
Merge and Conquer:
State Merging in Parametric Timed Automata?

Étienne André1, Laurent Fribourg2, and Romain Soulat2

1 Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
2 LSV, ENS Cachan & CNRS, Cachan, France

Abstract. Parameter synthesis for real-time systems aims at synthesiz-
ing dense sets of valuations for the timing requirements, guaranteeing
a good behavior. A popular formalism for modeling parameterized real-
time systems is parametric timed automata (PTAs). Compacting the
state space of PTAs as much as possible is fundamental. We present
here a state merging reduction based on convex union, that reduces the
state space, but yields an over-approximation of the executable paths.
However, we show that it preserves the sets of reachable locations and
executable actions. We also show that our merging technique associated
with the inverse method, an algorithm for parameter synthesis, preserves
locations as well, and outputs larger sets of parameter valuations.

Keywords: Parameter synthesis, state space reduction, real-time systems

1 Introduction

Ensuring the correctness of critical real-time systems, involving concurrent be-
haviors and timing requirements, is crucial. Formal verification methods may
not always be able to verify full size systems, but they provide designers with
an important help during the design phase, in order to detect otherwise costly
errors. Formalisms for modeling real-time systems, such as time Petri nets or
timed automata (TAs), have been extensively used in the past decades, and led
to useful and efficient implementations. Parameter synthesis for real-time sys-
tems is a set of techniques aiming at synthesizing dense sets of valuations for the
timing requirements of the system. We consider the delays as unknown constants,
or parameters, and synthesize constraints on these parameters guaranteeing the
system correctness; of course, the weaker the constraint (i.e., the larger the set
of parameter valuations), the more interesting the result. Parameterizing TAs
gives parametric timed automata (PTAs) [AHV93].

A fundamental problem in the exploration of the reachability space in PTAs
is to compact as much as possible the generated space of symbolic states. Our
first contribution is to introduce a state merging technique based on convex

? This is the author version of the paper of the same name accepted for publication
at ATVA 2013. The final publication is available at www.springer.com.

www.springer.com

2 Étienne André, Laurent Fribourg, and Romain Soulat

union. Roughly speaking, two states are merged when their discrete part is the
same, and the union of their respective continuous part (values of the clocks
and parameters) is convex. On the one hand, this technique often considerably
reduces the state space. On the other hand, exploring the state space using this
technique does not reflect the standard semantics of PTAs: the set of possible
paths is an over-approximation of the set of paths in the original PTAs semantics.
However, we show that the state space computed using the merging reduction
preserves the set of reachable locations and executable actions. That is, the
sets of reachable locations and executable actions obtained using the merging
reduction are the same as those obtained using the classical semantics.

The inverse method IM [AS13] is an algorithm that takes advantage of a
known reference parameter valuation, and synthesizes a constraint around the
reference valuation guaranteeing the same traces as for the reference valuation,
i.e., the same time-abstract (or discrete) behavior. Our second contribution is
to show that IM equipped with our merging reduction (called IM Mrg) does not
preserve traces anymore; however, it preserves locations (i.e., discrete reachabil-
ity), and outputs a weaker constraint. However, we show that actions are not
preserved in the general case. We exhibit a subclass of PTAs, namely backward-
deterministic PTA, for which action preservation is guaranteed. Furthermore,
we show that IM Mrg outputs a weaker constraint (i.e., a larger set of parameter
valuations) than IM , which is interesting.

Our third contribution is to define a new version IM ′
Mrg of IM Mrg that

preserves not only locations but actions too, at the cost of a more restrictive
constraint than IM Mrg , but still weaker than IM . Our work is implemented in
Imitator [AFKS12] and shows large state space reductions in many cases, espe-
cially for scheduling problems. Finally, and more surprisingly, the time overhead
induced by the convexity test is often not significant in the few case studies
where the state space is not reduced.

Related Work. In [SBM06], it is shown that, in a network of TAs, all the successor
states can be merged together when all the interleavings of actions are possible.
However, this result does not extend to the parametric case. In [Dav05,Dav06], it
is proposed to replace the union of two states by a unique state when the union
of their continuous part (viz., the symbolic clock values) is convex, and the
discrete part (viz., the location) is identical. This technique is applied to timed
constraints represented in the form of Difference Bound Matrices (DBMs). Our
merging technique can be seen as an extension of the technique in [Dav05,Dav06]
to the parametric case. This extension is not trivial, and the implementation
is necessarily different, since DBMs (in their original form) do not allow the
use of parameters. Instead, we implemented our approach in Imitator using
polyhedra [BHZ08].

Remark. This paper is an extension of a “work in progress” paper [AFS12]. In
contrast to [AFS12], we formally define the merging operation, and character-
ize it in the general setting of reachability analysis for PTAs. Furthermore, we
rewrite a result from [AFS12] that erroneously stated that the inverse method

Merge and Conquer: State Merging in Parametric Timed Automata 3

with merging preserves traces; we show here that it does not, but preserves (at
least) the set of locations. We also exhibit a subclass of PTAs for which IM Mrg

preserves actions too. We finally define a new version of the inverse method that
preserves not only locations but actions as well, for general PTAs.

Outline. We recall preliminaries in Section 2. We define and characterize the
merging reduction in Section 3. Section 4 is dedicated to IM combined with the
merging reduction. We give experiments in Section 5 and conclude in Section 6.

2 Preliminaries

We denote by N, Q+ and R+ the sets of non-negative integers, non-negative
rational and non-negative real numbers, respectively.

2.1 Clocks, Parameters and Constraints

Throughout this paper, we assume a fixed set X = {x1, . . . , xH} of clocks. A
clock is a variable xi with value in R+. All clocks evolve linearly at the same
rate. A clock valuation is a function w : X → RH+ . We will often identify a
valuation w with the point (w(x1), . . . , w(xH)). Given a constant d ∈ R+, we
use X + d to denote the set {x1 + d, . . . , xH + d}. Similarly, we write w + d to
denote the valuation such that (w + d)(x) = w(x) + d for all x ∈ X.

Throughout this paper, we assume a fixed set P = {p1, . . . , pM} of parame-
ters, i.e., unknown constants. A parameter valuation π is a function π : P → RM+ .
We will often identify a valuation π with the point (π(p1), . . . , π(pM)).

An inequality over X and P is e ≺ e′, where ≺∈ {<,≤}, and e, e′ are two
linear terms of the form

∑
1≤i≤N αizi + d where zi ∈ X ∪ P , αi ∈ Q+, for

1 ≤ i ≤ N , and d ∈ Q+. We define similarly inequalities over X (resp. P).
A constraint is a conjunction of inequalities. Given an inequality J over the
parameters of the form e < e′ (respectively e ≤ e′), the negation of J , denoted
by ¬J , is the linear inequality e′ ≤ e (respectively e′ < e).

We denote by L(X), L(P) and L(X ∪ P) the set of all constraints over X,
over P , and over X and P respectively. In the sequel, J denotes an inequality
over the parameters, D ∈ L(X), K ∈ L(P), and C ∈ L(X ∪ P). A constraint
over X and P can be interpreted as a set of points in the space RM+H , more
precisely as a convex polyhedron.

Given a clock valuation w, D[w] denotes the expression obtained by replacing
each clock x in D with w(x). A clock valuation w satisfies constraint D (denoted
by w |= D) ifD[w] evaluates to true. Given a parameter valuation π, C[π] denotes
the constraint over the clocks obtained by replacing each parameter p in C
with π(p). Likewise, given a clock valuation w, C[π][w] denotes the expression
obtained by replacing each clock x in C[π] with w(x). We say that a parameter
valuation π satisfies a constraint C, denoted by π |= C, if the set of clock
valuations that satisfy C[π] is nonempty. We use the notation <w, π> |= C to
indicate that C[π][w] evaluates to true.

4 Étienne André, Laurent Fribourg, and Romain Soulat

Given two constraints C1 and C2, C1 is said to be included in C2, denoted
by C1 ⊆ C2, if ∀w, π : <w, π> |= C1 =⇒ <w, π> |= C2.

A parameter valuation π satisfies a constraint K over the parameters, de-
noted by π |= K, if the expression obtained by replacing each parameter p in K
with π(p) evaluates to true. Given K1 and K2, K1 is included in K2, denoted
by K1 ⊆ K2, if ∀π : π |= K1 =⇒ π |= K2. We consider true as a constraint over
the parameters, corresponding to the set of all possible values for P .

We denote by C↓P the constraint over the parameters obtained by projecting
C onto the set of parameters, that is after elimination of the clock variables.

Sometimes we will refer to a variable domain X ′, which is obtained by re-
naming the variables in X. Explicit renaming of variables is denoted by the sub-
stitution operation. Given a constraint C over the clocks and the parameters,
we denote by C[X←X′] the constraint obtained by replacing in C the variables
of X with the variables of X ′. We sometime write C(X) or C(X ′) to denote the
set of clocks used within C.

We define the time elapsing of C, denoted by C↑, as the constraint over X
and P obtained from C by delaying an arbitrary amount of time. Formally:

C↑ =
(

(C ∧X ′ = X + d)↓X′∪P
)
[X′←X]

where d is a new parameter with values in R+, and X ′ is a renamed set of
clocks. The inner part of the expression adds the same delay d to all clocks; the
projection onto X ′ ∪ P eliminates the original set of clocks X, as well as the
variable d; the outer part of the expression renames clocks X ′ with X.

2.2 Labeled Transition Systems

We introduce below labeled transition systems, which will be used later in this
section to define the semantics of PTAs.

Definition 1. A labeled transition system is a quadruple LT S = (Σ,S, S0,⇒),
with Σ a set of symbols, S a set of states, S0 ⊂ S a set of initial states, and
⇒ ∈ S×Σ×S a transition relation. We write s

a⇒ s′ for (s, a, s′) ∈ ⇒. A run (of
length m) of LT S is an alternating sequence of states si ∈ S and symbols ai ∈ Σ
of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm, where s0 ∈ S0. A state si is reachable if it

belongs to some run r.

2.3 Parametric Timed Automata

Parametric timed automata are an extension of the class of timed automata to
the parametric case, where parameters can be used within guards and invariants
in place of constants [AHV93].

Definition 2 (Parametric Timed Automaton). A parametric timed au-
tomaton (PTA) A is a 8-tuple of the form A = (Σ,L, l0, X, P,K, I,→), where

Merge and Conquer: State Merging in Parametric Timed Automata 5

– Σ is a finite set of actions,
– L is a finite set of locations, l0 ∈ L is the initial location,
– X is a set of clocks, P is a set of parameters,
– K ∈ L(P) is the initial constraint,
– I is the invariant, assigning to every l ∈ L a constraint I(l) ∈ L(X ∪ P),
– → is a step relation consisting of elements of the form (l, g, a, ρ, l′) where
l, l′ ∈ L are the source and destination locations, a ∈ Σ, ρ ⊆ X is a set of
clocks to be reset by the step, and g ∈ L(X ∪ P) is the step guard.

The constraint K corresponds to the initial constraint over the parameters,
i.e., a constraint that will be true in all the states of A. For example, in a PTA
with two parameters min and max, we may want to constrain min to be always
smaller or equal to max, in which case K is defined as min ≤ max.

Given a PTA A = (Σ,L, l0, X, P,K, I,→), for every parameter valuation π,

A[π] denotes the PTA (Σ,L, l0, X, P,Kπ, I,→), where Kπ = K ∧
∧M
i=1 pi =

π(pi). This corresponds to the PTA obtained from A by substituting every oc-
currence of a parameter pi by constant π(pi) in the guards and invariants. Note
that A[π] is a non-parametric timed automaton.

In the following, given a PTA A = (Σ,L, l0, X, P,K, I,→) and when clear
from the context, we will often denote this PTA by A(K), in order to emphasize
the value of K in A.

The (symbolic) semantics of PTAs relies on the notion of state, i.e., a pair
(l, C) where l ∈ L is a location, and C ∈ L(X ∪P) its associated constraint. For
each valuation π of P , we may view a state s as the set of pairs (l, w) where w
is a clock valuation such that <w, π> |= C.

A state s = (l, C) of a PTA A is π-compatible if π |= C. We say that a
set of states S1 is included into a set of states S2, denoted by S1 v S2, if
∀s : s ∈ S1 =⇒ s ∈ S2.

The initial state of A(K) is s0 = (l0, C0), where C0 = K ∧ I(l0)∧
∧H−1
i=1 xi =

xi+1. In this expression, K is the initial constraint over the parameters, I(l0) is
the invariant of the initial state, and the rest of the expression lets clocks evolve
from the same initial value.

The semantics of PTAs is given in the following in the form of an LTS.

Definition 3 (Semantics of PTAs). Let A = (Σ,L, l0, X, P,K, I,→) be a
PTA. The semantics of A is LT S(A) = (Σ,S, S0,⇒) where

S = {(l, C) ∈ L× L(X ∪ P) | C ⊆ I(l)},
S0 = {s0}

and a transition (l, C)
a⇒ (l′, C ′) belongs to ⇒ if ∃C ′′ : (l, C)

a→ (l′, C ′′)
d→

(l′, C ′), with

– discrete transitions (l, C)
a→ (l′, C ′) if there exists (l, g, a, ρ, l′) ∈ → and

C ′ =
((
C(X) ∧ g(X) ∧X ′ = ρ(X)

)
↓X′∪P ∧ I(l′)(X ′)

)
[X′←X]

and

6 Étienne André, Laurent Fribourg, and Romain Soulat

– delay transitions (l, C)
d→ (l, C ′) with C ′ = C↑ ∧ I(l)(X).

Let LT S(A) = (Σ,S, S0,⇒). When clear from the context, given (s1, a, s2) ∈
⇒, we write (s1

a⇒ s2) ∈ ⇒(A).

A path of A is an alternating sequence of states and actions of the form

s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . ,m − 1, ai ∈ Σ and si
ai⇒

si+1 ∈ ⇒(A). The set of all paths of A is denoted by Paths(A). We define traces

as time-abstract paths. Given a path (l0, C0)
a0⇒ (l1, C1)

a1⇒ · · · am−1⇒ (lm, Cm),

the corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of all traces of A (or
trace set) is denoted by Traces(A).

The Post operation computes the successors of a state. Formally, PostA(s) =

{s′|∃a ∈ Σ : (s
a⇒ s′) ∈ ⇒(A)}. We define PostiA(s) as the set of states reachable

from a state s0 in exactly i steps. The Post operation extends to a set S of states:
PostA(S) =

⋃
s∈S PostA(s). And similarly for PostiA(S). We write Post∗A(S) =⋃

i≥0 PostiA(S).

Given a PTA A of initial state s0, we write Reachi(A) (resp. Reach∗(A)) for
PostiA({s0}) (resp. Post∗A({s0})). We also define Locations(A) (resp. Actions(A))
as the set of locations (resp. actions) reachable (resp. executable) from the initial
state of A. We will often use these notations with A(K) in place of A.

Remark 1. For sake of conciseness, we do not recall the concrete semantics of
PTAs here. Our symbolic semantics is commonly used (see, e.g., [HRSV02,AS13]),
and it is clear that the sets Locations(A) and Actions(A) are the same for both
the symbolic and concrete semantics. ut

2.4 The Inverse Method

The inverse method IM is a semi-algorithm (i.e., if it terminates, its result is
correct) that takes as input a PTA A and a reference parameter valuation π,
and synthesizes a constraint K over the parameters such that, for all π′ |= K,
A[π] and A[π′] have the same trace sets [AS13].

IM , recalled in Algorithm 1, uses 4 variables: an integer imeasuring the depth
of the state space exploration, the current constraint Kc, the set S of states ex-
plored at previous iterations, and a set Snew of states explored at the current
iteration i. Starting from the initial state s0, IM iteratively computes reachable
states. When a π-incompatible state is found, an incompatible inequality is non-
deterministically selected within the projection onto P of the constraint (line 5);
its negation is then added to Kc (line 6). The set of reachable states is then up-
dated. When all successor states have already been reached (line 7), IM returns
the intersection K of the projection onto P of the constraints associated with all
the reachable states. Otherwise, the exploration goes one step further (line 8).
Recall from [AS13] that IM is non-deterministic, and hence its result may be
non-complete, i.e., the resulting constraint may not be the weakest constraint
guaranteeing the preservation of trace sets.

Merge and Conquer: State Merging in Parametric Timed Automata 7

Algorithm 1: Inverse method IM (A, π)

input : PTA A of initial state s0, parameter valuation π
output: Constraint K over the parameters

1 i← 0 ; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are π-incompatible states in Snew do
4 Select a π-incompatible state (l, C) of Snew (i.e., s.t. π 6|= C) ;
5 Select a π-incompatible J in C↓P (i.e., s.t. π 6|= J) ;

6 Kc ← Kc ∧ ¬J ; S ←
⋃i−1

j=0 Post
j
A(Kc)

({s0}) ; Snew ← PostA(Kc)(S) ;

7 if Snew v S then return K ←
⋂

(l,C)∈S C↓P
8 i← i+ 1 ; S ← S ∪ Snew ; Snew ← PostA(Kc)(S)

3 Merging States in Parametric Timed Automata

3.1 Principle

We extend here the notion of merging from [Dav05] to the parametric case.

Definition 4. Two states s1 = (l1, C1) and (l2, C2) are mergeable if l1 = l2 and
C1 ∪C2 is convex; then, (l1, C1 ∪C2) is their merging denoted by merge(s1, s2).

Given a set S of states, Merge(S) denotes the result of applying iteratively
the merging of a pair of states of S until no further merging applies, as given in
Algorithm 2.

Algorithm 2: Merging a set of states

input : Set S of states
output: Merged set S of states

1 Q← S ;
2 while ∃(l, C1), (l, C2) ∈ Q such that C1 6= C2 and C1 ∪ C2 is convex do
3 Q← Q \ {(l, C1), (l, C2)} ∪ {merge((l, C1), (l, C2))} ;

4 return Q

C2

C3

C1

Fig. 1: Non-determinism

Remark. This process is not deterministic, i.e., the
result depends on the order of the iterative merging
operations of pairs of states. Consider three states
(l, C1), (l, C2), (l, C3) such that C1∪C2 and C2∪C3 are
convex, but C1 ∪C3 is not. This situation is depicted
in Fig. 1 with 2 parameter dimensions. In that case,
two possible sets of states can result from an applica-
tion of the merging to these 3 states. That is, either
{(l, C1), (l, C2 ∪ C3)} or {(l, C1 ∪ C2), (l, C3)}.

8 Étienne André, Laurent Fribourg, and Romain Soulat

3.2 Merging and Reachability

We define below the semantics of PTAs with merging.

Definition 5. Let A = (Σ,L, l0, X, P,K, I,→) be a PTA. The semantics of A
with merging is LT SMrg(A) = (Σ,S, S0,⇒Mrg) where

S = {(l, C) ∈ L× L(X ∪ P) | C ⊆ I(l)},
S0 = {(l0,K ∧ I(l0) ∧

∧H−1
i=1 xi = xi+1)}

and a transition (l, C)
a⇒ (l′, C ′) belongs to ⇒Mrg if there exists n ∈ N such that

(l, C) ∈ ReachMn, and (l′, C ′) ∈ ReachMn+1, where ReachMn is inductively
defined as follows:

– ReachM0 = S0, and
– ReachM i+1 = Merge

(
PostA(ReachM i)

)
for all i ∈ N.

Recall that Post is defined using the⇒ relation of A without merging. Hence
the semantics of PTAs with merging iteratively computes states (using the stan-
dard transition relation), and merges the new states at each iteration.

Then we define ⇒i
Mrg , PostM , ReachM∗, PathsM , TracesM , LocationsM

and ActionsM the same way as ⇒i, Post, Reach∗, Paths, Traces, Locations
and Actions, respectively, by replacing within their respective definition ⇒ with
⇒Mrg . Observe that, from the definition of ⇒Mrg in Definition 5, PostM can be
defined as Post followed by Merge, i.e., PostM = Merge ◦ Post.

3.3 Characterization of the Merging Reduction

The following lemma states that the initial state of any path (hence, including
of length 0) of A without merging is the same for A with merging.

Lemma 1. Let A be a PTA. Then Reach0(A) = ReachM0(A).

Proof. From Definitions 3 and 5. �

The main property preserved by merging states while generating the reach-
ability graph is the preservation of each time-abstract transition, i.e., taken one
by one. In other words, for each time-abstract transition l1

a⇒ l2 in the graph ob-
tained without merging, there is a corresponding time-abstract transition l1

a⇒ l2
in the graph obtained with merging. However, this does not extend to traces.

The characterization of merging will be stated in Theorem 1. This result
relies1 on the two forthcoming lemmas 2 and 3.

Lemma 2 (Merging and reachability (=⇒)). Let A be a PTA. Let (l0, C0)
a0⇒

. . .
an−1⇒ (ln, Cn) ∈ Paths(A). Then there exist C ′1, . . . , C

′
n such that:

1. (l0, C0)
a0⇒Mrg (l0, C

′
1)

a1⇒Mrg . . .
an−1⇒ Mrg (ln, C

′
n) ∈ PathsM(A), and

1 The proofs of all results can be found in [AFS13].

Merge and Conquer: State Merging in Parametric Timed Automata 9

2. Ci ⊆ C ′i, for all 1 ≤ i ≤ n.

We show in Lemma 3 that the constraint associated to each state in the
merged graph is the union of several constraints in the non-merged graph.

Lemma 3 (Merging and reachability (⇐=)). Let A be a PTA. For all n ∈
N, for all (l, C) ∈ ReachMn(A), there exist m ∈ N and (l, C1), . . . , (l, Cm) ∈
Reach∗(A) such that

C =
⋃

1≤i≤m

Ci.

We can finally characterize the merging in the following theorem.

Theorem 1 (Merging states in PTAs). Let A be a PTA. Then:

1. For all (l0, C0)
a0⇒ . . .

an−1⇒ (ln, Cn) ∈ Paths(A), there exist C ′1, . . . , C
′
n such

that:
(a) (l0, C0)

a0⇒Mrg (l0, C
′
1)

a1⇒Mrg . . .
an−1⇒ Mrg (ln, C

′
n) ∈ PathsM(A), and

(b) Ci ⊆ C ′i, for all 1 ≤ i ≤ n.
2. For all (l, C) ∈ ReachM∗(A) there exist m ∈ N and (l, C1), . . . , (l, Cm) ∈

Reach∗(A) such that C =
⋃

1≤i≤m Ci.

Proof. From Lemmas 2 and 3. �

We can derive several results from Theorem 1.
First, each trace in the non-merged graph exists in the merged graph. (Note

that the converse statement does not hold.) Hence, TracesM(A) is an over-
approximation of Traces(A).

Corollary 1 (Inclusion of traces). Traces(A) ⊆ TracesM(A).

We state below that each timed-abstract transition in the non-merged graph
exists in the merged graph, and vice versa. (Note that this cannot be generalized
to complete traces.)

Corollary 2 (Preservation of time-abstract transitions). Let A be a PTA.

1. Let l
a⇒ l′ ∈ Traces(A). Then l

a⇒Mrg l
′ ∈ TracesM(A).

2. Let l
a⇒Mrg l

′ ∈ TracesM(A). Then l
a⇒ l′ ∈ Traces(A).

Finally, locations and actions are preserved by the merging reduction.

Corollary 3 (Preservation of locations and actions). Let A be a PTA.
Then: Locations(A) = LocationsM(A) and Actions(A) = ActionsM(A).

To summarize, computing the set of reachable states using the merging reduc-
tion yields an over-approximation of the set of paths. In the original semantics,
each trace of A(K) exists in A[π] for at least one valuation π |= K; this is not
the case anymore with the use of merging, where some traces in A(K) may not
exist for any π |= K. Nevertheless, both the set of reachable locations and the
set of actions are identical to those computed using the original semantics. As a
consequence, the merging reduction can be safely used to verify the reachability
or the non-reachability of a (set of) location(s), but not to verify more complex
properties such as properties on traces (linear-time formulas).

10 Étienne André, Laurent Fribourg, and Romain Soulat

4 The Inverse Method with Merging

4.1 Principle

We extend IM with the merging operation, by merging states within the algo-
rithm, i.e., by replacing within Algorithm 1 all occurrences of Post with PostM .
(The extension IM Mrg is given in [AFS13].)

Remark 2. In IM Mrg , states are merged before the π-compatibility test. Hence,
some π-incompatible states may possibly be merged, and hence become π-
compatible. As a consequence, less inequalities will be negated and added to Kc,
thus giving a weaker output constraint KMrg . Also note that the addition of
merging to IM adds a new reason for non-confluence since the merging process
is itself non-deterministic. ut

We will see that, in contrast to IM , IM Mrg does not preserve traces. That
is, given π, π′ |= KMrg , a trace in A[π] may not exist in A[π′], and vice versa.

Example 1. We use here a jobshop example in the setting of parametric schedu-
lability [FLMS12], in order to show that the traces are no longer preserved with
IM Mrg . This system (modeled by a PTA A) contains 2 machines on which 2 jobs
should be performed. The system parameters are di (for i = 1, 2) that encode
the duration of each job. The system actions are js1 (job 1 starting), jf1 (job 1
finishing) and similarly for job 2.

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3) (l3, C
′
3)

(l4, C4) (l4, C
′
4) (l5, C5)

(l6, C6) (l6, C
′
6) (l6, C

′′
6)

js1 js2

js2 js1

jf1 jf1

jf2

jf2 jf2 jf1

(a) Trace set of A(π)

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3)

(l4, C4) (l5, C5)

(l6, C6)

js1 js2

js2 js1

jf1 jf2

jf2 jf1

(b) For IMMrg(A, π)

(l0, C0)

(l1, C1) (l2, C2)

(l3, C3) (l3, C
′
3)

(l4, C4) (l5, C5) (l5, C
′
5)

(l6, C6) (l6, C
′
6) (l6, C

′′
6)

js1 js2

js2 js1

jf1 jf2 jf2

jf2 jf1 jf1

(c) Trace set of A(π)

Fig. 2: Trace sets of A

Consider π = {d1 := 1, d2 := 2}. The trace set of A[π] using the standard
semantics (Definition 3) is given in Fig. 2a (in the form of a graph). Applying
IM to A and π gives K = d2 > d1. From the correctness of IM [AS13], the
trace set of A[π′], for all π′ |= K, is the same as for A[π]. Now, applying IM Mrg

to A and π gives KMrg = true; the merged trace set is given in Fig. 2b. Then,
let π′ = {d1 := 2, d2 := 1} be a valuation in KMrg but outside of K. The trace

Merge and Conquer: State Merging in Parametric Timed Automata 11

set of A[π′] (using the standard semantics) is given in Fig. 2c. The trace sets of

A[π] and A[π′] are different: the trace l0
js2⇒ l2

js1⇒ l3
jf1⇒ l4

jf2⇒ l6 exists in A[π]

but not in A[π′]; the trace l0
js1⇒ l1

js2⇒ l3
jf2⇒ l5

jf1⇒ l6 exists in A[π′] but not in
A[π]. However, note that the reachable locations and executable actions are the
same in these two trace sets. ut

4.2 Preservation of Locations

We will show in Theorem 2 that IM Mrg preserves locations. This result relies on
the forthcoming lemma.

Lemma 4. Suppose IM Mrg(A, π) terminates with output KMrg . Then π |= KMrg .

Proof. At the end of IM Mrg , all merged states in S are π-compatible by construc-
tion. That is, for all (l, C) ∈ S, we have π |= C↓P . Since KMrg =

⋂
(l,C)∈S C↓P ,

then π |= KMrg . �

Theorem 2. Suppose IM Mrg(A, π) terminates with output KMrg . Then, for all
π′ |= KMrg , Locations(A[π]) = Locations(A[π′]).

Hence, although the trace set is not preserved by IM Mrg , the set of locations
is. As a consequence, the reachability and safety properties (based on locations)
that are true in A[π] are also true in A[π′].

4.3 Preserving Actions

General Case Although the set of locations is preserved by IM Mrg , the set
of actions is not preserved in the general case (in contrast to the reachability
analysis with merging). A counterexample is given in [AFS13].

Proposition 1 (Non-preservation of actions). There exist A, π and π′ such
that (1) IM Mrg(A, π) terminates with output KMrg , (2) π′ |= KMrg , and (3)
Actions(A[π]) 6= Actions(A[π′]).

Not all properties are based on actions. Hence IM Mrg is suitable for sys-
tems the correctness of which is expressed using the reachability or the non-
reachability of locations. Nevertheless, to be able to handle as well systems the
correctness of which is expressed using the (non-)reachability of actions, the rest
of this section will be devoted to identifying techniques to preserve actions too.

Backward-Deterministic Parametric Timed Automata We identify here
a subclass of PTAs for which IM Mrg preserves the set of actions. We restrict
the model so that, for any location, at most one action is used on its incoming
edges. This restriction can be checked syntactically.

Definition 6 (Backward-determinism). A PTA is backward-deterministic
if for all (l1, g, a, ρ, l2), (l′1, g

′, a′, ρ′, l′2) ∈ →, then l2 = l′2 =⇒ a = a′.

12 Étienne André, Laurent Fribourg, and Romain Soulat

In a backward-deterministic PTA, if a location is reachable, then its incoming
action is executed too. Hence the preservation of the locations by IM Mrg implies
the preservation of the actions too.

Proposition 2 (Action preservation). Let A be a backward-deterministic
PTA. Suppose IM Mrg(A, π) terminates with output KMrg . Then, for all π′ |=
KMrg , Actions(A[π]) = Actions(A[π′]).

Proof. From Theorem 2 and Definition 6. �

This restriction of backward-determinism may be seen as quite strong in
practice. Hence, in the following, in order to preserve the set of actions, we
propose to modify the algorithm itself rather than restricting the model.

Improvement of the Inverse Method The non-preservation of the actions
by IM Mrg comes from the fact that the states are first merged, and then tested
against π-compatibility (see Remark 2). In order to guarantee the action preser-
vation, we propose to first test newly generated states against π-compatibility,
and then merge them. Although this modification is only a subtle inversion of
two operations in the algorithm, it has consequences on the properties preserved.

We introduce an improved version IM ′
Mrg of IM Mrg in Algorithm 3, where

states are merged after the π-compatibility tests. Technically, the differences
with IM Mrg (highlighted using a non-white background) are as follows: (1) the
operation to compute the states at the current deepest level i is Post instead
of PostM (lines 9 and 6), and (2) the states are merged after the end of the
π-incompatibility tests (addition of line 7).

Algorithm 3: Inverse method with merging (variant) IM ′
Mrg(A, π)

input : PTA A of initial state s0, parameter valuation π
output: Constraint K′Mrg over the parameters

1 i← 0 ; Kc ← true ; Snew ← {s0} ; S ← {}
2 while true do
3 while there are π-incompatible states in Snew do
4 Select a π-incompatible state (l, C) of Snew (i.e., s.t. π 6|= C) ;
5 Select a π-incompatible J in C↓P (i.e., s.t. π 6|= J) ;

6 Kc ← Kc ∧¬J ; S ←
⋃i−1

j=0 PostM
j
A(Kc)

({s0}) ; Snew ← PostA(Kc)(S) ;

7 Snew ← Merge(Snew)
8 if Snew v S then return K′Mrg ←

⋂
(l,C)∈S C↓P

9 i← i+ 1 ; S ← S ∪ Snew ; Snew ← PostA(Kc)(S)

Proposition 3. Suppose IM (A, π), IM Mrg(A, π) and IM ′Mrg(A, π) terminate
in a deterministic manner with an output K, KMrg and K ′Mrg , respectively.

Then, K ⊆ K ′Mrg ⊆ KMrg

Merge and Conquer: State Merging in Parametric Timed Automata 13

Note that IM ′
Mrg still does not preserve traces; the situation in Fig. 2 is

exactly the same for IM ′
Mrg as for IM Mrg .

Theorem 3. Suppose IM ′
Mrg(A, π) terminates with output K ′Mrg . Then, for all

π′ |= K ′Mrg :

1. Locations(A[π]) = Locations(A[π′]), and
2. Actions(A[π]) = Actions(A[π′]).

Proof. Preservation of locations follows the same reasoning as for Theorem 2.
Preservation of actions is guaranteed by construction of IM ′

Mrg together with
the preservation of locations. �

5 Experimental Validation

We implemented IM ′
Mrg in Imitator [AFKS12], in addition to the classical IM .

In [Dav05], the main technique for merging two timed constraints C,C ′ consists
in comparing their convex hull H with their union. If the hull and the union
are equal (or alternatively, if (H \ C) \ C ′ = ∅, where \ is the operation of
convex difference), then C and C ′ are mergeable into H. In [Dav05,Dav06], this
technique is specialized to the case where the timed constraints are represented as
DBMs. DBMs are not suitable to represent the state space of PTAs; in Imitator,
polyhedra are used. We implemented the mergeability test using the (costly)
operation of convex merging from the Parma Polyhedra Library (PPL) [BHZ08].

Table 1 describes experiments comparing the performances and results of
IM and IM ′

Mrg . Column |X| (resp. |P |) denotes the number of clocks (resp.
parameters) of the PTA. For each algorithm, columns States, Trans., t and Cpl
denote the number of states, of transitions the computation time in seconds, and
whether the resulting constraint is complete2, respectively. In the last 3 columns,
we compare the results: first, we divide the number of states in IM by the number
of states in IM ′

Mrg and multiply by 100 (hence, a number smaller than 100

denotes an improvement of IM ′
Mrg); second, we perform the same comparison

for the computation time; the last column indicates whether K = K ′Mrg or
K (K ′Mrg . Experiments were performed on a KUbuntu 12.10 64 bits system
running on an Intel Core i7 CPU 2.67GHz with 4 GiB of RAM.

The first 4 models are asynchronous circuits [CC07,AS13]. The SIMOP case
study is an industrial networked automation system [AS13]. The next 5 models
are common protocols [DKRT97,HRSV02,AS13]. The other models are schedul-
ing problems (e.g., [AM02,BB04,LPP+10]). All models are described and avail-
able (with sources and binaries of Imitator) on Imitator’s Web page3.

From Table 1, we see that IM ′
Mrg has the following advantages. First, the

state space is often reduced (actually, in all but 4 models) compared to IM .

2 Whereas IM and IM ′Mrg may be non-complete in general, Imitator exploits a suf-
ficient (but non-necessary) condition to detect completeness, when possible.

3 http://www.lsv.ens-cachan.fr/Software/imitator/merging/

http://www.lsv.ens-cachan.fr/Software/imitator/merging/

14 Étienne André, Laurent Fribourg, and Romain Soulat

IM IM ′Mrg Comparison
Example |X| |P | States Trans. t Cpl States Trans. t Cpl States t K
AndOr 4 12 11 11 0.052

√
9 9 0.056

√
82 108 =

Flip-Flop 5 12 11 10 0.060
√

9 9 0.057
√

82 108 =
Latch 8 13 18 17 0.083 ? 12 12 0.069 ? 67 83 =

SPSMALL 10 26 31 30 0.618 ? 31 30 0.613 ? 100 99 =
SIMOP 8 7 - - OoM - 172 262 2.52 ? 0 0 -
BRP 7 6 429 474 3.50

√
426 473 4.30

√
99 123 =

CSMA/CD 3 3 301 462 0.514
√

300 461 0.574
√

100 112 =
CSMA/CD’ 3 3 13,365 14,271 18.3

√
13,365 14,271 25.4

√
100 139 =

RCP 5 6 327 518 0.748
√

115 186 0.684
√

35 91 =
WLAN 2 8 - - OoM - 8,430 15,152 2,137

√
0 0 -

ABT 7 7 63 62 0.344 ? 63 62 0.335 ? 100 97 =
AM02 3 4 182 215 0.369

√
53 70 0.112

√
29 30 (

BB04 6 7 806 827 28.0 ? 141 145 3.15 ? 17 11 =
CTC 15 21 1,364 1,363 88.9

√
215 264 17.6

√
16 20 =

LA02 3 5 6,290 8,023 751 ? 383 533 17.7
√

6.0 2.4 (
LPPRC10 4 7 78 102 0.39 ? 31 40 0.251 ? 40 64 =

M2.4 3 8 1,497 1,844 8.89
√

119 181 0.374
√

7.9 4.2 (
Table 1: Comparison between IM and IM ′

Mrg

This is particularly interesting for the scheduling problems, with a division of
the number of states by a factor of up to 16 (LA02). Also note that two case
studies could not even be verified without the merging reduction, due to mem-
ory exhaustion (“OoM”). Second, the computation time is almost always reduced
when the merging reduction indeed reduces the state space, by a factor of up to
42 (LA02). Third, and more surprisingly (considering the cost of the mergeability
test), the overhead induced by the mergeability test often does not yield a signif-
icant augmentation of the computation time, even when the merging reduction
does not reduce the state space at all; the worst case is +39 % (CSMA/CD’),
which remains reasonable. Finally, the constraint output by IM ′

Mrg is weaker
(i.e., corresponds to a larger set of valuations) than IM for some case studies.

6 Final Remarks

We have shown in this paper that (1) a general technique of state merging
in PTAs preserves both the reachability and the non-reachability of actions and
locations, (2) the integration of this technique into IM often synthesizes a weaker
(hence, better) constraint while reducing the computation space, and preserves
locations (but neither traces nor actions), and (3) an improved version of IM Mrg

preserves not only locations but actions. Experiments with Imitator show that
the improved procedure IM ′

Mrg does not only reduce the state space, but is also
often faster than the original procedure IM .

As future work, we plan to study the combined integration into IM of the gen-
eral technique of state merging with variants [AS11] and optimizations [And13]
of IM . Regarding the implementation in Imitator, we aim at studying the
replacement of polyhedra with parametric DBMs [HRSV02]; furthermore, the
(costly) mergeability test should be optimized so as to improve performance.

Merge and Conquer: State Merging in Parametric Timed Automata 15

Finally, we also plan to generalize the merging technique to the hybrid set-
ting [FK13].

References

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat.
IMITATOR 2.5: A tool for analyzing robustness in scheduling problems.
In FM, volume 7436 of LNCS, pages 33–36. Springer, 2012.

AFS12. Étienne André, Laurent Fribourg, and Romain Soulat. Enhancing the in-
verse method with state merging. In NFM, volume 7226 of LNCS, pages
100–105. Springer, 2012.

AFS13. Étienne André, Laurent Fribourg, and Romain Soulat. Merge and con-
quer: State merging in parametric timed automata (report). Research
Report LSV-13-11, Laboratoire Spécification et Vérification, ENS Cachan,
France, July 2013. Available at http://www.lsv.ens-cachan.fr/Publis/

RAPPORTS_LSV/PDF/rr-lsv-2013-11.pdf.
AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-

time reasoning. In STOC, pages 592–601. ACM, 1993.
AM02. Yasmina Adbeddäım and Oded Maler. Preemptive job-shop scheduling us-

ing stopwatch automata. In TACAS, volume 2280 of LNCS, pages 113–126.
Springer, 2002.

And13. Étienne André. Dynamic clock elimination in parametric timed automata.
In FSFMA, volume 31 of OpenAccess Series in Informatics, pages 18–31.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing,
2013.

AS11. Étienne André and Romain Soulat. Synthesis of timing parameters satisfy-
ing safety properties. In RP, volume 6945 of LNCS, pages 31–44. Springer,
2011.

AS13. Étienne André and Romain Soulat. The Inverse Method. FOCUS Series
in Computer Engineering and Information Technology. ISTE Ltd and John
Wiley & Sons Inc., 2013.

BB04. Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic
fixed priority systems. IEEE Transactions on Computers, 53(11):1462–1473,
2004.

BHZ08. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhe-
dra Library: Toward a complete set of numerical abstractions for the analy-
sis and verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008.

CC07. Robert Clarisó and Jordi Cortadella. The octahedron abstract domain.
Science of Computer Programming, 64(1):115–139, 2007.

Dav05. Alexandre David. Merging DBMs efficiently. In NWPT, pages 54–56. DIKU,
University of Copenhagen, 2005.

Dav06. Alexandre David. Uppaal DBM library programmer’s reference. http:

//people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf, 2006.
DKRT97. Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tretmans.

The bounded retransmission protocol must be on time! In TACAS, volume
1217 of LNCS, pages 416–431. Springer, 1997.

FK13. Laurent Fribourg and Ulrich Kühne. Parametric verification and test cov-
erage for hybrid automata using the inverse method. International Journal
of Foundations of Computer Science, 24(2):233–249, 2013.

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-11.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-11.pdf
http://people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf
http://people.cs.aau.dk/~adavid/UDBM/manual-061023.pdf

16 Étienne André, Laurent Fribourg, and Romain Soulat

FLMS12. Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat. Robust-
ness analysis for scheduling problems using the inverse method. In TIME,
pages 73–80. IEEE Computer Society Press, 2012.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 52-53:183–220, 2002.

LPP+10. Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, Yusi Ramadian, and
Alessandro Cimatti. Parametric analysis of distributed firm real-time sys-
tems: A case study. In ETFA, pages 1–8. IEEE, 2010.

SBM06. Ramzi Ben Salah, Marius Bozga, and Oded Maler. On interleaving in timed
automata. In CONCUR, volume 4137 of LNCS, pages 465–476. Springer,
2006.

	Merge and Conquer: State Merging in Parametric Timed Automata

