equivalent to the one in Fig. 2(b). When a global variable is read in a guard, the
token with value v + i is put back on place pv.

Let us now de�ne formally coloured Petri nets extended with global variables.

De�nition 2. A coloured Petri net extended with global variables (hereafter CPN) is a tuple
CPN = (P, T,A,B, V, C,G,E,MI ,VI), where

1. P is a �nite set of places,

2. T is a �nite set of transitions such that P ∩ T = ∅,
3. A ⊆ P × T ∪ T × P is a set of directed arcs,

4. B is a �nite set of non empty colour sets (types),

5. V is a �nite set of typed variables such that ∀v ∈ V, Type(v) ∈ B,

6. C : P → B is a colour set function assigning a colour set to each place,

7. G : T → Expr(V) is a guard function assigning a guard to each transition such that Type(G(t)) = B, and
Var [G(t)] ⊆ V ,

8. E : A → Expr(V) is an arc expression function assigning an arc expression to each arc such that
Type(E(a)) = C(p)MS , where p is the place connected to the arc a, and MS denotes the multiset,

9. MI : P → Expr(V) is a marking initialization function assigning an initial marking to each place such
that Type(MI (p)) = C(p)MS , and

10. VI is a variable initialization function assigning to each variable an initial value such that, for all v ∈ V ,
Type(VI (v)) = Type(v).

Current state We do not recall the semantics of CPNs, that can be found in, e.g. [JK09]. In short, the
marking is the information on which tokens are present in which places together with their values. The state
evolves when a transition is �red, and tokens are consumed from its source places (according to the input
arc expressions) and generated to its target places (according to the output arcs). In our setting of CPNs
extended with global variables, the current state is the marking and the value of the global variables.

3. A Motivating Example of a CD Player

In this section, we exemplify UML state machines using a CD player described using a UML state machine.
This CD player will be used as a running example; its veri�cation will be carried out in Section 6.

The following description represents a speci�cation of the CD player.

This device is a CD player with �ve buttons: load, play, pause, stop, o�. The typical use of the CD
player is as follows: before the user starts using the CD player for the �rst time, the drawer is closed,
with no CD inside and no button is pressed. When the user presses the load button, the drawer opens
and if the user presses it again the drawer closes. If the drawer is closed and there is a CD inside,
then the player is ready to play, and the track is set to the �rst track; otherwise nothing happens. When
the user presses the play button, if there is no CD in the drawer then nothing happens; otherwise the
player starts reading the CD from the beginning. If the user presses the pause button while reading CD,
the player stops and the drawer remains closed. If the user presses the pause button again, the player
continues reading the CD. The player features a light; this light is on when the player reads the CD, and
o� when the reading is paused or when there is no CD in the drawer. Finally, when the user presses
the stop button, the player stops reading and the user can get back the CD (by pressing the load button)
or start reading again (by pressing the play button). At any time, the CD player can be turned o� by
pressing the o� button.

Fig. 3 shows the UML state machine diagram of the CD player.2

The Boolean variable present encodes whether there is a CD in the player, and the integer variable

2 This example is inspired from a model in [ZL10], augmented with some features such as concurrent states.

12 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

Fig. 3. The CD-Player example

track encodes the current track played by the player. We assume that trackCount is a constant set to some
prede�ned value (e.g. 5).

Let us informally describe the role of each simple state of the CD player:

• CLOSED denotes that the player is currently non-playing and closed.

• OPEN denotes that the player is currently non-playing and open.

• PLAYING denotes that the player is reading a track (i.e. playing music).

• PAUSED denotes that the player is in pause mode, i.e. the track is suspended.

• LIGHTON denotes that a light (e.g. a LED on the player front) is set.

• LIGHTOFF denotes that the light is o�.

The player switches from the state NONPLAYING to BUSY (and vice versa) depending on which button the
user presses. The player switches from state CLOSED to OPEN when the user presses the load button and
vice versa. The player changes from the state NONPLAYING to the state BUSY when the user presses the play
button, and there is a CD in the player (guard present = true). We can switch from the state PLAYING to
the state PAUSED by pressing the pause button. The same button allows the change from the state LIGHTON
and LIGHTOFF. If the user presses the load button, the player reads all tracks of the CD (depicted by a
transition with a guard on track); but if the user presses the load button while playing, then the player
switches from the state BUSY to the state OPEN. The user can switch o� the device anytime (transition off
to the root �nal state).

This example is relatively simple: two variables, two composite states, six non-�nal simple states, a few
transitions. Still, it is not clear at all whether the following properties hold in any con�guration of the system:

1. �the CD player cannot be both closed and open�;

2. �whenever the CD player is in state PLAYING, there is a CD in the player�;

3. �whenever the player is paused, the light is o��;

4. �the value of track never exceeds trackCount�.

These properties cannot be formally veri�ed without a formal semantics. In the following, we will formalise
SMDs so as to be able to verify properties such as these.

4. Formalizing UML State Machines

We present in this section our translation. We start by introducing the general idea (Section 4.1). We then
introduce a method to name the CPN places and transitions resulting from our translation (Section 4.2). We
then present the translation algorithm (Section 4.3), and focus especially on the translation of the hierarchy of

Formalising Concurrent UML State Machines Using Coloured Petri Nets 13

entry and exit behaviours (Section 4.4). We apply our algorithm to sample situations (Section 4.5). Finally,
we brie�y describe how to extend the set of UML constructs considered in this work, when applicable
(Section 4.6). We will extend our scheme to encode priorities between transitions in Section 5.

4.1. General Scheme

Let us �rst present the general view on our translation from UML SMDs to CPNs.

General idea We de�ne a translation scheme where simple states (including �nal states) are translated
into places, whereas SMD transitions are translated into CPN transitions.

In fact, each run-to-completion step is encoded in our scheme by a single CPN transition, which correctly
encodes the �unit� aspect of a run-to-completion step. We believe that this a rather elegant solution. In par-
ticular, it di�ers from previous solutions (e.g. [ZL10, CKZ11, ABC14a]), where some unwanted interleaving
between independent transitions could happen. Note that our solution still allows for interleaving between
the various entry or exit behaviours of concurrent states involved in a single transition.

Although we use coloured Petri nets, all the tokens of the resulting CPN are of type null (�•�); however,
our CPN is still coloured due to the use of global variables and, most importantly, due to the extensive use
of code segments attached to CPN transitions. For sake of clarity, we do not give the type of the arcs and
places in our �gures, as it is always �•�.

Finally, although we correctly encode the hierarchy induced by the composite states, our translation can
be seen as a ��attening� of the state machine, as composite states are not preserved as such (only simple
states are encoded into places). This is in contrast with other approaches using hierarchical (coloured) Petri
nets (e.g. [CKZ11]). Preserving the hierarchy in the destination formalism is the subject of future work.

Entry and exit behaviours Recall that we abstract behaviours using a behaviour expression (b, f), with b
a behaviour expression and f a list of functions modifying the values of the global variables. The translation
of the functions is straightforward (as explained in more details in Section 4.4): each modi�cation of the SMD
variables along an SMD transition will be translated to the very same modi�cation of the corresponding CPN
global variables in the code segment associated with the CPN transition(s) encoding the SMD transition.
That is, each time we exit a state or enter a state by an SMD transition, we add the exit or entry behaviour
(if any) into the code segment of the associated CPN transition. However, to keep this work simple (and
contrarily to [ACK12, ABC14a]), we simply drop the behaviour expressions. We discuss how to reintroduce
them in Section 4.6.

Do behaviours We translate the do behaviour into a CPN transition (more details in Section 4.4), that
contains in its associated code segment a function encoding the behaviour functions f . Then, we add an arc
from the state place to the behaviour transition, and another arc from the behaviour transition to the state
place. This is consistent with our assumption that a do behaviour can be executed as many times as wished
(Section 2.1.2). We discuss how to consider variants of this assumption in Section 4.6. Again, we leave out
the behaviour expression b.

Composite states and pseudostates In contrast to simple states, we translate neither composite states,
nor pseudostates (such as fork, join, initial or history pseudostate) into CPN places (more details in Sec-
tion 4.5). Recall that the di�erence between pseudostates and states is the fact that the current active state
of the system can be a state but cannot be a pseudostate. Hence, the fact that pseudostates are not explicitly
translated into CPN places is in line with the fact that the active state of an SMD is a (set of) simple state(s).
However, their behaviours and all their simple substates (in the case of composite states) will be translated
to places or transitions.

Since join/fork pseudostates are formalised as transitions with multiple source/target states (see De�ni-
tion 1), they require no speci�c treatment: each fork and join pseudostate is represented by a CPN transition
that will link between the places encoding the source states(s) and target state(s).

Shallow history pseudostates Recall that, when entered, a shallow history pseudostate in a composite
state redirects to the latest state visited within this composite state (details about the translation with an
example in Section 4.5.6). This will be achieved using a global variable (one per history pseudostate) that

14 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

SMD element Situation CPN element CPN naming

Variable v - variable v

Final state
Inside an orthogonal state s place s_iF
Inside a simple composite
state s

place sF

The root �nal state place F

Simple state s - place s

History pseudostate
Inside one region place Sh
Inside multiple regions place S_ih

do behaviour of the state s - transition s_do

Transition without event
Single transition between S1
& S2

transition S1_S2

Multiple transitions between
S1 & S2

transition S1_S2_i

Transition with event e
Single transition between S1
& S2

transition S1_e_S2_j

Multiple transitions between
S1 & S2

transition S1_e_S2_i_j

Transition to history pseu-
dostate

Without event transition S1_H_S2

With event e transition S1_He_S2

Table 1. Conventions for naming CPN elements

is updated to the current active state each time the place encoding this state (or one of its substates, for
composite states) is entered. This update is done in the code segment of any transition leading to this place.

Variables Here, we use the concept of global variables that we de�ned in the formalism of CPNs (see
Section 2.2) to encode the value of SMD variables. This is convenient, as global variables in CPNs can be
read in guards and updated along transitions, the same way as the SMD variables.

Handling transitions A main issue in our translation is to encode transitions between composite states
with di�erent regions (orthogonal states), in particular high-level transitions, the variants of forks, joins and
transitions with event (in Section 4.5 we explain the translation of transitions with events or without event
and with di�erent states, such as simple states or composite states). Each such UML transition may in fact
correspond to a large number of transitions. For example, in Fig. 1 taking the SMD transition labelled with
event a corresponds to 18 ways to leave S1 (3 possible active states in the upper region of S1, multiplied by 4
in S13 plus 2 others in the lower region), and hence in 18 CPN transitions. Given an SMD transition t, let us
denote by combinations(t) the function that computes all possible combinations of outgoing simple states.
Each such combination will be translated to one CPN transition. For example, consider the transition from S1
to S2 labelled with b in Fig. 8(a). The states S11 and S12 form one combination; hence, a corresponding CPN
transition will be created, called S1_b_S2_1 in Fig. 8(b) (1 denotes that this is the �rst combination). In
the case of a UML transition without event, we translate it to a single CPN transition, as this combinatorial
explosion does not happen in this case: indeed, to exit a composite state (with one or multiple regions) using
a completion transition, each region needs to be in its �nal state, which yields a single CPN transition.

4.2. Naming CPN Elements

We present in Table 1 the naming conventions for the CPN variables, places and transitions corresponding
to the various elements of UML SMDs taken into account in our translation. Note that i denotes either
the ith region of an orthogonal composite state, or the ith transition between S1 and S2; j denotes the jth
combination considered for this particular transition (we assume that the regions, the transitions and the
combinations are ordered using some lexicographic order).

Formalising Concurrent UML State Machines Using Coloured Petri Nets 15

4.3. Translation Algorithm

We describe in Algorithm 1 the procedure that translates a UML state machine model to a coloured Petri net
model. Throughout the algorithm, the plain elements (places and transitions of the resulting CPN) denote
elements added by the current statement, whereas dashed elements denote elements added by previous
statements. We divide the algorithm into three steps.

First step The �rst step (line 1�line 4) deals with the translation of states with their do behaviour, if any.
For each simple state in the SMD, we add a new place named with the name of the state (as de�ned in
Section 4.2). Then, we add a transition encoding the do behaviour, if any (line 4).

Second step The second step of the algorithm (line 5�line 18) deals with the translation of the transitions
such that no target state is a history pseudostate. In this step, we have two parts. The �rst part (line 6�
line 12) deals with the transitions with an event. Recall from Section 4.1 that, given a transition t, function
combinations(t) returns the list of all possible combinations of outgoing simple states. In terms of data
structures, we assume this result is in the form of a list of sets of states; each set of states represents
a con�guration of the composite state, i.e. one active state in each orthogonal region of the composite
state, in a hierarchical manner. For each such combination, we �rst add a corresponding CPN transition
(line 8). The �rst foreach loop (line 9�line 10) links the place corresponding to each simple state in the
considered combination to the CPN transition encoding the considered SMD transition; the second foreach
loop (line 11�line 12) links the CPN transition encoding the considered SMD transition to the places encoding
each of the simple states pointed by an initial pseudostate in the target state of the SMD transition.

In the second part of the second step (line 13�line 18), we deal with the UML transitions without event.
First, we add a CPN transition that will correspond to the UML transition (line 13). Then, we link all
places corresponding to a �nal state of the source of the UML transition to the CPN transition (line 15�
line 16). Finally, just as for transitions with an event (see above), we link the CPN transition to the places
encoding each of the simple states pointed by an initial pseudostate in the target state of the SMD transition
(line 17�line 18).

Third step The last step (line 19�line 26) deals with the transition targeting a single shallow history
pseudostate. Recall from Section 2.1.2 that we rule out fork transitions targeting history pseudostates, hence
the target state is necessarily unique here. In contrast, the source of the transition can be multiple, and one
or more source state(s) can be a composite state, which requires to enumerate again the various combinations
of source simple states (line 20).

Then, for each possible target of the history pseudostate (�s2�), i.e. for each possible non-�nal state in
the region of the history pseudostate, we add a dedicated transition (line 22). This CPN transition will be
guarded later on (by function DecorateH ()) so that it can only be taken if s2 was the latest visited state in
this region. This transition has as sources the places encoding all simple states in the considered combination
(line 24), and as target the places encoding all initial states of the target of the history pseudostate (line 26);
indeed, there can be more than one if the target of the history pseudostate is a composite state.

Initial place We add a special place, that will contain the (unique) initial token (line 27). This place is
connected via a transition to all initial simple states of the SMD (line 28�line 29). The transition will be
decorated (by function AddBehaviours()) with all the necessary entry behaviours that shall be performed
when initialising the SMD. For example, in the SMD in Fig. 6(a), the unique initial simple state is S1. Then,
in the CPN in Fig. 6(b), a place init is connected to S1 via a transition along which the appropriate entry
behaviours (of S and S1) are performed.

Handling guards and behaviours We encode the addition of the behaviours and guards to the appro-
priate code segments using three functions AddGuards(), DecorateH () and AddBehaviours() (line 30).

The �rst function AddGuards() is straightforward: it simply adds to any CPN transition the guard of the
corresponding SMD transition. For example, given the guard on the left-most transition guarded by i = 0
in the SMD in Fig. 7(a), AddGuards() adds the equivalent guard to the corresponding CPN transition in
Fig. 7(b), i.e. [!i = 0].

The second function DecorateH () adds the necessary guards and variable updates to the CPN transitions,
as follows. First, any CPN transition S1_He_s2_i_j added by Algorithm 1 (line 22) is decorated with a

16 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

Algorithm 1: Translating an SMD (S,B, E ,V,P,N ,X ,D,SubStates, T) into a CPN

// Step 1: Simple states and their do behaviours
1 foreach simple state s ∈ S do
2 Add s

3 if s has a do behaviour then

4 Add s s_do

// Step2: Transitions
5 foreach transition t = (S1, e, g, (b, f), sLevel ,S2) ∈ T with no history pseudostate within S2 do
6 if e 6= noEvent then
7 foreach c ∈ combinations(t) do

8 Add S1_e_S2_i_j // jth combination of the ith transition from S1 to S2 with e
9 foreach simple state s ∈ c do

10 Add
s S1_e_S2_i_j

11 foreach simple state s ∈ init∗(S2) do

12 Add
sS1_e_S2_i_j

13 else

14 Add S1_S2_i // ith transition without event from S1 to S2

15 foreach simple state s ∈ final∗(S1) do

16 Add
s S1_S2_i

17 foreach simple state s ∈ init∗(S2) do

18 Add
sS1_S2_i

// Step 3: History states
19 foreach transition t = (S1, e, g, (b, f), sLevel , H) ∈ T do
20 foreach c ∈ combinations(t) do
21 foreach state s2 such that s2 is a non-�nal direct substate of r(H) do

22 Add S1_He_s2_i_j // jth combination of the ith transition from S1 to H with e
23 foreach state s ∈ c do

24 Add
s S1_He_s2_i_j

25 foreach simple state s ∈ init∗(s2) do

26 Add
sS1_He_s2_i_j

27 Add
init init_S

// S is pointed by the initial pseudostate of SMD
28 foreach s ∈ init∗(SMD) do

29 Add
init_S s

30 AddGuards() ; DecorateH () ; AddBehaviours();

guard � [Sh = s2]�, where S is the region of the history pseudostate (recall that Sh is the CPN variable
encoding the history pseudostate). That is to say that the history pseudostate has target s2 only if s2 is
the latest visited state in its region. Second, for any region S that features a history pseudostate, for any
direct substate s1 of S, for any direct or indirect simple substate of s1, we add the following code segment
to any CPN transition leading to the place encloding this simple state: Sh := “s1′′. This is to record that

Formalising Concurrent UML State Machines Using Coloured Petri Nets 17

the latest visited state in S is now s1. An exception is when s1 is a �nal state: in that case, the code segment
is not Sh := “s1′′, but Sh := “si′′, where si is the state target of the initial pseudostate of the region. This is
consistent with the fact that, when a composite state is left by its �nal state, and entered through its history
pseudostate, then the composite state enters using the default entry, i.e. via the initial pseudostate. We will
exemplify the handling of history pseudostates in Section 4.5.6.

The third function AddBehaviours() is less straightforward, and will be detailed in Section 4.4.

De�ning the initial state of the CPN Recall that the initial state is an initial marking, and an initial
value for all global variables. Concerning the initial marking, we add a token to the unique initial place init.

Concerning the CPN global variables encoding the SMD variables, their initial value is that of the SMD;
if no initial value is de�ned in the SMD, either the model can be considered as ill-formed, or a default initial
value can be assigned (e.g. 0 for integers, false for Booleans, etc.).

Concerning the CPN global variables encoding the value of the history pseudostates, recall that we do
not take into account the default shallow history transitions; hence, we initialise these variables to the state
following the initial pseudostate of the region of this history pseudostate. That is, when a history pseudostate
is entered although its region was never visited before, it will target the state following the initial pseudostate.
This is consistent with the speci�cation (�If no default history Transition is de�ned, then standard default
entry of the Region is performed� [OMG15, p.307]).

4.4. Adding Behaviours to Code Segments

Let us now explain the function AddBehaviours(). Recall that a UML behaviour is abstracted using a pair
(b, f), where b is a behaviour expression and f is a list of functions expressing changes induced on the system
variables. Also recall that we only translate f .

Do behaviours Each do behaviour is encoded by a CPN transition linked with the place encoding the
corresponding state (line 4 in Algorithm 1). Hence, AddBehaviours() simply needs to add to this transition
the code segment equivalent to the functions f . For example, the do behaviour of S2 in Fig. 6(a) (i.e.
j = j+ 1) is translated into a code segment associated with the transition S2_do in Fig. 6(b) (i.e. j :=!j + 1).

Exit and entry behaviours A major di�culty when formalising UML SMDs is to correctly handle the
exit and entry behaviours when taking an SMD transition. Function AddBehaviours() is responsible to
appropriately decorate the code segment of the CPN transitions to take into account all entry and exit
behaviours to be executed when taking an SMD transition.

Recall that, when taking an SMD transition, the exit behaviours should be executed starting from the
innermost states of the source state(s) until the state containing the transition (the �level state� in De�-
nition 1); then, the entry behaviours should be executed starting from the level state until the innermost
initial state of the target state(s) of the transition.

This mechanism is relatively straightforward in the absence of concurrency, i.e. when composite states are
not orthogonal. Consider the transition from S0 to S1 in the SMD in Fig. 4(a): when taking this transition,
�rst the exit behaviour of S0 (i.e. i = 0) should be executed; second, the behaviour associated with the
transition should be executed (i.e. j = 3); third, the entry behaviour of S1 should be executed (i.e. j = j+ 1),
followed by that of S11 (i.e. i = j ∗ 3). As a consequence, the following code segment is added to the CPN
transition S0_S1 in Fig. 4(b) encoding this SMD transition: i := 0; j = 3; j :=!j + 1; i :=!j ∗ 3;.

However, the execution of the behaviours becomes more complicated when concurrency is involved.
Consider the transition from S0 and S1 in the SMD in Fig. 5(a). Once S0 is exited and the transition
behaviour is executed, then the entry behaviour of S1 is executed. Then, the entry into S11 and S12 is done
concurrently, which means that the following sequences of behaviours are possible:

1. exS0(); enS1(); enS11(); enS111(); enS12(); enS121()

2. exS0(); enS1(); enS11(); enS12(); enS111(); enS121()

3. exS0(); enS1(); enS11(); enS12(); enS121(); enS111()

4. exS0(); enS1(); enS12(); enS11(); enS111(); enS121()

5. exS0(); enS1(); enS12(); enS11(); enS121(); enS111()

6. exS0(); enS1(); enS12(); enS121(); enS11(); enS111()

18 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

(a) SMD (b) CPN

Fig. 4. Example of a state machine without concurrency, with behaviours

(a) SMD (b) CPN

Fig. 5. Example of a state machine with concurrency and behaviours

In fact, the only requirement is that the entry behaviour of some state must occur after the entry behaviour
of its containing state(s), i.e. the entry behaviours from the level state to each innermost initial pseudostate
must be executed sequentially (and conversely for exit behaviours); however, all these possible sequences can
be executed in an interleaving manner. All those scenarios are possible in the SMD model and should be
represented and taken into account in the translation.

A simple solution could be to just enumerate all these possibilities, and create one CPN transition for each
sequence of behaviours. Instead, we propose here a function interleave() that is used to model all interleavings,
while keeping our representation compact. Given a list of entry (or exit) behaviours exS1, . . . , exSn, we denote
by < exS1, . . . , exSn > the sequence of behaviours executed in this particular order. Given a list of several
sequences seq1, . . . seqn, our function interleave(seq1, . . . seqn) considers all the possible interleavings between
these sequences of behaviours. That is, in a given sequence seq i, the behaviours are executed sequentially;
but the order between the behaviours of seq i and that of other sequences can be arbitrary. In fact, this
function is syntactic sugar to a list of CPN transitions, each of them containing one particular interleaving.
Using this function makes our �gures much clearer.3

For example, the interleaving of the above behaviours can be represented as follows using interleave():
exS0(); enS1(); interleave(< enS11(); enS111() >,< enS12(); enS121() >)

Finally, recall that there is some non-determinism in UML in the case of concurrently executable transition

3 Although we use this function in our screenshots of CPNTools, this function is in fact not supported by CPNTools. Hence,
in our model of the CD player (Section 6), we do have to duplicate our transitions to model all possible interleavings, which
make the models hard to read. This was a motivation for proposing such a syntactic sugar. Integrating such a function into
CPNTools could be either done in collaboration with the developers of CPNTools, or using a preprocessing script.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 19

(a) SMD (b) CPN

Fig. 6. Example: simple states and �do� behaviour

actions causing data races on global variables. The execution of a CPN is non-deterministic too, i.e. the choice
of the transitions that will be �red is non-deterministic. However, in the veri�cation phase, the model checker
must explore all combinations, i.e. it will consider all possible executions of the state machine. That is to
say that the result of the model-checking phase is of course deterministic.

Although the case of concurrently executable transition actions causes data races on global variables, these
transition actions are still executed in an instantaneous manner. When we add time to our transformation
(see Section 7.2), these actions will de�nitely be executed in 0-time. The result is (in fact) equivalent: after
executing the behaviours in some order in the CPN, the various possible resulting con�gurations (depending
on non-determinism) will be equivalent to that of the SMD after the end of the run-to-completion step.

4.5. Application of the Translation to Sample Cases

We exemplify here our translation (formalised in Algorithm 1) on several situations.

4.5.1. Simple States and �Do� Behaviours

Situation considered Fig. 6(a) shows an example of a composite state S with four simple substates, viz.
S1, S2 the �nal state (SF) of S.

Translation The two simple states in Fig. 6(a) are translated to two corresponding places (S1, S2, SF and
F) in Fig. 6(b). The third place is the unique initial place. We also add a transition (S2_do in Fig. 6(b))
corresponding to the do behaviour of S2.

4.5.2. Transitions Without Events and Orthogonal Regions

Situation considered We consider in Fig. 7(a) transitions without event between, simple/composite and
orthogonal states. In this case, exiting an orthogonal state requires to exit each region inside (through the
�nal states), and then to enter the orthogonal state by entering each initial state of each region. Note that
the entry into the substates of S1 is done in a concurrent manner: that is, when we enter the state S1 we
execute the entry behaviour of S1 after which we can execute the entry behaviour of S11 then the entry
behaviour of S12, or �rst S12 and then S21.

Translation The transition from S0 to S1 is translated into the CPN transition S0_S1 in Fig. 7(b). The
interleave() function is used to model that the entry behaviours of S11 and S12 are executed in a concurrent
manner. The transition between S1 and S2 is translated into the CPN transition S1_S2 in Fig. 7(b). We
exit the state S1 through the �nal states of its regions (i.e. S1_1F and S1_2F), since this transition is a
completion transition.

20 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

(a) SMD (b) CPN

Fig. 7. Example: transitions without event and orthogonal regions

(a) SMD (b) CPN

Fig. 8. Example: transitions with event and orthogonal regions

4.5.3. Transitions With Events and Orthogonal Regions

Situation considered We consider in Fig. 8(a) transitions with event between simple/composite states.
Recall that exiting an orthogonal state through a transition labelled with an event yields several combina-
tions. When exiting S1 through the transition labelled by the event b, the system state can be in any of
these combinations: {(S11, S12), (S11, S13), (S11, S1_2F), (S1_1F, S12), (S1_1F, S13), (S1_1F, S1_2F)}.

Translation We give the translation in Fig. 8(b). The transition labelled with event b between the states
S1 and S2 is modelled by six CPN transitions (one CPN transition for each combination of the simple states
in the orthogonal regions). As an example, for the combination between S11 and S13, we add the transition
S1_b_S2_2.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 21

(a) SMD (b) CPN

Fig. 9. Example: Hierarchy of orthogonal regions

(a) SMD (b) CPN

Fig. 10. Example: fork pseudostate

4.5.4. Hierarchy of Orthogonal Regions

Situation considered We consider here a hierarchy of orthogonal regions of depth 3 in Fig. 9(a). The
orthogonal state S1 contains in its regions other orthogonal states (S11 and S12), themselves containing two
regions each. To enter S1 from S0, we need to execute at �rst the entry behaviour of S1, then execute in
parallel the entry behaviours of S11 and S12 to respect the hierarchy of behaviours.

Translation The translated CPN is given in Fig. 9(b). Recall that, in order to give a compact CPN, we
use the function interleave() that executes the entry or exit behaviours in an interleaving manner. Despite
the depth of the hierarchy, our CPN is indeed very compact. A former version of our work [ABC14a] would
have resulted in a much larger net, due to the exhaustive enumeration of all combinations of sequences of
entry behaviours.

4.5.5. Fork Pseudostate

Situation considered We consider a fork pseudostate in Fig. 10(a), that has a unique source state S0, and
three target states S11, S12 and S13.

Translation We model this fork pseudostate with a single transition S0_S11S12S13 that has as source the
place translating S0, and as target the places translating S11, S12 and S13, as shown in Fig. 10(b). The
code segment of the transition S0_S11S12S13 contains the exit behaviours of S0 and the entry behaviours

22 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

(a) SMD (b) CPN

Fig. 11. Example: Shallow history pseudostate

(performed in an interleaving manner) of S11, S12, and S13. Observe that, due to the relative order of the
behaviours i = i+ 1 and i = i ∗ 2, the value of i can be either 1 or 2 after executing this transition.

4.5.6. Shallow History Pseudostates

Situation considered We consider a shallow history pseudostate in Fig. 11(a). Recall that only composite
states can have a history pseudostate. The transition of the history pseudostate (i.e. the transition labelled
with the event a in Fig. 11(a)) can be reached from any state in the region containing this pseudostate (i.e.
S11, S12 and the �nal state of S1). When this transition is taken, the state machine reaches the state of the
region which was visited last.

Translation We associate with each history pseudostate a variable that saves the current state each time
a transition is traversed inside the region that contains the history pseudostate.

In Fig. 11(b), the variable S1h is updated in any transition leading to a CPN place modelling a substate
of S1 (e.g. the code segment S1h := “S11′′ on transition S0_S1).

Then, for any direct substate of S1, two CPN transitions corresponding to the a transition are created:
one leading to S11 (if S11 was the state visited last), and one leading to S12 (if S12 was the state visited
last). That is, when the history pseudostate is reached by a transition, then the CPN reaches the place
encoding the state that was visited last, which is retrieved thanks to the value of the variable of the history
pseudostate, that is tested in a guard (e.g. the transition S1_Ha_S11_1 with guard �[!S1h = “S11′′]�).

We �nally give another example of a shallow history pseudostate, involving an inter-level transition,
together with some orthogonal regions. The SMD is given in Fig. 12(a), and the CPN in Fig. 12(b). Observe
that the variable S1h is updated to S11 not only when entering the place encoding S11, but also when
entering the places encoding its substates (S111 and S112).

4.6. Beyond our Translation

4.6.1. Lifting Assumptions

Most of the assumptions we made were to make our algorithm simpler. We discuss how to lift them here.

Initial pseudostate with behaviour Recall that a transition outgoing from a initial pseudostate may
have an associated e�ect behaviour; to keep our algorithm simple, we left out this aspect. However, we could
consider it by simply adding to the list of behaviours executed the e�ect behaviour of the initial pseudostate;
this behaviour would be executed after the entry behaviour of the direct parent, and before that of the
considered state.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 23

(a) SMD

(b) CPN

Fig. 12. Example: Shallow history pseudostate with concurrency

Modelling behaviour expressions Recall that, although we do model the modi�cation in variables in
entry, exit or do behaviours, we do not keep in our translation the behaviour expressions (e.g. the entry
behaviour expression �fade in� in state PLAYING in Fig. 3). This prevents us to verify properties such as
�when a track is played (do behaviour play track), then a fade in (entry behaviour fade in) has necessarily
occurred before�. To consider such a property, a global Boolean variable fade in could be added, that would
be set to true when entering the place corresponding to state PLAYING, and set to false when leaving it.
Hence, verifying this property reduces to verifying that the Boolean variable fade in was set to true before
the CPN transition encoding the do behaviour play track �res.

Do behaviours An assumption we made is that only simple states can have a do behaviour. To allow
composite states to have a do behaviour, it su�ces to add the self-loop introduced in step 1 of Algorithm 1
to any (direct or indirect) simple substate of the composite state.

Furthermore, recall from Section 2.1.2 that we assume that a do behaviour can be executed as many
times as wished. This is a stronger assumption. Indeed, CPNs are a discrete model, that cannot capture
the continuous nature of some behaviours such as play track. Our translation could not be lifted easily to
a continuous nature (other formalisms such as CSP would not be able either). However, we could at least

24 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

require that the do behaviour is executed at most once. This would be possible by requiring that the self-loop
introduced in step 1 of Algorithm 1 can only be executed once; this could be performed using an additional
global variable (or a token system), that would only allow this transition to �re at most once every time
the place associated with the state is entered. Continuous do behaviours could be easier to handle when
extending our work to time (see Section 7.2).

Implicit forks and joins Implicit fork / join transitions do not enter / exit from all the regions of an
orthogonal state. There is no di�culty in considering them in our work, except that step 2 of Algorithm 1
should take this particular situation into consideration as follows: for an implicit join, the regions not depicted
in the join can be exited from any state. For an implicit fork, the regions not depicted in the fork must be
entered through their initial pseudostate.

Fork and history pseudostates We required that a fork does not have as a target a history pseudostate.
This assumption could easily be lifted, by fusing steps 2 and 3 in Algorithm 1, while considering more
subcases (e.g., an if condition that would check whether any of the target states is a history pseudostate,
and then adding transitions in the line of step 3).

Transition between pseudostates We do not consider in our work the transitions between pseudostates
(e.g. a transition from an initial pseudostate to a fork pseudostate) in order to keep our algorithm simple.
However, we could consider this situation by simply replacing the pseudostate target of the transition by its
target states.

Transition with multiple events In the speci�cation, each transition can be labelled by one or more
event(s); in our work, we considered only transitions with one event. We could lift this assumption by simply
replacing a transition with n events into n identical transitions with one event, as a transition with multiple
events can be �red as soon as one of its events matches the current triggered event.

4.6.2. Extending the Syntax

Default shallow history transitions Default shallow history transitions could be added very easily to
our translation (we left them out to reduce the number of cases in Algorithm 1). Basically, two operations
should be added: �rst, we shall initialize the variable associated with a history pseudostate to the value of
the target state of the default shallow history transition. Second, when reaching the �nal state of a region
featuring a history state, this variable shall be set, not to the initial state, but to the target state of the
default shallow history transition.

Deep history pseudostates Again, this could easily be added to our translation: instead of recording the
value of the latest state visited, we should instead record the value of the hierarchy of states, i.e. not only
the direct states of the composite state, but all of their (direct and indirect) substates. Hence, the type of
the variable used to model history pseudostate is not anymore a state, but a list of states; furthermore,
this variable should be updated not only when entering a direct substate, but also when entering indirect
substates of the composite state to which the history pseudostate belongs. Finally, when a transition has
as target a history pseudostate, it should target the exact hierarchy of states visited last, and not only the
upper-level state.

Internal transitions Internal transitions can be executed provided their associated trigger is dispatched
and their guard is satis�ed; then, they can execute some behaviour, but do not provoke any entry/exit
behaviour. Hence, they can be considered as local transitions in our translation, with the particularities that
their source and target state is identical, and that no state is entered/exited when executed.

Junctions and choices Junction pseudostates could be added very easily: the target of a junction depends
on the evaluation of the respective guards. The same mechanism could be applied in CPNs, except that we
need to duplicate the CPN transition (one guarded CPN transition for each of the cases).

Modelling choice pseudostates is slightly harder: recall that choices are similar to junctions, except that
the guards are evaluated dynamically, i.e. when the compound transition traversal reaches this pseudostate.
That is, the evaluation may depend on the exit behaviours performed while exiting the active states towards

Formalising Concurrent UML State Machines Using Coloured Petri Nets 25

Element Considered?

Simple / composite states Yes

Orthogonal regions Yes

Initial / �nal (pseudo)states Yes

Terminate pseudostate No (but trivially extensible)

Shallow history states Yes

Deep history states No (but trivially extensible)

Submachine states No (but trivially extensible)

Entry / exit points No (but seems feasible)

Entry / exit / do behaviours Yes

variables Yes

External / local / high-level / inter-level transitions Yes

Internal transitions No (but trivially extensible)

Basic fork / joins Yes

Implicit fork/joins No (but trivially extensible)

Junction pseudostate No (but probably easy)

Choice pseudostate No (but seems feasible)

Deferred events No

Timing aspects No

Table 2. Summary of the syntactic aspects considered

this pseudostate. It is not a problem as such to translate these pseudostates to CPNs; however, if none of
the guards evaluates to true, the CPN must still produce some output token, which may lead to problems in
model checking. Note however that the OMG speci�cation considers this situation as an ill-formed model.
In addition, choice pseudostates will render the transition selection algorithm (Section 5) more cumbersome.
This said, to evaluate whether a transition containing a choice pseudostate is enabled, it su�ces to check the
existence of one full path from the source state con�guration to the dynamic choice Pseudostate in which all
guard conditions are satis�ed; hence, if at least one of the guards of the choice pseudostate (dynamically)
evaluates to true, this does not pose a particular problem (and otherwise, once more, the model would be
ill-formed).

Entry points, exit points, terminate pseudostates, submachine states Entry and exit points do not
pose any particular problem.

Terminate pseudostates (implying that the execution of the entirely SMD is immediately aborted) can be
simply modelled using a global Boolean variable, that is set to false if the terminate pseudostate is reached.
Then, any CPN transition is guarded by a check that this variable is true. This would be similar to the
translation of �activity �nal� nodes of UML activity diagrams into coloured Petri nets in [ACR13].

A submachine state is �semantically equivalent to a composite state� [OMG15, p.309], and hence is in
fact already taken into account by our translation.

Time, deferred events These two points are not considered in our work, and it is unclear whether our
translation scheme could easily be extended to these aspects; hence, integrating these aspects are among our
main future works (see Section 7.2).

5. Transition Selection

Until now, we presented a standalone theory to formalise UML state machines using coloured Petri nets.
This theory extends previous works (e.g. [ABC14a]) by considering most syntactic aspects of UML state

26 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

pe E1`a

ta tb

1`a

1`b

Fig. 13. Modelling the events place and the random event arrival

machines (or discusses how to consider them in a straightforward manner). However, our scheme does not
take into account the priority mechanism of UML.

In this section, we extend our work to take both the event dispatching and the priority management of
UML into consideration.

Beyond the historical reasons (the original version of this work [ABC14a] did not take priorities into
consideration), there are several reasons to separate the handling of priorities from the rest of the translation.
A �rst advantage of considering such a two-step strategy is that our translation (not handling priorities)
formalised as in Algorithm 1 is a standalone work, that takes many syntactic aspects of the UML into account,
with of course the exception of priorities; as many (if not most) translation works from the literature omit
priorities, Algorithm 1 is a good mean to compare our work with previous works. Second, the translation
output by Algorithm 1 is elegant, and �graphically similar� to the original UML state machine; this will not
be the case anymore when considering priorities. Third, we believe it is interesting to separate the handling of
priorities from the rest of the translation, as this is a speci�c aspect of UML state machines that is formalised
in a dedicated part of the OMG speci�cation (i.e. [OMG15, p.315]).

5.1. Event Arrival and Dispatching

We reuse the idea proposed in [CKZ11] to represent events in a given CPN place. First, we assume in the
CPN an enumerated type �event� (denoted by E), the values of which can be the various events appearing
in the source SMD (e.g. a, b, c), together with a special value •, that denotes �no event�. Then, we add one
extra place to the CPN, of type �event�. This place represents the events awaiting processing, i.e. it contains
a set of events (i.e. of CPN tokens the value of which is an event) to be dispatched; hence, it acts as the
events pool of the OMG speci�cation.

We wish to impose neither the way that events appear, nor the way that events are dispatched (�The order
of event dispatching is left unde�ned, allowing for varied scheduling algorithms�, [OMG15, Section 14.2.3.9.1,
p.314]). However, we believe that, if needed, both the event arriving scheme and the event dispatching scheme
can be easily encoded using additional CPN fragments to be connected to our translation. For example,
Fig. 13 depicts a situation where any event can occur anytime: the place pe (of type E) is the events place,
that contains (here) one event a (�1‘a� is the CPN notation for one token of value a). The CPN transition ta
(resp. tb) models the arrival, in any order, at any time, of an event a (resp. b). More complex arrival schemes
can easily be modelled by the user whenever needed.

A small contrast with the UML speci�cation spirit is that completion events are not represented as
tokens, i.e. they do not appear in the waiting events place (i.e. the events pool). In fact, they will be
processed directly when handling priorities: that is, any transition triggered by an event will be blocked
whenever a completion transition is enabled.

5.2. Handling Priorities

5.2.1. Overview

In order to handle priorities, we will make some minor changes to the translation scheme introduced in
Section 4, as well as a few additions. The global spirit of our solution is as follows: First, the events arriving
(i.e. waiting to be dispatched) are now encoded into CPN tokens. Second, for each possible event (say a), a
dedicated (unique) CPN transition will appear in the resulting CPN; this will be achieved by simply fusing
all CPN transitions (created from Section 4) handling an occurrence of this event a. Priorities will be handled
using a (static) CPNML code segment associated with that (unique) CPN transition.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 27

(a) SMD (b) CPN according to Algorithm 1

Fig. 14. Example with priorities

Fig. 15. An example of a fused transition for event a

In order to know whether some transitions can �re (which is needed to handle priorities), we will need
to test for the presence (or not) of tokens in some places of the CPN. A solution could have been read-arcs.
However, to make our scheme simpler, we propose the following: all places created in Section 4 (that used
to possibly contain a token of type •) now systematically contain a unique token, of type B. Basically, when
the UML simple state encoded by this place is active, then the place contains true, and otherwise false.

In the following, we describe our scheme step by step.

5.2.2. Fused Transitions

Any CPN transition in our scheme of Section 4 encoding the same event (say a) is now fused: that is, this
gives birth to a super CPN transition with many incoming places and many outgoing places. We also delete
redundant arcs, i.e. so that at most one arc goes from a given place to a given transition, and conversely.
The behaviours and guards (that were attached to CPN transitions as CPNML code segment in Section 4)
are removed for now. Instead, we will attach a new CPNML code segment to each of these fused CPN
transitions in order to implement the priority mechanism, and determine which UML transition will indeed
be processed (note that there can be none, one or more); the behaviours of these transitions will also be
executed within that CPNML code segment.

In addition, we also add to this transition incoming and outgoing arcs from and to any place that is also
the source of a CPN transition encoding a completion event (in the entire CPN, not only in the current
region). This allows for the attached CPNML code segment to test whether some completion events are
enabled, in which case no transition labelled with an event (e.g. a) should �re.

In order to test for the presence of tokens (or, in fact, whether their value is true) in the CPNML code,
we need to name the variables on the incoming and outgoing arcs: for each place p, we denote by pi the
value coming from this place to the transition, and by po the value from the transition back to the place.
An exception is for the event place: for a transition handling event a, the only value accepted as input is a;

28 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

as for the output, we denote it by eo, as either the token will be sent back (in case a completion transition
is enabled) with the same value a, or the event will be consumed and the value sent back is •.
Example 1. Consider the SMD given in Fig. 14(a) and its corresponding translation according to Algo-
rithm 1 given in Fig. 14(b). Each simple state is represented with a corresponding place (e.g. state S11 is
represented with place S11). Each transition originating from a simple state (with and without event) is
represented with a corresponding CPN transition (e.g. the transition between S11 and S12 is represented
with the CPN transition S11_a_S12). Each transition with an event originating from a composite state is
represented with a set of CPN transitions encoding the combination (e.g. the transition labelled with event
a from S1 to S2 is represented with the CPN transitions S1_a_S2_1, S1_a_S2_2 and S1_a_S2_3). Note
that transitions from a composite state without event have the same mechanism as transitions from simple
states.

The CPN model resulting from the application of Algorithm 1 does not consider the �ring priority of
transitions. For example, the transition from S1 to the root �nal state has (considering the OMG transition
selection algorithm) higher priority than the transition from S1 to S2. In order to take into account this
kind of situation (and the OMG transition selection algorithm), we propose a mechanism of transition fusion
that handles the �ring priorities. For example, in Fig. 14(a) there is only one event a that can be in con�ict
of priority with the completion event. In Fig. 15, we give the fused transition for event a, this transition
has as pre/post places the events place pe (the event pool place), as well as all places source or target of a
transition labelled with a in Fig. 14(b). The fused transition ta will replace all transitions with event a. The
source/target states of this transition ta are all the states that are source/target of the previous transitions
with event a. Note that the states that are source or target of a completion transition (in con�ict of priority
with the transition labelled with a) will be also linked to ta. For example, states S1F and S2 are not only
connected to ta because they are connected to a transition labelled with a in Fig. 14(b), but also because
they are source of a completion transition (which has higher priority than the transition labelled with a).

5.2.3. Algorithm for Handling Priorities

We describe in Algorithm 2 the procedure handling the selection algorithm and the �ring priorities of
transitions explained above. We reuse the places and transitions resulting from the application of Algorithm 1.

We assume in Algorithm 2 a function AddCodeSegments() that updates the code segment of each tran-
sition in the CPN; this code handles priorities and con�icts, and is described in Sections 5.2.4 and 5.2.5.

As an example, Fig. 17 presents the application of Algorithm 2 to the CPN model in Fig. 16 (resulting
itself from the application of Algorithm 1). For sake of readability, code segments are omitted.

5.2.4. Detecting and Handling Completion Events

Completion events should be processed ahead of any dispatched event. This is achieved as follows. On the
one hand, the CPN transitions handling completion events are left untouched, with the exception that the
true/false token system should be kept consistent: that is, the CPN transitions handling completion events
shall now take both as pre and as post all tokens of the source and target places, ensure that all source
tokens are true, and replace them with false whereas the target tokens are replaced with true. For example,
the completion transition from S2 to SF in Fig. 14(a) is translated into the CPN fragment given in Fig. 18.
By keeping the completion transitions (almost) unchanged, we preserve the fact that any such transition can
�re any time whenever enabled (i.e. whenever the source states are active).

On the other hand, we must prevent transitions encoding events to occur whenever any completion
transition is enabled. Knowing whether a completion transition is enabled is easy: it su�ces to �nd a set of
CPN places source of a CPN transition encoding a completion event that all contain a true token, and the
guard of which is satis�ed. The function checking this can be computed statically once for all (although its
execution will of course be dynamic). In fact, it can be computed once and for all, for all fused transitions:
hence, this can be factored using a single Boolean function.

This function uses the value of the tokens (true or false) and checks the guards. For example, the function
checking whether a completion event is enabled is given below for the SMD in Fig. 14(a) as follows. (Note
that there is no guard in this example.)

1 function completionEventEnabled ()
2 S12i or S1Fi or S2i or SFi

Formalising Concurrent UML State Machines Using Coloured Petri Nets 29

Algorithm 2: Handling �ring priorities

1 Add Pe // Create the events pool place
2 foreach event e ∈ E do

// Step 1
// Add the event to the events pool

3 Add an �e� token to Pe

// Add the transition corresponding to the fusion, and link Pe and t_e

4 Add
Pe t_e

eo

ei

// Step 2
5 foreach transition t = (S1, e1, g, (b, f), sLevel ,S2) ∈ T such that e1 = e do

6 Delete t

7 foreach simple state s1 ∈ S1 do

8 Add s1 t_e
s1o
s1i

9 foreach simple state s2 ∈ S2 do

10 Add s2 t_e
s2o
s2i

11 foreach completion transition (S′1,noEvent , g′, (b′, f ′), sLevel ′,S′2) ∈ T do
12 foreach simple state s ∈ S′1 do

13 Add s t_e
so
si

14 AddCodeSegments();

Fig. 16. Example with priorities and concurrency

This function may involve more than just disjunctions when completion transitions are guarded, or in
case of concurrency: for an orthogonal composite state to launch a completion event, all regions must be in
their �nal state. For example, the function checking whether a completion event is enabled is given below
for the SMD in Fig. 16:

1 function completionEventEnabled ()
2 S1A2i or (S1B3i and i >1) or (S1AFi and S1BFi) or S2i or SFi

30 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

Fig. 17. Example with priorities and concurrency: translation

Fig. 18. Modelling a completion transition

5.2.5. Detecting and Handling Con�icts

Let us come to the main part of this section: determining which UML transitions should be executed.
Whenever an event a occurs (i.e. a token of value a arrives to the events place), it may be processed. The
transitions (none, one or more) triggered by this event must conform to the UML priority mechanism. This
can be implemented using a greedy algorithm described in the OMG speci�cation as follows. �States in
the active state con�guration are traversed starting with the innermost nested simple States and working

Fig. 19. Example with priorities: complete translation

Formalising Concurrent UML State Machines Using Coloured Petri Nets 31

outwards. For each State at a given level, all originating Transitions are evaluated to determine if they
are enabled.� [OMG15, Section 14.2.3.9.5, p.316] Whereas this algorithm must be applied dynamically, the
CPNML code implementing this algorithm can be statically computed once for all, for each possible event.
That is, given an event a, we statically compute all possible transitions that may be triggered by a, and
check their source states and associated guards using the greedy algorithm described above.

Basically, one or more CPN transitions encoding UML transitions labelled with an event a can �re if
1) an event a can be dispatched (i.e. it arrived in our events place, and was not yet processed), and 2) no
completion transition is enabled. This is achieved by checking that an event a is indeed present in the events
place, and by checking that no completion event is enabled, which is achieved thanks to the CPNML function
de�ned above.

Next, it should be determined which transitions should �re. We achieve this in the CPNML code asso-
ciated with the fused transition as follows:

1. If a completion transition is enabled, then no transition labelled with a �res, and the event token is put
back to the events place (waiting until no completion event is enabled).

2. Otherwise, we create a set of Boolean �ags (all initially true), one per region in which a direct substate
is the source of a transition labelled with a. These �ags indicate whether the transitions emanating from
a direct substate in this region should still be explored.

3. We also copy all variables of the SMD (encoded in CPN global variables); indeed, we will apply some
behaviours (that may modify these variables) before testing the guards of other transitions.

4. Then, starting from the innermost nested simple states that are source of a transition labelled with a,
we check whether all places corresponding to source states of that transition (that may contain several
source states, if a join, or if a compound transition) contain a token; and if so, whether the transition
guard (checked using the copied variables) is true; if so, we disable all �ags of regions containing that
state (to prevent higher-level transitions from �ring). Note that the transitions in other regions (i.e. not
in con�ict with this transition) are not disabled that way.

5. As long as no enabled transition is found, we traverse the state hierarchy towards the top.

Example 2. Let us �rst exemplify this approach on the non-concurrent example in Fig. 14(a): the CPNML
code attached to the fused transition a is given below.

1 i f completionEventEnabled () then

2 (∗ No f i r i n g o f "a" f o r now : re turn a l l tokens as they are , i n c l ud ing the event i t s e l f ∗)
3 S11i , S12i , S1Fi , S2i , SFi , "a"
4

5 else

6 (∗ Prepare the r e s u l t i n g values , i n i t i a l l y equal to the input va lues ∗)
7 l e t S11o , S12o , S1Fo , S2o , SFo =
8 S11i , S12i , S1Fi , S2i , SFi
9 in

10

11 (∗ Def ine f l a g s f o r a l l r e g i on s ∗)
12 l e t f lagS1 , f lagR = true , t rue in

13

14 (∗ Copy va r i a b l e s ∗)
15 (∗ no va r i ab l e to copy in t h i s SMD ∗)
16

17 i f f l a gS1 then

18 i f S11i (∗ and no guard here ∗) then

19 S11o := f a l s e (∗ d i s ab l e input p l a c e s ∗)
20 S12o := true (∗ enable output p l a c e s ∗)
21 f lagR := f a l s e (∗ block parents r e g i on s ∗)
22 (∗ no behaviour to execute here ∗)
23

24 i f f lagR then

25 i f S11i (∗ and no guard here ∗) then

26 S11o := f a l s e (∗ d i s ab l e input p l a c e s ∗)
27 S2o := true (∗ enable output p l a c e s ∗)
28 (∗ no parents r e g i on s to block ∗)
29 (∗ no behaviour to execute here ∗)
30 else i f S12i (∗ and no guard here ∗) then

31 S12o := f a l s e (∗ d i s ab l e input p l a c e s ∗)
32 S2o := true (∗ enable output p l a c e s ∗)
33 (∗ no parents r e g i on s to block ∗)
34 (∗ no behaviour to execute here ∗)
35 else i f S1Fi (∗ and no guard here ∗) then

32 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

36 S1Fo := f a l s e (∗ d i s ab l e input p l a c e s ∗)
37 S2o := true (∗ enable output p l a c e s ∗)
38 (∗ no parents r e g i on s to block ∗)
39 (∗ no behaviour to execute here ∗)
40

41 (∗ Return a l l tokens va lues ∗)
42 S11o , S12o , S1Fo , S2o , SFo , "none"

The �rst part of the above CPNML code checks whether some completion event is enabled somewhere in
the SMD; if so, all tokens are put back to their place unchanged, including the event. Otherwise, we de�ne the
output values (that label the arcs leaving the fused transition), initially equal to the input.4 Then, Boolean
�ags are de�ned for each region not reduced to a simple state (i.e. S1, as well as the top-level region, the
�ag of which is denoted �flagR�). Then, for each such region, we check whether an a transition can �re: that
is, we successively check that the region is not yet disabled (� if flagS1 then�), that a token is present in the
input place (� if S11i�) and that the transition guard is true (no guard for this example). If so, we disable the
tokens in the input places, enable the tokens in the output places, block the upper regions (�flagR := false�),
and execute the behaviours, by possibly reusing the AddBehaviours() function (no behaviour in this simple
example). Note that the various combinations for transitions exiting composite states (three in the case of
the a leaving S1) were already computed by Algorithm 1 and can be just enumerated here. Eventually, all
output values are returned, and the event is consumed, hence replaced with a • token (denoted by �none� in
the CPNML code).

Example 3. Let us now consider the more complex example in Fig. 16, involving behaviours, guards and
concurrency. We give the CPNML code below (note that not all combinations in the regions of S1 are given,
for sake of conciseness).

1 i f completionEventEnabled () then

2 (∗ No f i r i n g o f "a" f o r now : re turn a l l tokens as they are , i n c l ud ing the event i t s e l f ∗)
3 S1A1i , S1A2i , S1AFi , S1B1i , S1B2i , S1B3i , S1BFi , S2i , SFi , "a"
4

5 else

6 (∗ Prepare the r e s u l t i n g values , i n i t i a l l y equal to the input va lues ∗)
7 l e t S1A1o , S1A2o , S1AFo , S1B1o , S1B2o , S1B3o , S1BFo , S2o , SFo =
8 S1A1i , S1A2i , S1AFi , S1B1i , S1B2i , S1B3i , S1BFi , S2i , SFi
9 in

10

11 (∗ Def ine f l a g s f o r a l l r e g i on s ∗)
12 l e t f lagS1A , flagS1B , f lagR = true , true , t rue in

13

14 (∗ Copy va r i a b l e s ∗)
15 l e t i ' = i in

16

17 i f f lagS1A then

18 i f S1A1i and i '>=1 then

19 S1A1o := f a l s e (∗ input p l a c e s ∗)
20 S1A2o := true (∗ output p l a c e s ∗)
21 f lagR := f a l s e (∗ block parents r e g i on s ∗)
22 i :=5 ; i := i ∗2 (∗ t r a n s i t i o n behaviours ∗)
23

24 i f f lagS1B then

25 i f S1B2i and i '<=4 then

26 S1B2o := f a l s e (∗ input p l a c e s ∗)
27 S1B2o := true (∗ output p l a c e s ∗)
28 f lagR := f a l s e (∗ block parents r e g i on s ∗)
29 i := i+3 ; i := i+1 (∗ t r a n s i t i o n behaviours ∗)
30 else i f S1B2i and i '>=1 then

31 S1B2o := f a l s e (∗ input p l a c e s ∗)
32 S1B3o := true (∗ output p l a c e s ∗)
33 f lagR := f a l s e (∗ block parents r e g i on s ∗)
34 i := i+3 ; i := i−2 (∗ t r a n s i t i o n behaviours ∗)
35

36 i f f lagR then

37 i f S1A1i and S1B1i (∗ and no guard here ∗) then

38 S1A1o := f a l s e ; S1B1o := f a l s e (∗ input p l a c e s ∗)
39 S2o := true (∗ output p l a c e s ∗)
40 (∗ no parents r e g i on s to block ∗)
41 i :=5 ; i := i −1; i := i+2 ; i :=0 (∗ t r a n s i t i o n behaviours ∗)

4 The � let. . . in� syntax is CPNML to de�ne variables.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 33

42 else i f S1A1i and S1B2i (∗ and no guard here ∗) then

43 S1A1o := f a l s e ; S1B2o := f a l s e (∗ input p l a c e s ∗)
44 S2o := true (∗ output p l a c e s ∗)
45 (∗ no parents r e g i on s to block ∗)
46 interleave(< i :=5>, <i := i+3>) ; i := i −1; i := i+2 ; i :=0 (∗ t r a n s i t i o n behaviours ∗)
47 else i f S1A1i and S1B3i (∗ and no guard here ∗) then

48 . . . e t c . . .
49

50 (∗ Return a l l tokens va lues ∗)
51 S1A1o , S1A2o , S1AFo , S1B1o , S1B2o , S1B3o , S1BFo , S2o , SFo , "none"

The addition of concurrency has the following consequences on this example. First, if a transition can �re
in the upper region of S1, then we do not block the lower region; only the parent region (the root region) is
blocked to prevent the transition from S1 to S2 to be executed. Hence, one transition in the upper region of
S1 and/or one transition on the lower region of S1 can be executed. Second, in an orthogonal region, we need
to enumerate all combinations of source states; this CPNML code can be automatically generated thanks to
the combinations function of Section 4. Third, in the case of an exit of S1 when in orthogonal regions, the
behaviours are interleaved (e.g. when in S1A1 and S1B2) using the interleave function de�ned in Section 4.

5.2.6. Discussion

We discuss several aspects of our solution in the following. First, this scheme respects the UML priority
scheme, and is in line with the fact that a dispatched event that meets no transition is discarded (�If no
Transition is enabled and the corresponding Event type is not in any of the deferrableTriggers lists of the
active state con�guration, the dispatched Event occurrence is discarded and the run-to-completion step is
completed trivially� [OMG15, Section 14.2.3.9.1, p.314]). Indeed, when the CPNML code associated with
transition a is executed, if no completion transition is enabled, but also no transition �res (because either
the tokens are not present, or the guard is not satis�ed), then the event token is still discarded. In contrast,
if a completion transition was enabled, in that case, the event is not discarded: it is just put back to the
events place, hence postponed until no completion transition is enabled.

Second, our CPNML code segments are relatively complex. However, recall that building this code
(which requires traversal of the hierarchical structure of states and transitions) is performed only once for all
(for each event) during the translation phase, and not during the model checking phase. During the model
checking phase, only the execution of this code (which mainly consists in checking Booleans and executing
the behaviours) is performed.

Third, although we do conform to the con�ict resolution mentioned by the UML, our work has one
limitation, that occurs in the case of two transitions for which the con�ict resolution mechanism does not
solve the con�ict (i.e. two transitions outgoing from the same state, with both guards satis�ed). This situation
is ambiguous in the OMG speci�cation (�If that event occurs and both guard conditions are true, then at
most one of those Transitions can �re in a given run-to-completion step.� [OMG15, Section 14.2.3.9.3, p.315]).
For example when in S1B2 in Fig. 16, if 1 ≤ i ≤ 4 and event a is available, both transitions to S1B2 and S1B3
can be executed. In our approach, we statically solve this situation: only one transition �res, and always the
same; in fact this is the �rst one appearing in the CPNML code segment, which depends on the traversal
order of the state hierarchy during our translation. In the case of the example of S1B2 in Fig. 16, the �rst
transition in the code is the self-loop to S1B2. In order to make this choice more �exible, and although
choosing one transition statically still remains in line with the speci�cation, we propose directions for future
works: (i) forbid non-mutually-exclusive guards for transitions outgoing from the same state with the same
trigger (ii) require a priority mechanism in the UML diagram, that our algorithm would then follow (iii) allow
for a random choice of the transition to �re.

As a minor remark, note that, when an event is consumed, it is actually not strictly speaking consumed,
but sent back to the events place with a • value; hence, it will remain there forever. This is consistent with
the UML semantics, but will lead to an accumulation of useless tokens in the event place, that might slow
down model checking. A possibility to avoid this is to delete these tokens thanks to an additional CPN
transition that has the events place as source, no target place, and accepts only •-valued tokens.

Finally, recall that deferred events are not considered in our work. Considering them (which would
certainly not be simple though) could be achieved thanks to our events place: when deferred, an event would
be moved to another place (that would contain all deferred events); then whenever a transition is ready to
accept a deferred event, that event would have higher priority than regular events.

34 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

6. Application to the CD Player

6.1. Application of the Translation

We applied our translation scheme to the CD player presented in Section 3. The translation was performed
manually, by following Algorithm 1 and then by fusing transitions according to Section 5. (An implementation
to automate this process is the subject of ongoing work, see Section 7.)

We handle the event arriving scheme in a slightly di�erent manner from Section 5.1: since we wish to
model that any event can arrive anytime, and any event can be dispatched anytime, we always keep one event
of each possible value in our events place. To do so, we initially add one event of each value to the events
place (viz. load, off, pause, play, stop); and then, instead of consuming events when dispatching an event
(by returning a •-valued token back to the events place), we always return the event, be it handled or not.
This ensures that any event is always available, while keeping the state space �nite (having an unbounded
number of waiting events and/or of •-valued tokens in the events place might lead to an in�nite state space
if no reduction technique is used by the model checker).

6.2. The Limits of Discrete Formalisms for Continuous Behaviours

A quick simulation using CPNTools made us realize that the translated player does not behave the way
we intended. In particular, when in BUSY, the transitions labelled with pause/off/load/stop can never be
executed. The explanation is as follows: recall that we assume that �do� behaviours can be executed zero, one
or many times. As a consequence, the completion transition of PLAYING can occur anytime; since completion
transitions have a higher priority than transitions with events, the transition (via pause) to PAUSED is always
hindered by the enabled completion transition.5 The same occurs in LIGHTON.

This is not only a limit of our translation, but of any formalization using discrete formalisms (be automata,
Petri nets, CSP, SPIN, etc.). In fact, without a continuous formalism (that would, e.g. be able to express
continuous time), it is not possible to properly model that �playing a track� is of continuous nature and,
once it has �nished, then the enclosing region can be completed.

Recall that this case study is a slightly modi�ed version from [ZL10]; in that previous work, this problem
was not detected because priorities between transitions do not seem to have been properly encoded.

6.3. Modifying the Model

In our case study (presented in Section 3 and Fig. 3), we suggest a discretisation of the continuous nature of
the track playing. First, we remove the �do� behaviour of PLAYING. Second, we encode the track playing by
elapsing some (discrete) time. That is, we assume that a track has a duration minuteCount (all tracks have the
same duration to keep the model simple). Then, we create a variable minute, initially set to 0 when starting
a new track. Then, time elapsing is modelled by incrementing minute (as long as minute < minuteCount)
when in state PLAYING with an event timeElapse. Finally, both regions of BUSY can only reach their �nal
state whenever the track has completed, i.e. minute = minuteCount: that way, these completion transitions
only prevent the pause event to be processed once the track reached its end. Note that extending our work
to dense time models (see Section 7.2) will help to consider case studies with a such a continuous nature in
�do� behaviours without the need to perform a discretisation.

The modi�ed UML model is given in Fig. 20.

5 Technically, due to the �do� behaviour in PLAYING, there should exist runs in which the �do� behaviour is executed, and hence
the completion transition does not prevent other transitions to occur. However, this does not happen in our translation, as
the fact that the completion transition may occur already prevents other transitions to occur. In order to avoid this issue,
a possibility would be to modify our encoding so as to allow in any state both the completion transition, and any regular
transition (labelled with an event) to occur. However, to be consistent with the semantics, if a regular transition occurs, then
a completion transition can only occur after one more execution of the �do� behaviour. This could easily be achieved using a
global Boolean variable (for each �do� transition) in the resulting CPN, blocking the completion transition if a regular transition
occurred from this state until another execution of the �do� transition occurs.

Formalising Concurrent UML State Machines Using Coloured Petri Nets 35

Fig. 20. The CD-Player example (revised version)

6.4. Verifying Properties

We generate the CPN corresponding to the modi�ed SMD model. We give the resulting CPN in Fig. 21;
for sake of readability, the CPNML code segments are left out on the graphics. The top-most place is the
events place, initially containing all events. All other places represent simple states (including �nal states)
of the SMD. The fused transitions can be recognized by their numerous incoming and outgoing arcs. Our
complete CPNTools model including all code segments, and together with some commands to perform the
veri�cation of the properties (see below), is available online.6

We use CPNTools 4.0 [Wes13] to verify properties on our modi�ed CD player.
CPNTools is not an on-the-�y model-checker, and requires the generation of the entire state space before

verifying properties. The �rst step of the veri�cation phase is to specify the property in the CPNML language
(the language used in CPNTools both in the code segments and to specify properties). Second, we generate
the state space of the net using the state space generator of CPNTools. Third, we ask CPNTools to evaluate
the property on the generated state space.

We �x the value of trackCount to 5 and the value of minuteCount to 3. The state space generated
by CPNTools is made of 159 symbolic states and 1551 edges (computed in 4.0 s on an Intel core i5-4570
CPU 3.2GHz with 8GiB RAM). After generating the state space, we can now formally verify the properties
formulated in Section 3.

Property 1 (�the CD player cannot be both closed and open�) It su�ces to verify that, in any
marking of the state space, we cannot have a token in closed and open at the same time. This property is
proven valid by CPNTools almost instantaneously, as the state space was generated beforehand and is of a
reasonable size (the same applies to the other properties).

Property 2 (�whenever the CD player is in state PLAYING, there is a CD in the player�) Checking
this property reduces to checking that, whenever there is a token in playing, then the value of the global
variable present is true. This property is proven valid by CPNTools.

Property 3 (�whenever the player is paused, the light is o��) Checking this property reduces to
checking that, whenever there is a token in paused, then there is also a token in place lightoff. This property
is proven valid by CPNTools.

6 http://www.lipn.fr/~benmoussa/SMD2CPN/

http://www.lipn.fr/~benmoussa/SMD2CPN/

36 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

Fig. 21. Translation of the revised CD player into a CPN

Property 4 (�the value of track never exceeds trackCount�) Checking this property reduces to check-
ing that, in any state of the state space, we have that track ≤ trackCount. Again, this property is proven
valid by CPNTools.

Remark Our veri�cation has been performed for a �xed value of trackCount and minuteCount. Perform-
ing the veri�cation for any value of trackCount and minuteCount would require parametrised veri�cation
techniques (which goes beyond the scope of this work).

6.5. Discussion

We believe that 4.0 seconds to build a state space for this (relatively) simple example is not very impressive.
However, we would like to make the following remarks. First, scaling might not entirely be an issue, in the
sense that most of the UML state machine diagrams we found in the literature (including industrial case
studies reported in published papers) are usually relatively small in terms of number of states, transitions
or variables. Being small does not necessarily mean simple; even in the case of our (simple) CD player, it is
not clear at all to be convinced without formal automated methods that our properties hold.

Second, we chose CPNTools as it is the most famous state-of-the art model checker for CPNs, and hence
its use is natural in our context to serve as a proof of concept. However, CPNTools is notoriously slow
(either due to the intrinsic complexity of CPNs, or due to internal implementation issues). In fact, as noted
in Section 4.1, our CPNs are not exactly coloured, in the sense that all tokens are of type • (or of type B,
which can be easily mapped to untyped tokens). Colours appear in guards and transition updates, where
global variables are updated. Hence a solution that we would like to investigate in the future is to use a model
checker that supports Petri nets extended with global variables, and time as well, as future works include the
extension to time (see Section 7.2). Model checkers for time Petri nets include Tina [BV06] (that does not

Formalising Concurrent UML State Machines Using Coloured Petri Nets 37

support such global variables) and Roméo [LRST09] (that does support such global variables that can be
used in functions). As a consequence, investigating an alternative destination model checker (together with
the introduction of time) is in our agenda. Note that changing the destination model checker would have
no consequence on our translation, and almost no consequence on our ongoing implementation (only the
�printer�, mapping the internal representation of our translation tool to the input syntax of the destination
model checker, needs to be changed).

7. Conclusion and Future Works

We presented here a formalisation of UML concurrent state machine diagrams by translating them into
coloured Petri nets. We take into account a set of syntactic elements in our translation: simple, composite
and orthogonal states, most kinds of transitions (local, external, inter-level), most important pseudostates
(fork, join, shallow history, initial), concurrency, behaviours (entry, exit and do), variables, hierarchy of states
and behaviours. We also added an extension to encode the transition selection mechanism of UML.

We entirely revised the translation mechanism of [ABC14a], leading to what we think is a signi�cantly
clearer solution. This also leads to a simpler translation algorithm. In particular, in [ABC14a] we used a
�xed structure in CPNs to represent entry and exit behaviours of SMDs, and this yielded an unwanted
complexity. In addition, in order to clarify our approach, we presented here in a systematic way the di�erent
cases to be taken into account in order to translate a transition (triggered or not by an event) between two
states, that may be simple, composite, orthogonal etc., with/without entry/do/exit behaviours. We released
the constraint we had in [ABC14a] that was requesting all states to have entry and exit behaviours. We
released another constraint that was requesting all composite states (and state machines) to have a �nal
state. In addition to the syntax taken into account in [ABC14a], we added history pseudostates and improved
the di�erent cases of fork/join pseudostates taken into account. We also adapted the translation to handle
run-to-completion steps and transition selection.

Our translation was applied to various examples, including a CD player, on which we could successfully
verify several properties using CPNTools. We presented in a detailed way our case study, and showed how
the associated CPN can be used to achieve some property veri�cation.

Summary of the syntax Recall that Table 2 summarises the syntactic elements we consider in our trans-
lation. Deep history pseudostates, submachine states and implicit forks/joins were discarded for sake of
simplicity but can be added in a very straightforward manner. We did not consider entry/exit points and
junction pseudostates, but we believe that there would be no di�culty for adding them to our scheme.
Choice pseudostates might be more tricky due to the dynamic evaluation of guards. Deferred events and
timing aspects were not considered at all, and may require more work, or even lead us to reconsider parts of
our translation scheme.

7.1. Discussion on Complexity

Let us brie�y discuss the complexity of the resulting CPN w.r.t. the size of the source SMD. First, let us
consider the CPN output by Section 4. Concerning CPN places: each SMD simple state (including �nal
states) and each initial pseudostate is encoded into one CPN place. This gives a number of places linear
in the number of simple states and initial pseudostates of the source SMD. Concerning CPN transitions:
�rst, each �do� behaviour is translated into a CPN transition. Second, consider an SMD transition from a
composite state to another composite state labelled by an event (which is the worst situation): note that
there is a single set of target states (basically the simple states target of the initial pseudostates in the target
composite states). Concerning the source states however, there may be a combinatorial explosion due to the
orthogonal regions: a rough upper bound (i.e. in the worst case) on the maximal number of CPN transitions
due to one such SMD transition is nm, where n is the maximal number of direct substates in a region, and
m is the maximum number of orthogonal regions (including indirect subregions) in a composite state (i.e.
this is the maximal number of simple states to be active at the same time in the SMD). For example, in
Fig. 9(a), n = 3 (there are three states in the top-level region) and m = 4 (there are at most four active
states at a time).

This exponential complexity might seem prohibitive, but we believe it is not for the following reasons.

38 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

First, we did not �nd huge case studies of UML state machines for which an exponential blow-up would
clearly prevent formal veri�cation. Second, although our destination translation explicitly represents these
combinations, not representing them explicitly would not spare the model checker from considering them in
the veri�cation: let us assume we use a model (yet to be de�ned) of hierarchical coloured Petri nets that would
allow the representation of SMD transitions, the destination model would be much more compact, but the
veri�cation would (most probably) be performed in an identical manner. That is, each of the combinations
should still be considered during the model checking phase to assert the system safety.

In fact, nm is (in the worst case) the number of transitions in the destination CPN, but the number of
cases to be considered by the model checker may be larger, due to the use of the interleave function. Recall
that interleave considers the interleaving of all possible entry/exit behaviours (following the semantics of
SMDs); this might yield an additional factorial in the number of behaviours to be executed on a single
transition, i.e. depending on the maximal depth of the state hierarchy and the maximal number of active
states at a time. However, once more, we believe that the number of such transitions (with their respective
behaviours) does not fundamentally depend on the choice of the target formalism and model-checker � as
all possible behaviours must be considered by model-checking anyway.

However, the solution extending transition selection (Section 5) has a much smaller complexity in terms
of number of transitions: there is only one transition per completion transition in the source UML SMD,
plus one (fused) transition per di�erent event in the SMD. Note however that the code segment attached to
these transitions is more complex.

7.2. Future Work

Implementation Our �rst main future work is to develop a tool automating the translation so as to be
able to perform formal veri�cation of larger-scale SMDs, study the complexity of our translation and of the
veri�cation, and propose optimisations if needed.

We implemented a �rst prototype using Acceleo7, but this technology turned out to be slightly inaccurate
for our framework (as reported in [ABC14b]). Although we could translate toy examples using this prototype,
we started the development on a new standalone translation framework, the implementation of which is
currently in progress.

Several tools such as Rhapsody [HG97], MagicDraw8 and Papyrus [Ger15] allow the modelling of systems
using UML and its diagrams. They also feature simulation and analysis of the diagrams. We choose Papyrus
as a tool to model our state machine diagrams for two reasons: (i) Papyrus is a plugin for Eclipse and it is
conform to the speci�cation of the OMG, and (ii) Papyrus outputs �les in an XMI syntax that is compatible
with the SAX parser used in our ongoing prototype implementation.

We use Papyrus 1.1.0 [Ger15] to model our UML state machine diagram, the SAX parser 2.0.19 to parse
the UML state machine diagram; then, our translation algorithm and the converter to the input syntax of
CPNTools are being implemented in Java.

Model checking Beyond the natural applications of model-checking to the resulting CPN (safety, bound-
edness of some variables, liveness, etc.), an interesting application of model-checking is to detect whether
a UML state machine is ill-formed, for some de�nitions of ill-formedness. Checking proper initialization of
variables, conformance of the UML state machine to the UML or to our assumptions (e.g. no �do� behaviour
on composite states) would be very straightforward. More interesting and challenging issues would be to
address more elaborate de�nitions of ill-formedness. For example, can it happen that none of the guards
of a choice pseudostate (dynamically) evaluates to true at runtime? This cannot be statically checked, and
model-checking seems to be a good technique as it explores all possible situations that can arise in a given
state machine.

Comparison with other tools A very interesting future work (once we will have an automated translation
tool) will be to compare the output of our translation with other tools, on a set of UML state machines
benchmarks. Performing such a comparison (syntactic aspects considered, semantics de�ned by the tool or an

7 https://www.eclipse.org/acceleo
8 http://www.nomagic.com/products/magicdraw.html
9 https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html

https://www.eclipse.org/acceleo
http://www.nomagic.com/products/magicdraw.html
https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html

Formalising Concurrent UML State Machines Using Coloured Petri Nets 39

underlying translation, comparison of the performances both in translation and model-checking, comparison
of the kinds of veri�cations that can be performed) will be of high interest, and this is something that we
aim at addressing in a next step.

About hierarchy Our translation can be seen as a ��attening� of the state machine. In contrast, previous
approaches did preserve the hierarchy in the destination formalism, using hierarchical coloured Petri nets
(HCPNs). This is the case of [CKZ11], which was made possible because no entry/exit behaviours were
considered in [CKZ11]. However, we do not see how to use HCPNs in our approach: indeed, the transitions
labelled with an event imply to leave a composite state (and hence the corresponding hierarchical place)
suddenly, though after executing the appropriate behaviours. This does not seem to be feasible using HCPNs.
In fact, a challenging future work would be to propose an extension of HCPNs to allow such �exception-like�
transitions, with some behaviours on exit/entry, similar to UML state machines.

Extensions We aim at extending our work to the case of multiple UML classes, so as to have communicating
state machines (as in, e.g. [PG06]).

Most other syntactic aspects not considered in our work (see Table 2) could be added in a rather straight-
forward manner � except for timing aspects. Adding timing aspects to our translation is an interesting future
work that we are interested to tackle in a near future. This will allow us to consider more expressive models
with timing constraints (such as timed protocols, real-time systems, etc.). Such an extension could bene�t
from previous attempts to equip UML (or a part of its syntax) with time, e.g. [MGT09, OMG11, ACN14].

Natural destination formalisms for our translation are (extensions of) Petri nets extended with time. This
includes timed Petri nets, time Petri nets (with a dense time semantics) [Mer74], but also more expressive
models such as coloured Petri nets extended with time. These formalisms are supported by model checking
tools: CPNTools supports CPNs extended with discrete time, Tina [BV06] supports time Petri nets, and
Roméo [LRST09] supports parametric time Petri nets [TLR09] extended with global variables.

Integration with other diagrams Another important future work is to integrate activity diagrams in the
translation of UML state machines. The combination of the two diagrams allows us to model more aspects
of the system at the same time. We could get inspired by previous works formalising activity diagrams,
e.g. using coloured Petri nets [ACR13]. Also note that a subset of the syntax of SysML state machines and
activity diagrams is translated in a homogeneous manner using CSP in [JS15].

Semantics equivalence Finally, although it goes beyond of the scope of this paper, a challenging future
work will be to formally prove the equivalence between the original SMD and the resulting CPN. Of course,
a problem is that the OMG does not de�ne a fully formal semantics for SMDs. However, we could reuse the
operational semantics that we recently proposed for SMDs [LLA+13], and de�ne a trace equivalence taking
into account active states, behaviours and events.

Acknowledgements

We are grateful to the anonymous reviewers for very useful comments. We would also like to thank Sami
Evangelista for his help when using CPNTools.

References

[ABC14a] Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy. Formalising concurrent UML state machines
using coloured Petri nets. In Proceedings of the 6th International Conference on Knowledge and Systems En-
gineering (KSE'14), volume 326 of Advances in Intelligent Systems and Computing, pages 473�486. Springer,
2014.

[ABC14b] Étienne André, Mohamed Mahdi Benmoussa, and Christine Choppy. Translating UML state machines to coloured
Petri nets using Acceleo: A report. In Proceedings of the 3rd International Workshop on Engineering Safety and
Security Systems (ESSS 2014). EPTCS, 2014.

[ACK12] Étienne André, Christine Choppy, and Kais Klai. Formalizing non-concurrent UML state machines using colored
Petri nets. ACM SIGSOFT Software Engineering Notes, 37(4):1�8, 2012.

[ACN14] Étienne André, Christine Choppy, and Thierry Noulamo. Modelling timed concurrent systems using activity
diagram patterns. In Viet-Ha Nguyen, Anh-Cuong Le, and Van-Nam Huynh, editors, Proceedings of the 6th

40 Étienne André, Mohamed Mahdi Benmoussa and Christine Choppy

International Conference on Knowledge and Systems Engineering (KSE'14), volume 326 of Advances in Intelligent
Systems and Computing, pages 339�351. Springer, 2014.

[ACR13] Étienne André, Christine Choppy, and Gianna Reggio. Activity diagrams patterns for modeling business pro-
cesses. In Roger Lee, editor, 11th International Conference on Software Engineering Research, Management and
Applications (SERA'13), volume 496 of Studies in Computational Intelligence, pages 197�213. Springer, 2013.

[Bee02] Michael von der Beeck. A structured operational semantics for UML-statecharts. Software and Systems Modeling,
1(2):130�141, 2002.

[BP01] Luciano Baresi and Mauro Pezzè. On formalizing UML with high-level Petri nets. In Gul Agha, Fiorella de Cindio,
and Grzegorz Rozenberg, editors, Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri
Nets, volume 2001 of Lecture Notes in Computer Science, pages 276�304. Springer, 2001.

[BRS00] Egon Börger, Elvinia Riccobene, and Joachim Schmid. Capturing requirements by abstract state machines: The
light control case study. Journal of Universal Computer Science, 6(7):597�620, 2000.

[BV06] Bernard Berthomieu and François Vernadat. Time Petri nets analysis with TINA. In Proceedings of the Third
International Conference on the Quantitative Evaluation of Systems (QEST 2006), pages 123�124. IEEE Computer
Society, 2006.

[CJ09] Mats Carlsson and Lars Johansson. Formal veri�cation of UML-RT capsules using model checking. Master's thesis,
Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden, 2009.

[CKZ11] Christine Choppy, Kais Klai, and Hacene Zidani. Formal veri�cation of UML state diagrams: a Petri net based
approach. ACM SIGSOFT Software Engineering Notes, 36(1):1�8, 2011.

[FS07] Harald Fecher and Jens Schönborn. UML 2.0 state machines: Complete formal semantics via core state machine. In
Proceedings of the 11th International Workshop on Formal Methods: Applications and Technology (FMICS 2006),
volume 4346 of Lecture Notes in Computer Science, pages 244�260. Springer, 2007.

[Ger15] Sebastien Gerard. Papyrus UML Modeling tool 1.1.2. https://www.eclipse.org/papyrus/, September 2015.
[GLM02] Stefania Gnesi, Diego Latella, and Mieke Massink. Modular semantics for a UML statechart diagrams kernel and

its extension to multicharts and branching time model-checking. Journal of Logic and Algebraic Programming,
51(1):43�75, 2002.

[GP98] Martin Gogolla and Francesco Parisi Presicce. State diagrams in UML: A formal semantics using graph trans-
formations - or diagrams are nice, but graphs are worth their price. In ICSE Workshop on Precise Semantics of
Modelling Techniques, pages 55�72, 1998.

[HG97] David Harel and Eran Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31�42, 1997.
[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison Wesley, 2003.
[JDJ+06] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala, and Ivan Porres. Model checking dynamic and hier-

archical UML state machines. In MDV, 2006.
[JK09] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets � Modelling and Validation of Concurrent Systems.

Springer, 2009.
[JS15] Jaco Jacobs and Andrew Simpson. A formal model of SysML blocks using CSP for assured systems engineering. In

Proceedings of the 3rd International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2014),
volume 476 of Communications in Computer and Information Science. Springer, 2015. To appear.

[KMR02] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model checking - timed UML state machines and
collaborations. In Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th International Symposium,
FTRTFT, volume 2469 of Lecture Notes in Computer Science, pages 395�416. Springer, 2002.

[LBC99] Gerald Lüttgen, Michael von der Beeck, and Rance Cleaveland. Statecharts via process algebra. In 10th Interna-
tional Conference on Concurrency Theory CONCUR, volume 1664 of Lecture Notes in Computer Science, pages
399�414. Springer, 1999.

[LHS08] Jiexin Lian, Zhaoxia Hu, and Sol M. Shatz. Simulation-based analysis of UML statechart diagrams: methods and
case studies. Software Quality Journal, 16(1):45�78, 2008.

[LLA+13] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh Wadhwa, and Jin Song Dong. A
formal semantics for the complete syntax of UML state machines with communications. In Proceedings of the 10th
International Conference on Integrated Formal Methods (iFM'13), volume 7940 of Lecture Notes in Computer
Science, pages 331�346. Springer, 2013.

[LMM99] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic veri�cation of a behavioural subset of UML statechart
diagrams using the SPIN model-checker. Formal Aspects of Computing, V11(6):637�664, 1999.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. International Journal on Software
Tools for Technology Transfer, 1(1-2):134�152, 1997.

[LRST09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez. Romeo: A parametric model-checker
for Petri nets with stopwatches. In Stefan Kowalewski and Anna Philippou, editors, 15th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2009), volume 5505 of LNCS,
pages 54�57. Springer, March 2009.

[Mer74] Philip Meir Merlin. A study of the recoverability of computing systems. PhD thesis, University of California, Irvine,
CA, USA, 1974.

[MGT09] Ahmed Mekki, Mohamed Ghazel, and Armand Toguyeni. Validating time-constrained systems using UML state-
charts patterns and timed automata observers. In VECoS, pages 112�124. British Computer Society, 2009.

[MPT03] Andrea Maggiolo-Schettini, Adriano Peron, and Simone Tini. A comparison of statecharts step semantics. Theory
Computer Science, 290(1):465�498, 2003.

[NB02] Muan Yong Ng and Michael Butler. Tool support for visualizing CSP in UML. In Proceedings of the 4th Inter-
national Conference on Formal Engineering Methods (ICFEM 2002), volume 2495 of Lecture Notes in Computer
Science, pages 287�298. Springer, 2002.

https://www.eclipse.org/papyrus/

Formalising Concurrent UML State Machines Using Coloured Petri Nets 41

[NB03] Muan Yong Ng and Michael Butler. Towards formalizing UML state diagrams in CSP. In Proceedings of the
1st International Conference on Software Engineering and Formal Methods (SEFM 2003), pages 138�147. IEEE
Computer Society, 2003.

[OMG11] OMG. UML pro�le for modeling and analysis of real-time and embedded systems (MARTE), Version 1.1. http:
//www.omg.org/spec/MARTE/1.1/PDF/, June 2011.

[OMG15] OMG. Uni�ed Modeling Language Superstructure, Version 2.5. http://www.omg.org/spec/UML/2.5/, March 2015.
[Per95] Adriano Peron. Statecharts, transition structures and transformations. In Peter D. Mosses, Mogens Nielsen, and

Michael I. Schwartzbach, editors, 6th International Joint Conference CAAP/FASETAPSOFT'95: Theory and
Practice of Software Development, volume 915 of Lecture Notes in Computer Science, pages 454�468. Springer,
1995.

[PG00] Robert G. Pettit IV and Hassan Gomaa. Validation of dynamic behavior in UML using colored Petri nets. In
Proceedings of UML'2000 Workshop - Dynamic behaviour in UML models: Semantic Questions, volume 1939 of
Lecture Notes in Computer Science, pages 295�302. Springer Verlag, 2000.

[PG01] Robert G. Pettit IV and Hassan Gomaa. Modeling state-dependent objects using colored Petri nets. In Proceedings
of Workshop on Modelling of Objects, Components, and Agents, pages 105�120, 2001.

[PG06] Robert G. Pettit IV and Hassan Gomaa. Modeling behavioral patterns of concurrent objects using Petri nets. In
9th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing ISORC, pages 303�312.
IEEE Computer Society, 2006.

[Sam09] Miro Samek. A crash course in UML state machines. Quantum Leaps, LLC, 2009.
[Sch05] Jens Schönborn. Formal semantics of UML 2.0 behavioral state machines. Technical report, Institute of Computer

Science and Applied Mathematics, Christian-Albrechts-University of Kiel, 2005.
[SLDP09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards �exible veri�cation under fairness. In Proceedings

of the 21st International Conference on Computer Aided Veri�cation (CAV 2009), volume 5643 of Lecture Notes
in Computer Science. Springer, 2009.

[TH08] Yann Thierry-Mieg and Lom-Messan Hillah. UML behavioral consistency checking using instantiable Petri nets.
Innovations in Systems and Software Engineering (ISSE), 4(3):293�300, 2008.

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Parametric model-checking of stopwatch Petri nets.
Journal of Universal Computer Science, 15(17):3273�3304, 2009.

[TZ05] Jan Trowitzsch and Armin Zimmermann. Real-time UML state machines: An analysis approach. In Workshop on
Object Oriented Software Design for Real Time and Embedded Computer Systems (Net.ObjectDays 2005), 2005.

[Wes13] Michael Westergaard. CPN Tools 4: Multi-formalism and extensibility. In Proceedings of the 34th International
Conference on Application and Theory of Petri Nets and Concurrency (Petri Nets 2013), volume 7927 of Lecture
Notes in Computer Science, pages 400�409. Springer, 2013.

[ZL10] Shaojie Zhang and Yang Liu. An automatic approach to model checking UML state machines. In SSIRI-C, pages
1�6. IEEE, 2010.

http://www.omg.org/spec/MARTE/1.1/PDF/
http://www.omg.org/spec/MARTE/1.1/PDF/
http://www.omg.org/spec/UML/2.5/

	Introduction
	Related Works
	Contribution

	Basic Concepts
	UML State Machine Diagrams
	Coloured Petri Nets with Global Variables

	A Motivating Example of a CD Player
	Formalizing UML State Machines
	General Scheme
	Naming CPN Elements
	Translation Algorithm
	Adding Behaviours to Code Segments
	Application of the Translation to Sample Cases
	Beyond our Translation

	Transition Selection
	Event Arrival and Dispatching
	Handling Priorities

	Application to the CD Player
	Application of the Translation
	The Limits of Discrete Formalisms for Continuous Behaviours
	Modifying the Model
	Verifying Properties
	Discussion

	Conclusion and Future Works
	Discussion on Complexity
	Future Work

	References

