
Learning-based compositional parameter
synthesis for event-recording automata?

Étienne André1 and Shang-Wei Lin2

1 Université Paris 13, LIPN, CNRS, UMR 7030, France
2 SCSE, Nanyang Technological University, Singapore

Abstract. We address the verification of timed concurrent systems
with unknown or uncertain constants considered as parameters. First,
we introduce parametric event-recording automata (PERAs), as a new
subclass of parametric timed automata (PTAs). Although in the non-
parametric setting event-recording automata yield better decidability
results than timed automata, we show that the most common decision
problem remains undecidable for PERAs. Then, given one set of compo-
nents with parameters and one without, we propose a method to com-
pute an abstraction of the non-parametric set of components, so as to
improve the verification of reachability properties in the full (paramet-
ric) system. We also show that our method can be extended to general
PTAs. We implemented our method, which shows promising results.

Keywords: parametric timed automata, learning, abstractions, parametric
reachability checking, parameter synthesis

1 Introduction

Verifying distributed systems involving timing constraints is notoriously difficult,
especially when timing constants may be uncertain. This problems becomes even
more difficult (often intractable) in the presence of timing parameters, i. e., un-
known timing constants. Parametric reachability synthesis aims at synthesizing
timing parameter valuations for which a set of (usually bad) states is reach-
able. Parametric timed automata (PTAs) [AHV93] is a parametric extension of
timed automata (TAs) to model and verify models involving (possibly paramet-
ric) timing constraints and concurrency. Its high expressiveness comes with the
drawback that most interesting problems are undecidable [And15].

? This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002). This is the author version of the manuscript of the same
name published in the proceedings of the 37th IFIP WG 6.1 International Conference
on Formal Techniques for Distributed Objects, Components, and Systems (FORTE
2017). The final publication is available at link.springer.com. When compared
to the official publication, this author version also includes all proofs, as well as
additional experiments.

link.springer.com

Related work Despite undecidability of the theoretical problems, several mono-
lithic (non-compositional) techniques for parametric reachability synthesis in
PTAs have been proposed in the past, either in the form of semi-algorithms
(a procedure that is correct but may not terminate), or using approximations.
In [AHV93], a basic semi-algorithm (called EFsynth in [JLR15]) has been pro-
posed: it explores the symbolic state space until bad states are found, and gath-
ers the associated parameter constraints. In [FJK08], approximated parametric
reachability synthesis is performed using counter-example guided abstraction re-
finement (CEGAR) techniques for parametric linear hybrid automata, a class of
models more expressive than PTAs. In [CPR08], the computation of schedulabil-
ity regions for real-time systems reduces to a parametric reachability synthesis
using PTAs; the algorithm does not terminate in general, but does on a subclass
of real-time tasks. In [JLR15,ALR15], an abstraction technique based on the
integer hull is used in an algorithm with guaranteed termination, the result of
which contains at least all integer parameter valuations in a bounded parameter
domain, and all rational-valued valuations between consecutive integer points
(as well as possibly some other rational-valuations). In [ALNS15], we proposed a
point-based technique: instead of attacking the reachability synthesis in a brute-
force manner, we iterate on (some) integer parameter valuations, and derive
for each of them a constraint around this valuation that preserves the (non-
)reachability of the bad locations. Although numerous iterations may be needed,
each of them explores a much smaller part of the state space than the brute-
force exploration of EFsynth, often resulting in a faster execution than EFsynth.
In addition, this technique can be distributed on a cluster [ACN15].

Distributed systems are often made of a set of components interacting with
each other; taking advantage of the compositionality is a goal often desired to
speed up verification. In [CGP03], a learning-based approach is proposed to au-
tomate compositional verification of untimed systems modeled by labeled tran-
sition systems (LTS). For timed systems, we proposed a learning-based compo-
sitional verification framework [LAL+14] for event-recording automata (ERAs),
a subclass of TAs for which language inclusion is decidable [AFH99]. This ap-
proach showed to be much faster than monolithic verification.

The recent work [ABB+16] is close to our goal, as it proposes an approach
for compositional parameter synthesis, based on the derivation of interaction
and component invariants. The method relies on the concept of history clocks.
The method is implemented in a prototype in Scala, making use of IMITA-
TOR [AFKS12]. Whereas both [ABB+16] and our approach address reachability
or safety properties, the class of PTAs of [ABB+16] is larger; conversely, we add
no further restrictions on the models, whereas in [ABB+16] all clocks and (more
problematically) parameters must be local to a single component and cannot be
shared.

Contribution In this work, we propose an approach relying on a point-
based technique for parametric reachability synthesis, combined with learning-
based abstraction techniques, for a subclass of PTAs, namely parametric event-
recording automata. We propose this subclass due to the decidability of the

2

language inclusion in the non-parametric setting. We consider a set of paramet-
ric components A (where parameters are dense in a bounded parameter domain
D0) and a set of non-parametric components B, with their parallel composition
denoted by A ‖ B. For each integer parameter valuation v not yet covered by a

good or bad constraint, we try to compute, by learning, an abstraction B̃ of B
s.t. v(A) ‖ B does not reach the bad locations. We then “enlarge” the valuation v

using the abstract model A ‖ B̃, which yields a dense good constraint; we prove
the correctness of this approach. If the learning fails to compute an abstraction,
we derive a counter-example, and we then replay it in the fully parametric model
A ‖ B, which allows us to derive very quickly a bad dense constraint. We iterate
until (at least) all integer points in D0 are covered. In practice, we cover not
only all rational-valued in D0, but in fact the entire parameter space (except for
one benchmark for which we fail to compute a suitable abstraction).

We propose the following technical contributions:

1. we introduce a parametrization of event-recording automata (PERAs);
2. we show that the reachability emptiness problem is undecidable for PERAs;
3. we then introduce our approach that combines iteration-based synthesis with

learning-based abstraction;
4. we implement our approach into a toolkit using IMITATOR and CV, and we

demonstrate its efficiency on several case studies.

Outline Section 2 introduces the necessary preliminaries. Section 3 recalls the
parametric reachability preservation [ALNS15]. Section 4 introduces paramet-
ric event-recording automata, and proves the undecidability of the reachability
emptiness problem. Section 5 introduces our main contribution, and Section 6
evaluates it on benchmarks. Section 7 concludes the paper.

2 Preliminaries

2.1 Clocks, parameters and constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation is a function
µ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, µ+ d denotes the valuation such that (µ+ d)(x) = µ(x) + d, for
all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ, denoted by [µ]R,
as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown rational-
valued constants. A parameter valuation (or point) v is a function v : P → Q+.

In the following, we assume � ∈ {<,≤} and ./ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ Z. Similarly, plt denotes a parametric linear

3

term over P , that is a linear term without clocks (αi = 0 for all i). A con-
straint C (i. e., a convex polyhedron) over X ∪P is a conjunction of inequalities
of the form lt ./ 0. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation µ, µ(v(C)) denotes the Boolean value obtained by replacing
each clock x in v(C) with µ(x).

A guard g is a constraint over X ∪P defined by a conjunction of inequalities
of the form x ./ plt .

A parameter constraint K is a constraint over P . We write v |= K if v(K)
evaluates to true.⊥ (resp.>) denotes the special parameter constraint containing
no (resp. all) parameter valuations. We will sometime manipulate non-convex
constraints over P , i. e., finite unions of parameter constraints. Such non-convex
constraints can be implemented using finite lists of constraints, and therefore all
definitions extend in a natural manner to non-convex constraints.

A parameter domain is a box parameter constraint, i. e., a conjunction of
inequalities of the form p ./ d, with d ∈ N. A parameter domain D is bounded if,
for each parameter, there exists in D an inequality p�d (recall that, additionally,
all parameters are bounded below from 0 as they are non-negative). Therefore
D can be seen as a hypercube in M dimensions.

2.2 Parametric Timed Automata

Parametric timed automata (PTAs) extend timed automata with parameters
within guards and invariants in place of integer constants [AHV93].

Definition 1 (PTA). A parametric timed automaton (hereafter PTA) A is a
tuple (Σ,L, l0, X, P, I, E), where: i) Σ is a finite set of actions, ii) L is a finite
set of locations, iii) l0 ∈ L is the initial location, iv) X is a finite set of clocks,
v) P is a finite set of parameters, vi) I is the invariant, assigning to every l ∈ L
a guard I(l), vii) E is a finite set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are
the source and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and
g is a guard.

Given a PTA A and a parameter valuation v, we denote by v(A) the non-
parametric timed automaton where all occurrences of a parameter pi have been
replaced by v(pi).

As usual, PTAs can be composed by performing their parallel composition,
i. e., their synchronized product on action names.

Concrete Semantics

Definition 2 (Concrete semantics of a TA). Given a PTA A =
(Σ,L, l0, X, P, I, E), and a parameter valuation v, the concrete semantics of v(A)
is given by the timed transition system (S, s0,→), with S = {(l, µ) ∈ L × RH+ |
µ(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and (continuous)
delay transition relations:

– discrete transitions: (l, µ)
e→ (l′, µ′), if (l, µ), (l′, µ′) ∈ S, there exists e =

(l, g, a,R, l′) ∈ E, µ′ = [µ]R, and µ(v(g)) is true.

4

– delay transitions: (l, µ)
d→ (l, µ+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, µ+d′) ∈ S.

A (concrete) run is a sequence ρ = s0γ0s1γ1 · · · snγn · · · such that
∀i, (si, γi, si+1) ∈ →. We consider as usual that concrete runs strictly alternate
delays di and discrete transitions ei and we thus write concrete runs in the form

ρ = s0
(d0,e0)→ s1

(d1,e1)→ · · · . The corresponding timed word is (a0, t0), (a1, t1), · · ·
where ai is the action of ei and ti =

∑i
j=0 di. Note that when a run is finite,

it must end with a state. A maximal run is a run that is either infinite, or that
cannot be extended. Given a state s = (l, µ), we say that s is reachable (or that
v(A) reaches s) if s belongs to a run of v(A). By extension, we say that l is
reachable in v(A), if there exists a state (l, µ) that is reachable. Given L/ ⊆ L,
we say that L/ is reachable in v(A) if ∃l ∈ L/ s.t. l is reachable.

Let ρ = (l0, µ0)
(d0,e0)→ (l1, µ1)

(d1,e1)→ · · · (ln, µn)
(dn,en)→ · · · be a run of v(A).

The trace of this run (denoted by trace(ρ)) is the sequence e0e1 · · · en · · · , and
the untimed word of this run is a0a1 · · · an · · · , where ai is the action of ei for
all i. The trace set of v(A) is the set of traces associated with all maximal runs
of A.

Symbolic semantics Let us recall the symbolic semantics of PTAs (as in e. g.,
[ACEF09,JLR15]). We define the time elapsing of a constraint C, denoted by
C↗, as the constraint over X and P obtained from C by delaying all clocks by
an arbitrary amount of time. That is, C↗ = {(µ, v) | µ |= v(C) ∧ ∀x ∈ X :
µ′(x) = µ(x) + d, d ∈ R+}. Given R ⊆ X, we define the reset of C, denoted by
[C]R, as the constraint obtained from C by resetting the clocks in R, and keeping
the other clocks unchanged. We denote by C↓P the projection of C onto P , i. e.,
obtained by eliminating the clock variables (e. g., using Fourier-Motzkin).

A parametric zone is a convex polyhedron over X ∪ P in which constraints
are of the form x ./ plt (parametric rectangular constraints), or xi − xj ./ plt
(parametric diagonal constraints), where xi, xj ∈ X and plt is a parametric
linear term over P .

A symbolic state is a pair s = (l, C) where l ∈ L is a location, and C its
associated parametric zone. The initial symbolic state of A is s0 =

(
l0, ({0} ∧

I(l0))↗ ∧ I(l0)
)
.

The symbolic semantics relies on the Succ operation. Given a symbolic
state s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with

C ′ =
(
[(C ∧ g)]R ∧ I(l′)

)↗ ∧ I(l′). The Succ operation is effectively computable,
using polyhedra operations; also note that the successor of a parametric zone C
is a parametric zone (see e. g., [JLR15]).

A symbolic run of a PTA is an alternating sequence of symbolic states and

edges starting from the initial symbolic state, of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm,
such that for all i = 0, . . . ,m− 1, we have ei ∈ E, and si+1 = Succ(si, ei).

Given a symbolic run s0
e0⇒ s1

e1⇒ · · · en⇒ sn · · · , its trace is the sequence
e0e1 · · · en · · · . Two runs (symbolic or concrete) are equivalent if they have the
same trace.

5

3 Parametric reachability preservation

Let us briefly recall the parametric reachability preservation algorithm PRP de-
fined in [ALNS15]. Given a set of locations L/, PRP(A, v, L/) synthesizes a dense
(convex) constraint K containing at least v and such that, for all v′ ∈ K, v′(A)
preserves the reachability of L/ in v(A). By preserving the reachability of L/

in v(A), we mean that some locations of L/ are reachable in v′(A) iff they are
in v(A). That is, if v(A) is safe (i. e., it does not reach L/), then v′(A) is safe too.
Conversely, if v(A) is unsafe (i. e., L/ is reachable for some runs), then v′(A) is
unsafe too.

Lemma 1 (Soundness of PRP [ALNS15]). Let A be a PTA, v a parameter
valuation, and L/ a subset of locations. Let K = PRP(A, v, L/).

For all v′ |= K, v′(A) reaches L/ iff v(A) reaches L/.

A specificity of PRP is that it does not aim at completeness; instead, it focuses
on behaviors “similar” to that of v(A) so as not to explore a too large part of the
state space, and outputs valuations neighboring v. A sort of completeness can
be achieved by iterating PRP on various parameter valuations: when v(A) has
computed K, the algorithm can be called again on a valuation v2 “neighbor” of
the result K, and so on until either the entire parameter space has been covered,
or when a certain coverage of a bounded parameter domain has been achieved
(e. g., 99 %). This iterated version is called PRPC (for PRP cartography), takes as
input a PTA A and a bounded parameter domain D0, and iteratively calls PRP
on parameter valuations of D0 with a given precision (e. g., at least all integer-
valued). This gives a cartography of D0 with a union Kgood of safe constraints
(valuations for which L/ is unreachable) and a union Kbad of unsafe constraints
(for which L/ is reachable). Although only the coverage of the discrete points
(e. g., integer-valued) can be theoretically guaranteed, PRPC often covers most
(if not all) of the dense state space within D0, and often outside too.

In practice, PRPC turned to be efficient when compared to the brute force
synthesis EFsynth, not only in terms of valuations coverage (the constraint output
by PRPC is often weaker than that of EFsynth) but also in terms of efficiency
(time and memory). A possible explanation is that, although PRPC performs
repeated calls to PRP (sometime performing redundant computation), it only
explores a limited part of the state space at once.

In addition, PRPC showed good results when being distributed on a clus-
ter [ALNS15], as different calls to PRP can be made in parallel (with a risk of
redundancy though).

4 Parametric event-recording automata

Event-recording automata (ERAs) [AFH99] are a subclass of timed automata,
where each action label is associated with a clock such that, for every edge with
a label, the associated clock is reset. We propose here a parametric extension of
ERAs, following the parameterization of TAs into PTAs.

6

l1 l2 l3
a

xa ≤ p
b

c

Fig. 1: An example of a PERA

Formally, let Σ be a set of actions: we denote by XΣ the set of clocks asso-
ciated with Σ, i. e., {xa | a ∈ Σ}. A Σ-guard is a guard on XΣ ∪ P .

Definition 3 (PERAs). A parametric event-recording automaton (PERA) is
a tuple (Σ,L, l0, P, I, E), where: i) Σ is a finite set of actions, ii) L is a finite set
of locations, iii) l0 ∈ L is the initial location, iv) P is a finite set of parameters,
v) I is the invariant, assigning to every l ∈ L a Σ-guard I(l), vi) E is a finite
set of edges e = (l, g, a, xa, l

′) where l, l′ ∈ L are the source and target locations,
a ∈ Σ, xa is is the clock to be reset, and g is a Σ-guard.

Just as for ERAs, PERAs can be seen as a syntactic subclass of PTAs: a
PERA is a PTA for which there is a one-to-one matching between clocks and
actions and such that, for each edge, the clock corresponding to the action is the
only clock to be reset.

Following the conventions used for ERAs, we do not explicitly represent
graphically the clock xa reset along an edge labeled with a: this is implicit.

Example 1. Figure 1 depicts an example of PERA with 3 actions (and therefore
3 clocks xa, xb and xc), and one parameter p. Only clock xa is used in a guard.

It is well-known that the EF-emptiness problem (“is the set of parameter
valuations for which it is possible to reach a given location empty?”) is undecid-
able for PTAs [AHV93,ALR16a]. Reusing the proof of [ALR16a], we show below
that this remains undecidable for PERAs.

Theorem 1. The EF-emptiness problem is undecidable for PERAs, even with
bounded parameters.

Proof. The proof works by adapting to PERAs the proof of [ALR16a, Theo-
rem 1], and is therefore given in Appendix A.

This negative result rules out the possibility to perform exact synthesis for
PERAs. Still, in the next section, we propose an approach that is sound, though
maybe not complete: the synthesized valuations are correct, but some may be
missing. More pragmatically, we aim at improving the synthesis efficiency.

7

A ‖ B̃ |= ϕ

B |= B̃

A ‖ B |= ϕ

(a) AGR proof rule

TL* Teacher

membership query

candidate query

yes/no

yes/no, counterexample

black-box

(b) TL∗ and Teacher

Fig. 2: AGR proof rule (left) and TL∗ (right)

5 Compositional parameter synthesis for PERAs

Figure 2a recalls the common proof rule used in Assume-Guarantee Reasoning
(AGR), which is one of the compositional verification techniques. Given two
components A, B and a safety property ϕ, the proof rule tells us that if A
can satisfy the property ϕ under an assumption B̃ and B can guarantee this
assumption B̃, then we can conclude that A ‖ B satisfies ϕ. As one can observe
that the proof rule decomposes one model checking problem (A ‖ B |= ϕ) into

two sub problems (A ‖ B̃ |= ϕ and B |= B̃). The following subsections introduce
how this proof rule is utilized in our approach.

5.1 Partitioning the system

The proof rule is presented in the context of two components. If a system consists
of more than two components, an intuitive way is to partition the components
into two groups to fit the proof rule. For example, if we have four components
M1, M2, M3, and M4, we could partition them as A = M1 ‖ M2 and B =
M3 ‖ M4. However, the number of possible partitions is exponential to the
number of components. In addition, an investigation [CAC08] showed that a good
partition is very critical to AGR because it affects the verification performance
significantly. In this work, we adopt the following heuristics:

1. If a component has timing parameters, it is collected in group A;

2. If a component shares common action labels with the property, the compo-
nent is collected in group A.

Other components are collected in group B.

Heuristics 1 is required for our approach to be sound. Concerning heuris-
tics 2, in AGR, the ideal case is when A satisfies the property with the weakest
assumption B̃ that allows everything, i. e., A itself is sufficient to prove the prop-
erty no matter how B behaves. Based on this observation, the rationale behind
heuristics 2 is that if a component shares common action labels with the prop-
erty, it is very likely to be necessary to prove the property. Thus, we collect it
in group A. We will show that heuristics 2 indeed yields good performance in
practice.

8

5.2 Computing an abstraction via learning

Although the proof rule provides a way to decompose the verification problem,
we still have one critical issue: where does the assumption B̃ come from? Let us
explain how to automatically generate the assumption B̃ by learning for non-
parametric timed systems. We adopt the TL∗ algorithm [LAL+14], which is
a learning algorithm to infer ERAs. We briefly introduce the TL∗ algorithm
here. Interested readers are referred to [LAL+14] for more details. The TL∗

algorithm has to interact with a teacher. The interaction between them is shown
in Figure 2b. Notice that only the teacher knows about the ERA (say U) to
be learned. During the learning process, the TL∗ algorithm actively makes two
types of queries: membership queries and candidate queries.

A membership query asks whether a word σ is accepted by U . The teacher
answers “yes” (“no”) if σ is accepted (rejected) by U . After several membership
queries, the TL∗ algorithm constructs a candidate ERA C, and makes a candidate
query for it. A candidate query asks whether an ERA accepts the same timed
language as U . If the teacher answers “yes”, then the learning process is finished,
and C is the ERA learned by TL∗. If the candidate C accepts more (or less) timed
words than U , the teacher answers “no” with a counterexample run ρ. The TL∗

algorithm will refine the candidate ERA based on the counterexamples provided
by the teacher until the answer to the candidate query is “yes”. We omit the
detailed learning process of TL∗. See [LAL+14] for details.

To guide the TL∗ algorithm for learning the assumption B̃, we need a teacher
to answer membership and candidate queries. Thanks to the proof rule since it
also gives us the hint to answer the two queries. According to the proof rule, as
long as the candidate C satisfies the two conditions: 1) A ‖ C |= ϕ and 2) B |= C,
the answer to the candidate query would be “yes” because the candidate C is
sufficient to be the assumption B̃ to conclude that A ‖ B |= ϕ. If C fails to satisfy
each condition, the answer to the candidate query is “no”. The two condition
checkings in Figure 3 (A ‖ C |= ϕ and B |= C) can be done by model checking, and
counterexamples given by model checking can also serve as counterexamples to
the TL∗ algorithm. Figure 3 shows our overall procedure LearnAbstr(B,A, ϕ) that

returns either an assumption (denoted by Abstraction(B̃)) when it is proved that
A ‖ B |= ϕ holds, or a counterexample (denoted by Counterex(τ)) otherwise.
Counterex and Abstraction are “tags” containing a value, in the spirit of data
exchanged in distributed programming or types in functional programming; these
tags will be used later on to differentiate between the two kinds of results output
by LearnAbstr. Also note that, in our setting, we need a counterexample in the
form of a trace τ , which is why LearnAbstr returns Counterex(trace(ρ)). We omit
the technical details of LearnAbstr(B,A, ϕ) here. Interested readers are referred
to [LAL+14].

Lemma 2. Let A,B be two ERAs. Assume LearnAbstr(B,A, ϕ) terminates with

result Abstraction(B̃). Then A ‖ B̃ |= ϕ and A ‖ B |= ϕ.

9

Algorithm 1: ReplayTrace(A, τ)

input : PTA A, finite trace τ = e0, e1, · · · en−1

output : Constraint over the parameters

1 s = s0
2 for i = 0 to n− 1 do s← Succ(s, ei) ;
3 return s↓P

Proof. Abstraction(B̃) is returned only if A ‖ B̃ |= ϕ and B |= B̃. Thus, A ‖ B̃ |= ϕ
holds. In addition, according to the proof rule Figure 2a, we can conclude that
A ‖ B |= ϕ.

5.3 Replaying a trace

In this section, we explain how to synthesize the exact set of parameter valuations
for which a finite trace belongs to the trace set.

Replaying a trace is close to two undecidable problems for PTAs: i) the
reachability of a location is undecidable for PTAs [AHV93], and therefore this
result trivially extends to the reachability of a single edge; ii) the emptiness of
the set of valuations for which the set of untimed words is the same as a given
valuation is undecidable for PTAs [AM15] (where a proof is provided even for a
unique untimed word). Nevertheless, computing the set of parameter valuations
for which a given finite trace belongs to the trace set can be done easily by
exploring a small part of the symbolic state space as follows.

We give our procedure ReplayTrace(A, τ) in Algorithm 1. Basically,
ReplayTrace computes the symbolic run equivalent to τ , and returns the projec-
tion onto P of the last symbolic state of that run. The correctness of ReplayTrace
comes from the following results (proved in, e. g., [HRSV02]):

Lemma 3. Let A be a PTA, and let ρ be a run of A reaching (l, C). Let v be a
parameter valuation. There exists an equivalent run in v(A) iff v |= C↓P .

Proof. From [HRSV02, Propositions 3.17 and 3.18].

TL∗

A ‖ C |= ϕ ?

B |= C ?

Abstraction(C)

ρ accepted by B ?

ρ accepted by A ? Counterex(trace(ρ))

Counterex(trace(ρ))

C

yes

no, ρ

no
refine C with ρ

no

refine C with ρ

yes
(i. e., A ‖ B |= ϕ)

no, ρ

yes
(i. e., A ‖ B 6|= ϕ)

yes
(i. e., A ‖ B 6|= ϕ)

Fig. 3: LearnAbstr(B,A, ϕ)

10

Algorithm 2: CompSynth(A,B, D0, L
/)

input : PERA A, ERA B, parameter domain D0, subset L/ of locations
output : Good and bad constraint over the parameters

1 Kbad ← ⊥ ; Kgood ← ⊥
2 while D0 ∩ N ∩ (Kbad ∪Kgood) 6= ∅ do
3 Pick v in D0 ∩ N ∩ (Kbad ∪Kgood)

4 switch LearnAbstr(B, v(A), AG¬L/) do

5 case Abstraction(B̃)

6 Kgood ← Kgood ∪ PRP(A ‖ B̃, v, L/)
7 case Counterex(τ)
8 Kbad ← Kbad ∪ ReplayTrace(A ‖ B, τ)

9 return (Kgood ,Kbad)

Lemma 4. Let A be a PTA, let v be a parameter valuation. Let ρ be a run
of v(A) reaching (l, µ).

Then there exists an equivalent symbolic run in A reaching (l, C), with v |=
C↓P .

Proof. From [HRSV02, Proposition 3.18].

Proposition 1. Let A be a PTA, let τ a trace of v0(A) for some v0. Let K =
ReplayTrace(A, τ).

Then, for all v, τ is a trace of v(A) iff v |= K.

Proof. τ is a trace of v0(A) for some v0, and therefore it corresponds to some
run ρ of v0(A). Then from Lemma 4 there exists an equivalent symbolic run
in A reaching (l, C), with v0 |= C↓P . Now, from Lemma 3, for all v, there exists
an equivalent run in v(A) iff v |= C↓P . As ReplayTrace(A, τ) returns exactly
K = C↓P therefore τ is a trace of v(A) iff v |= K.

5.4 Exploiting the abstraction and performing parameter synthesis

We give our procedure in Algorithm 2: it takes as arguments a set of PERA
components A, a set of ERA components B, a bounded parameter domain D0

and a set of locations to be avoided. We maintain a safe non-convex parame-
ter constraint Kgood and an unsafe non-convex parameter constraint Kbad , both
initially containing no valuations (line 1). Then CompSynth iterates on integer
points: while not all integer points in D0 are covered, i. e., do not belong to
Kbad ∪ Kgood (line 2), such an uncovered point v is picked (line 3). Then, we
try to learn an abstraction of B w.r.t. v(A) (line 5) so that L/ is unreachable
(“AG¬L/” stands for “no run should ever reach L/”). If an abstraction is suc-

cessfully learned, then PRP is called on v and the abstract model A ‖ B̃ (line 6);
the constraint Kgood is then refined. Note that Kgood is refined because, if an
abstraction is computed, then necessarily the property is satisfied and therefore

11

the (abstract) system is safe. Alternatively, if LearnAbstr fails to compute a valid
abstraction, then a counterexample trace τ is returned (line 7); then this trace
is replayed using ReplayTrace (line 8), and the constraint Kbad is updated.

5.5 Soundness

Proposition 2 (soundness). Let A ‖ B be a PERA and D0 be a bounded
parameter domain. Assume CompSynth(A,B, D0, L

/) terminates with result
(Kgood ,Kbad).

Then, for all v i) if v |= Kgood then v(A ‖ B) does not reach L/; ii) if
v |= Kbad then v(A ‖ B) reaches L/.

Proof. Let v be a parameter valuation.

i) Assume v |= Kgood . From Algorithm 2, Kgood is a finite union of convex
constraints, each of them being the result of a call to PRP. Necessarily,
v |= K, where K is one of these convex constraints, resulting from a call to

(A ‖ B̃, v′), for some v′. From Lemma 2, v′(A) ‖ B̃ |= (AG¬L/). Since B and

B̃ are non-parametric, we can write v′(A ‖ B̃) |= (AG¬L/), i. e., v′(A ‖ B̃)

does not reach L/. From Lemma 1, for all v′′ |= K, v′′(A ‖ B̃) does not

reach L/. Now, since B̃ is a valid abstraction of B (i. e., B |= B̃), therefore B̃
contains more behaviors than B. Therefore for all v′′ |= K, v′′(A ‖ B) does
not reach L/ either. Since v |= K, therefore v(A ‖ B) does not reach L/.

ii) Assume v |= Kbad . From Algorithm 2, Kbad is a finite union of convex
constraints, each of them being the result of a call to ReplayTrace. Necessarily,
v |= K, where K is one of these convex constraints, resulting from a call to
ReplayTrace(A ‖ B, τ) for some trace τ reaching L/. This trace was generated
by LearnAbstr for some v′ and is a valid counter-example, i. e., this trace τ
reaches L/ in v′(A) ‖ B. From Lemma 4, this trace is also a trace reaching L/

in A ‖ B. Then, from Proposition 1, for all v′′ |= K, τ is a valid trace of
v′′(A ‖ B) which reaches L/ and therefore v′′(A ‖ B) reaches L/. Since
v |= K, then v(A ‖ B) reaches L/.

Proposition 3 (integer-completeness). Let A be a PERA and D0 be a
bounded parameter domain. Assume CompSynth(A,B, D0, L

/) terminates with
result (Kgood ,Kbad).

Then, for all v ∈ D0 ∩ N, v ∈ Kgood ∪Kbad .

Proof. From the fact that Algorithm 2 only terminates after all integer points
are covered (line 2).

Remark 1. Note that the integerness can be scaled down to, e. g., multiples of 0.1,
or in fact arbitrarily small numbers. The time needed to perform the verification
might grow, but the coverage of all these discrete points is still guaranteed.

12

l1 l2

y = 1
a

{x := 0}

a

x = p
b

{x, y := 0}

(a) A PTA

l1 l2 l′2
x ≤ 0

y = 1
ax

na

x = p
ax

x ≤ 0
ay

(b) Translation to a PERA

Fig. 4: General PTA and its translation to a PERA

6 Experiments

6.1 Handling general PTAs

So far, we showed that our framework is sound for PERAs. We now show that,
since we address only reachability, any PTA can be transformed into an equiv-
alent PERA, and therefore our framework is much more general. The idea is
that, since we are interested in reachability properties, we can rename some of
the actions so that the PTA becomes a PERA.

Basically, we remove any action labels along the edges, and we add them
back as follows: 1) if clock x is reset along an edge, the action label will be ax;
2) if no clock is reset along an edge, the action label will be na, where na is a
(unique) label, the clock associated to which (say xna) is never used (in guards
and invariants) in the PERA; note that, by definition, xna is reset along each
edge labeled with na (although this has no impact in the PERA); 3) if more
than one clock is reset along the edge, we split the edge into 2 consecutive edges
in 0-time, where each clock is reset after the other, following the mechanism
described above. Note that the 0-time can be ensured using an invariant x ≤ 0,
where x is the first clock to be reset.

Basically, our transformation leaves the structure of the PTA unchanged
(with the exception of a few consecutive transitions in 0-time to simulate multi-
ple simultaneous clock resets). For each parameter valuation, the resulting PERA
has the same timed language as the original PTA – up to action renaming and
with the introduction of some 0-time transitions (that could be considered as
silent transitions if the language really mattered). Therefore, reachability is pre-
served.

Note that this construction provides an alternative proof for Theorem 1.

Example 2. Figure 4a shows a PTA, and Figure 4b its translation into an equiv-
alent PERA. (Recall that clock resets are implicit in PERAs.)

Remark 2. In our benchmarks, although we only address reachability, action
labels are not entirely useless: they are often used for action synchronization be-
tween components. Therefore, renaming all actions is not a valid transformation,

13

IMITATOR

parser core Python interface learning

CV

Constraint

Input model

Fig. 5: Architecture of our toolkit

as components may not synchronize anymore the way it was expected. In fact,
we ensured that our models either only work using interleaving (no action syn-
chronization) or, when various components of a PTA synchronize on an action
label, at most one clock is reset along that transition for all PTAs synchronizing
on this action label.

6.2 Experiments

Experimental environment and software We implemented our method in a
toolkit made of the following components:

– IMITATOR [AFKS12] is a state of the art tool for modeling and verify-
ing real-time systems modeled by IMITATOR parametric timed automata
(IPTAs), an extension of PTAs with stopwatches, broadcast synchroniza-
tion and integer-valued shared variables. IMITATOR is implemented in
OCaml, and the polyhedra operations rely on the Parma Polyhedra Library
(PPL) [BHZ08].

– CV (Compositional Verifier) is a prototype implementation (in C++) of the
proposed learning-based compositional verification framework for ERAs.

The architecture of our toolkit is shown in Figure 5. The leading tool is IMITA-
TOR, that takes the input model (in the IMITATOR input format), and even-
tually outputs the result. IMITATOR implements both algorithms CompSynth
(Algorithm 2) and ReplayTrace (Algorithm 1), while CV implements LearnAbstr
(Section 5.2). The interface between both tools is handled by a Python script,
that is responsible for retrieving the abstraction of B computed by CV and re-
parameterizing the components A. The whole toolkit can be installed easily:
both IMITATOR and CV have standalone binaries for Linux, and therefore only
the installation of Python (for the interface script) is required.

We used IMITATOR 2.9-alpha1, build 2212.3 Experiments were run on a
MacBook Pro with an i7 CPU 2.67GHz and 3,7 GiB memory running Kubuntu
14.04 64 bits.

Benchmarks We evaluated our approach using several benchmarks, with var-
ious (reachability) properties. We give in Table 1 the case studies, with the
numbers of PERAs in parallel, of clocks (equal to the number of actions, by
definition) and of parameters, followed by the specification number; then, we

3 Sources, binaries, models and all results are available at https://www.imitator.fr/
static/FORTE17.

14

https://www.imitator.fr/static/FORTE17
https://www.imitator.fr/static/FORTE17

PRPC CompSynth
Case study #A #X #P Spec EFsynth

#iter total #abs #c.-ex. learning total

FMS-1 6 18 2
1 0.299 2 0.654 1 1 0.074 0.136
2 0.010 1 0.372 0 1 0.038 0.046
3 0.282 1 0.309 1 0 0.090 0.242

FMS-2 11 37 2

1 T.O. - T.O. 1 1 84.2 88.9
2 T.O. - T.O. 1 0 81.4 85.2
3 0.051 - T.O. 0 2 1.10 2.44
4 0.062 - T.O. 0 1 1.42 1.53
5 T.O. - T.O. 1 0 31.4 40.8
6 T.O. - T.O. 1 0 37.2 42.4

AIP 11 46 2

1 0.551 - T.O. 0 1 0.086 0.114
2 2.11 - T.O. 0 1 1.22 1.25
3 3.91 - T.O. 0 1 8.50 8.54
4 0.235 - T.O. 1 1 8.39 8.42
5 T.O. - T.O. 1 0 0.394 0.871
6 T.O. - T.O. 1 0 5.32 9.58
7 T.O. - T.O. 1 0 1.76 3.19
8 T.O. - T.O. 1 0 1.13 4.35
9 T.O. - T.O. 1 1 0.762 1.84
10 0.022 - T.O. 0 1 0.072 0.094

Fischer-3 5 12 2 2.76 4 14.0 0 1 - T.O.
Fischer-4 6 16 2 T.O. - T.O. 0 1 - T.O.

Table 1: Experiments: comparison between algorithms

compare the computation time (in seconds) for EFsynth, PRPC, and CompSynth
(for which we also give the number of abstractions and counter-examples gen-
erated by LearnAbstr, and the learning time required by LearnAbstr). “T.O.”
denotes a timeout (> 600 s). FMS-1 and -2 are two versions of a flexible manu-
facturing system [LAL+14] (Figure 1 depicts the conveyor component of FMS-1).
AIP is a manufacturing system producing two products from two different ma-
terials [LAL+14]. Fischer-3 (resp. 4) is a PERA version of the mutual exclusion
protocol with 3 (resp. 4) processes; it was obtained using the transformation in
Section 6.1.

Comparison Although reachability synthesis is intractable for PERAs (Theo-
rem 1), CompSynth always terminates for our case studies (except for Fischer,
for which the abstraction computation is too slow). In contrast, EFsynth does
often not terminate. In addition, CompSynth always gives a complete (dense)
result not only within D0 but in fact in the entire parameter domain (QM+).

First, CompSynth outperforms PRPC for all but one benchmark: this suggest
to use CompSynth instead of PRPC in the future.

Second, CompSynth is faster than EFsynth in 13/20 cases. In addition, whereas
EFsynth often does not terminate, CompSynth always outputs a result (except
for Fischer). In some cases (FMS-2:3, FMS-2:4, AIP:4), EFsynth is much faster
because it immediately derives a false constraint ⊥, whereas CompSynth has to
compute the abstraction first. Even in these unfavorable cases, CompSynth is
never much behind EFsynth: the worst case is AIP:4, with 8 seconds slower. This
suggests that CompSynth may be preferred to EFsynth for PERAs benchmarks.

Interestingly, in almost all benchmarks, at most one abstraction (for good
valuations) and one counter-example (for bad valuations) is necessary for
CompSynth. In addition, most of the computation time of CompSynth (71 %

15

CompSynth
Case study #A #X #P Spec D0 #abs #c.-ex. find next point learning total

FMS-2 11 37 2 1

2,500 1 1 0.0 81.0 85.7
10,000 1 1 0.1 82.5 87.3

250,000 1 1 2.2 82.0 89.0
1,000,000 1 1 8.9 83.1 96.7

25,000,000 1 1 221.2 83.1 309.0
100,000,000 1 1 888.1 83.5 976.4

Table 2: Experiments: scalability w.r.t. the reference domain

in average) comes from LearnAbstr; this suggests to concentrate our future op-
timization efforts on this part. Perhaps an on-the-fly composition mixed with
synthesis could help speeding-up this part; this would also solve the issue of
false constraints ⊥ synthesized only after the abstraction phase is completed
(FMS-2:3, FMS-2:4, AIP:4).

For Fischer, our algorithm is very inefficient: this comes from the fact that
the model is strongly synchronized, and the abstraction computation does not
terminate within 600 s. In fact, in both cases, LearnAbstr successfully derives very
quickly a counter-example that is used by CompSynth to immediately synthesize
all “bad” valuations; but then, as LearnAbstr fails in computing an abstrac-
tion, the good valuations are not synthesized. Improving the learning phase for
strongly synchronized models is on our agenda.

We were not able to perform a comparison with [ABB+16]; the prototype
of [ABB+16] always failed to compute a result (models are available online). In
addition, our Fischer benchmark does not fit in [ABB+16] as Fischer makes use
of shared parameters.

Size of the parameter domain Algorithm 2 is based on an enumeration of
integer points: although we could use an SMT solver to find the next uncovered
point, in our implementation we just enumerate all points, and therefore the size
of D0 may have an impact on the efficiency of CompSynth. Table 2 shows the
impact of the size ofD0 w.r.t. CompSynth. “find next point” is the time to find the
next uncovered point (and therefore includes the enumeration of all points). The
overhead is reasonable up to 1,000,000 points, but then becomes very significant.
Two directions can be taken to overcome this problem for very large parameter
domains: 1) using an SMT solver to find the next uncovered point; or 2) using
an on-the-fly refinement of the precision (e. g., start with multiples of 100, then
10 for uncovered subparts of D0, then 1. . . until D0 ⊆ Kbad ∪Kgood).

Partitioning Finally, although the use of heuristic 2 is natural, we still wished
to evaluate it. Results show that our partitioning heuristic yields always the best
execution time, or almost the best execution time (see Appendix B for details).

7 Conclusion and perspectives

We proposed a learning-based approach to improve the verification of parametric
distributed timed systems, that turns to be globally efficient on a set of bench-

16

marks; most importantly, it outputs an exact result for most cases where the
monolithic procedure EFsynth fails.

Among the limitations of our work is that the input model must be a PERA
(although we provide an extension to PTAs), and that all parametric ERAs must
be in the same component A. How to lift these assumptions is on our agenda.

Another perspective is the theoretical study of PERAs, i. e., their expressive-
ness and decidability (beyond EF-emptiness, that we proved to be undecidable).
As they represent a strict subclass of PTAs, some problems undecidable for
PTAs (see [And15]) may become decidable for PERAs. In addition, studying
the expressiveness of PERAs (starting with the definition of parametric timed
formalisms recently proposed in [ALR16b]) is also of interest.

We would like to combine our approach with the approach based on the
integer hull approximation of [ALR15], with a guarantee on the termination and
the minimum size of the under-approximated result.

Finally, addressing other properties than reachability is also on our agenda.

Acknowledgment We warmly thank Lăcrămioara Aştefănoaei for her appreciated
help with installing and using the prototype tool of [ABB+16].

References

ABB+16. Lăcrămioara Aştefănoaei, Saddek Bensalem, Marius Bozga, Chih-Hong
Cheng, and Harald Ruess. Compositional parameter synthesis. In FM,
volume 9995 of Lecture Notes in Computer Science, pages 60–68, 2016.

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. International
Journal of Foundations of Computer Science, 20(5):819–836, 2009.

ACN15. Étienne André, Camille Coti, and Hoang Gia Nguyen. Enhanced distributed
behavioral cartography of parametric timed automata. In ICFEM, Lecture
Notes in Computer Science. Springer, 2015.

AFH99. Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata:
A determinizable class of timed automata. Theoretical Computer Science,
211(1-2):253–273, 1999.

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMI-
TATOR 2.5: A tool for analyzing robustness in scheduling problems. In FM,
volume 7436 of Lecture Notes in Computer Science. Springer, 2012.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993.

ALNS15. Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng Sun.
Reachability preservation based parameter synthesis for timed automata.
In NFM, volume 9058 of Lecture Notes in Computer Science, pages 50–65.
Springer, 2015.

ALR15. Étienne André, Didier Lime, and Olivier H. Roux. Integer-complete synthe-
sis for bounded parametric timed automata. In RP, volume 9328 of Lecture
Notes in Computer Science, pages 7–19. Springer, 2015.

ALR16a. Étienne André, Didier Lime, and Olivier H. Roux. Decision problems for
parametric timed automata. In ICFEM, volume 10009 of Lecture Notes in
Computer Science, pages 400–416. Springer, 2016.

17

ALR16b. Étienne André, Didier Lime, and Olivier H. Roux. On the expressiveness of
parametric timed automata. In FORMATS, volume 9984 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2016.

AM15. Étienne André and Nicolas Markey. Language preservation problems in
parametric timed automata. In FORMATS, volume 9268 of Lecture Notes
in Computer Science, pages 27–43. Springer, 2015.

And15. Étienne André. What’s decidable about parametric timed automata? In
FTSCS, volume 596 of Communications in Computer and Information Sci-
ence, pages 1–17. Springer, 2015.

BHZ08. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhe-
dra Library: Toward a complete set of numerical abstractions for the analy-
sis and verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008.

CAC08. Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking
up is hard to do: An evaluation of automated assume-guarantee reasoning.
ACM Transactions on Software Engineering and Methodology, 17(2):7:1–
7:52, 2008.

CGP03. Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Learning assumptions for compositional verification. In TACAS, volume
2619 of Lecture Notes in Computer Science, pages 331–346, 2003.

CPR08. Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic compu-
tation of schedulability regions using parametric timed automata. In RTSS,
pages 80–89. IEEE Computer Society, 2008.

FJK08. Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A counterexample-
guided approach to parameter synthesis for linear hybrid automata. In
HSCC, volume 4981 of Lecture Notes in Computer Science, 2008.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 52-53:183–220, 2002.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer param-
eter synthesis for timed automata. Transactions on Software Engineering,
41(5):445–461, 2015.

LAL+14. Shang-Wei Lin, Étienne André, Yang Liu, Jun Sun, and Jin Song Dong.
Learning assumptions for compositional verification of timed systems.
Transactions on Software Engineering, 40(2):137–153, 2014.

Min67. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., 1967.

18

A Proof of Theorem 1

Theorem 1 (recalled). The EF-emptiness problem is undecidable for
PERAs, even with bounded parameters.

Proof. We adapt the proof of [ALR16a, Theorem 1], that we adapt to the case
of PERAs. The adaptation mostly consists in renaming clocks and actions from
the original proof so that the PTA becomes a PERA. We build a PERA that
encodes a 2-counter machine (2CM) [Min67], such that the machine halts iff
there exists some valuation of the parameters of the PERA such that it reaches
a specific location.

Recall that a 2-counter machine has two non-negative counters C1 and C2,
a finite number of states and a finite number of transitions, which can be of the
form:

– when in state si, increment Ck and go to sj ;
– when in state si, decrement Ck and go to sj ;
– when in state si, if Ck = 0 then go to sj , otherwise block.

The machine starts in state s0 and halts when it reaches a particular state
lhalt. The halting problem for 2-counter machines is undecidable [Min67].

Given such a machine M, we now provide an encoding as a PERA A(M):
each state si of the machine is encoded as a location of the automaton, which
we also call si.

The counters are encoded using clocks xa, xb and xc and one parameter p,
with the following relations with the values c1 and c2 of counters C1 and C2: in
any location si, when xa = 0, we have xb = 1 − pc1 and xc = 1 − pc2. We will
see that p is a rational-valued bounded parameter, typically in [0, 1]. The main
idea of our encoding is that, to correctly simulate the machine, the parameter
must be sufficiently small to encode the maximum value of the counters, i. e., for
1− pc1 and 1− pc2 to stay non-negative along the execution of the machine.

We initialize the clocks with the gadget in Figure 6a: note that it implicitly
resets clock xa. Clearly, when in s0 with xa = 0, we have xb = xc = 1, which
indeed corresponds to counter values 0.

We now present the gadget encoding the increment instruction of C1 in Fig-
ure 6b. The transition from si to li1 only serves to clearly indicate the entry in
the increment gadget and is done in 0 time unit. Note that it features no action
label; one could use an extra label d, the clock of which is never used in the
PERA.

Since we use only equalities, there are really only two paths that go through
the gadget: one going through li2 and one through l′i2. Let us begin with the
former.

We start from some encoding configuration: xa = 0, xb = 1 − pc1 and xc =
1 − pc2 in si (and therefore the same in li1). We can enter li2 (after elapsing
enough time) if 1 − pc2 ≤ 1, i. e., pc2 ≥ 0, which implies that p ≥ 0, and when
entering li2 we have xa = pc2, xb = 1− ac1 + ac2 and xc = 0. Then we can enter

19

l0 s0

xa = 1
a

(a) EF-emptiness: initial gadget

si li1

li2

l′i2

li3 sj
xa = 0

xc = 1,
c

xb = p+ 1,
b

xb = p+ 1,
b

xc = 1,
c

xa = 1,
a

(b) EF-emptiness: increment gadget

Fig. 6: EF-emptiness: gadgets

li3 if 1 − pc1 + pc2 ≤ 1 + p, i. e., p(c1 + 1) ≥ pc2. When entering li3, we then
have xa = p(c1 + 1), xb = 0 and xc = p(c1 + 1) − pc2. Finally, we can go to sj
if p(c1 + 1) ≤ 1 and when entering sj we have xa = 0, xb = 1 − p(c1 + 1) and
xc = 1− pc2, as expected.

We now examine the second path. We can enter l′i2 if 1 − pc1 ≤ p + 1, i. e.,
p(c1 + 1) ≥ 0, and when entering l′i2 we have xa = p(c1 + 1), xb = 0 and
xc = 1− pc2 + p(c1 + 1). Then we can go to li3 if 1− pc2 + p(c1 + 1) ≤ 1 + p, i. e.,
p(c1 + 1) ≤ pc2. When entering li3, we then have xa = pc2, xb = pc2 − p(c1 + 1)
and xc = 0. Finally, we can go to sj if pc2 ≤ 1 and when entering sj we have
xa = 0, xb = 1− p(c1 + 1) and xc = 1− pc2, as expected.

Remark that exactly one path can be taken depending on the respective order
of c1 + 1 and c2, except when both are equal or p = 0, in which cases both paths
lead to the same configuration anyway.

Decrement is done similarly by replacing guards xb = p+ 1 with xb = 1, and
guards xa = 1 and xc = 1 with xa = p+ 1 and xc = p+ 1, respectively.

From si, to encode zero-testing C1 and going to sj , we only need to add a
transition from si to sj with guard xb = 1 ∧ xa = 0.

All those gadgets also work for C2 by swapping xb and xc.
Finally, we add another location l′halt and a transition from lhalt to l′halt with

guard 0 < xa < 1 and xa = p. This implies the constraint 0 < p < 1 when
reaching l′halt. This is important, in order to remove the p = 0 value, which does
not encode the counters properly. (Note that we could also do this as early as
the initialization gadget.)

Let us now prove that the machine halts iff there exists a parameter valua-
tion v such that v(A) can reach l′halt. Consider two cases:

1. Either the machine halts, then the automaton can go into the l′halt location,
with constraints 0 < p < 1 and, if c is the maximum value of both C1 and
C2 over the (necessarily finite) halting run of the machine, and if c > 0, then
p ≤ 1

c . The set of such valuations for p is certainly non-empty: p = 1
2 belongs

to it if c = 0 and p = 1
c does otherwise;

2. Or the machine does not halt. There are two subcases:
(a) either the counters stay bounded. Let c be their maximal value. As

before, if c = 0 and 0 < p ≤ 1 or c > 0 and cp < 1, then the machine is

20

Partitioning CompSynth
Case study #A #X #P Spec

A B #abs #c.-ex. learning total

FMS-1 6 18 2

1

CM R1R2A 1 1 1.071 1.137
CMR1 R2A 1 1 0.077 0.148
CMR2 R1A 1 1 5.152 5.406
CMA R1R2 1 1 5.663 5.980
CMR1R2 A 1 1 0.123 0.290
CMR1A R2 1 1 0.119 0.360
CMR2A R1 1 1 6.150 6.690

2

CM R1R2A 0 1 0.133 0.149
CMR1 R2A 0 2 0.077 0.123
CMR2 R1A 0 1 0.040 0.056
CMA R1R2 0 1 0.824 0.842
CMR1R2 A 0 1 0.034 0.044
CMR1A R2 0 2 0.096 0.144
CMR2A R1 0 1 0.042 0.051

3

CM R1R2A 1 0 0.211 0.270
CMR1 R2A 1 0 0.082 0.186
CMR2 R1A 1 0 1.094 1.208
CMA R1R2 1 0 0.729 0.881
CMR1R2 A 1 0 0.119 0.279
CMR1A R2 1 0 0.314 0.634
CMR2A R1 1 0 0.104 0.257

Table 3: Experiments: partitioning into components

correctly encoded and the PTA cannot reach l′halt. Otherwise, at some
point during an incrementation of, say, C1 we will have p(c1 + 1) > 1
when taking the transition from li2 to li3 and the PTA will be blocked;

(b) or one of the counters is not bounded, say C1. Then whatever the value of
p > 0, we have the same situation as in the previous item: the automaton
blocks during some incrementation.

In both subcases, the automaton cannot reach the l′halt location and the set
of parameters such that it does is obviously empty.

B Additional experiments: partitioning heuristics

We evaluated the validity of heuristic 2 by performing additional experiments.
For all situations, our partitioning heuristics yields either the fastest computa-
tion, or almost the fastest.

Table 3 presents the FMS-1 case study, and considers all three specifications,
with all possible partitions. The 5 components are denoted by C (conveyor 1), M
(mill), R1 (robot 1), R2 (robot 2) and A (assembly station). The 6th component
is the specification, and is handled separately (it plays the role of ϕ in our
framework). Components C and M contain parameters and must be therefore
placed in A (according to heuristic 1). Recall that this is strong an assumption
in our approach, that cannot be (easily) lifted. Let us now evaluate all possible
repartitions of the other components into A and B. This gives 7 combinations;
the combinations are relatively limited, as B must not be empty, and C and M
cannot be moved.

In Table 3, we highlight with a yellow background the combination corre-
sponding to heuristic 2. We highlight in bold with a green background the best

21

execution time. In 2 cases, heuristic 2 yields the best result; in the 3rd case,
heuristic 2 yields the second best result. Similar experiments were performed for
the other case studies (though not exhaustive, due to combinatorial explosion of
the possible partitions), and led to the same results.

Finally note that computation time of EFsynth and PRPC is not impacted by
partitioning as these algorithms do not rely on compositional verification.

22

	Learning-based compositional parameter synthesis for event-recording automata

