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Abstract—In the past few decades, many formal techniques
for verifying complex concurrent and real-time systems, as well
as many property languages, have been proposed. Unfortunately,
many of these techniques involve formalisms that are not always
easy to handle by engineers; furthermore, they generally need
dedicated tools. We propose here a set of correctness patterns
encoding common properties met when verifying concurrent real-
time systems. We show how to translate these patterns into
pure reachability problems, thus avoiding the use of complex
verification algorithms. Furthermore, we provide an instantiation
of these patterns in both timed automata and stateful timed CSP,
to show the applicability of our approach.
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I. INTRODUCTION

Verifying complex concurrent and real-time systems is an
important challenge. In the past few decades, many formal
techniques for verifying complex concurrent and real-time sys-
tems, as well as many property languages, have been proposed.
Unfortunately, many of these techniques involve formalisms
that are not always easy to handle by industry engineers.
In particular, temporal logics (e.g., [Pnu77], [BK08]) offer
a very powerful way of expressing correctness properties
for concurrent systems. However, they are often considered
to be too complicated (and maybe too rich as well) to be
widely adopted by engineers. Furthermore, they generally need
advanced tools dedicated to model checking their properties.

In this paper, we identify commonly used properties of
correctness for real-time systems, gathered from several years
of experience in verification, in particular with engineers from
the industry. We propose for each pattern a syntax as human-
readable as possible, so that engineers non-experts in formal
methods can use them. Furthermore, we show how to translate
them into pure reachability properties using simple observers,
that is additional subsystems that observe some system actions
and may also make use of time. Whereas one class of patterns
must be translated into “must-reach” observers (i.e., for which
a good state must be reached in each run), all other patterns
can be translated into non-reachability observers (i.e., the
property is correct if a given bad state is never reachable).
Hence, their verification in practice avoids the use of complex
verification algorithms or dedicated tools, and tool developers
can implement them at little cost. Furthermore, we provide an
instantiation of these patterns in both timed automata [AD94]
and stateful timed CSP [SLD+13], to show the applicability
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of our approach; these observers can then be used in tools
that only handle reachability analysis. Finally, we implemented
these patterns into IMITATOR [AFKS12], a tool relying on (a
parametric extension of) timed automata. The contributions of
this paper are summarized below:

1) We identify commonly used properties of correctness
for real-time systems;

2) We propose an abstract syntax for each pattern;
3) We translate each pattern to an observer instantiated

in both timed automata and stateful timed CSP;
4) We provide a concrete syntax for the patterns, imple-

mented in IMITATOR.

Related Work: Many formalisms have been used to
model complex real-time systems, in particular timed au-
tomata [AD94], timed extensions of CSP [Hoa85], [HO02],
[SLD+13] or Z [MD99], and various timed extensions of
Petri nets [Mer74]. Recent works also include formalisms
able to model compositional or hierarchical systems [BP99],
[DHQ+08], [JK09], [DLL+10]. In [DHQ+08], timed automata
patterns are proposed to model common real-time system
behaviors such as deadline, timeout, and timed interrupt. These
patterns are compositional and help building a system in a
hierarchical manner. Our patterns do not aim at modeling
the system, but at expressing its correctness; furthermore,
our patterns are not, and shall not be, compositional (see
discussion in Sections III and V). We choose as examples of
instantiations for our patterns timed automata [AD94] and a
timed extension of CSP [SLD+13], since these two classes
of formalisms are both commonly used. Numerous tools are
also available for them (e.g., UPPAAL [LPY97], for timed
automata, and PAT [SLDP09] for stateful timed CSP). Finally,
they have a quite different syntax (timed automata are graph-
based, whereas CSP is a process algebra), and hence show two
different instantiations of our observers.

Concerning the specification of properties for verifying
real-time systems, temporal logics (e.g., [Pnu77], [BK08]) and
their timed extensions (e.g., [ACD93] among others) are by
far the most commonly used, although many other formalisms
have been proposed too. Much more expressive than our
patterns, temporal logics are also more difficult to handle
by non-experts. Furthermore, many tools do not actually
support their full expressiveness, but only some fragments.
Stateful timed CSP [SLD+13] has been designed to specify not
properties, but models. Nevertheless, our patterns share some
similarities with stateful timed CSP, in particular the user-
friendly English-like syntax, and the simple way to express
common timing behaviors such as “deadline” or “within”.
Closer to our approach is the logical-algebraic specification
language for dynamic systems CASL-LTL defined in [RAC03]
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and used, e.g., in [CR06]: although its expressiveness is again
very large, its natural language-like syntax makes it adoptable
by non-experts. However, although CASL-LTL can express
temporal behaviors, it cannot express timed behaviors (with
quantitative values) in contrast to our patterns.

The idea of reducing (some) properties to reachability
checking is not new: in [ABL98], safety and bounded-liveness
properties are translated to test automata, equivalent to our
notion of observers. Among the differences are the fact that
we exhibit commonly used patterns, where as [ABL98] aims at
(near to) completeness (the expressiveness of such reachability
checking has been characterized in [ABBL98]). Furthermore,
we do not consider properties only based on non-reachability,
but also on reachability.

The word “pattern” has been used with different semantics.
Our patterns share similarities with the design patterns for
software engineering [GHJV95]: they aim at characterizing
common correctness properties, they certainly do not aim at
exhaustiveness nor at novelty, and they are not compositional.
However, whereas the design patterns for software engineer-
ing can be inserted into freely written code, our patterns
shall be standalone. Although different from the patterns
from [DHQ+08], our patterns share with this approach the
ability to define quantitative timed behaviors.

In [KMH01], typical temporal constraints dedicated to
modeling scheduling problems are identified, and then trans-
lated into timed automata. In [MGT09], patterns for specifying
the system correctness are defined using UML statecharts, and
then translated into timed automata. As in our approach, their
correctness reduces to reachability checking. The differences
rely in the choice of a graphical specification in [MGT09], as
well as the target formalism (timed automata only); further-
more, we exhibit common patterns based on experience on
industrial models.

Outline: Section II recalls the formalisms of timed
automata and stateful timed CSP, and gives a definition of
observers. Section III introduces our observer patterns and, for
each of them, gives an instantiation in both timed automata and
stateful timed CSP. Section IV briefly discusses the implemen-
tation of the patterns in IMITATOR. Section V concludes the
paper and gives perspectives. The concrete syntax implemented
in IMITATOR is given in Appendix.

II. PRELIMINARIES

In this section, we briefly recall the notion of clocks and
constraints (Section II-A), as well as the formalisms of timed
automata (Section II-B) and stateful timed CSP (Section II-C).
Finally, we propose a general definition of observers in these
two formalisms (Section II-D).

A. Clocks and Constraints

Let R+ be the set of non-negative real numbers. We assume
that X is a set of clocks. A clock is a variable with value in
R+. All clocks evolve linearly at the same rate. An inequality
(over X) is e ≺ e′, where ≺ ∈ {<,≤}, and e, e′ are two linear
terms of the form

∑
1≤i≤N αixi + d with xi ∈ X , αi ∈ N for

1 ≤ i ≤ N , and d ∈ N. A constraint (over X) is a conjunction
of inequalities.

B. Timed Automata

Timed automata are finite-state automata augmented with
clocks, i.e., real-valued variables increasing uniformly, that
are compared within guards and invariants with timing de-
lays [AD94].

Definition 1: A timed automaton A is (Σ, Q, q0, X, I,→)
with Σ a finite set of actions, Q a finite set of locations,
q0 ∈ Q the initial location, X a set of clocks, I the invariant
assigning to every q ∈ Q a constraint over X , and → a step
relation consisting of elements (q, g, a, ρ, q′), where q, q′ ∈ Q
are the source and destination location respectively, a ∈ Σ is
the transition action, ρ ⊆ X is the set of clocks to be reset,
and the guard g is a constraint over X .

The symbolic semantics of a timed automata A is defined
in terms of runs, i.e., alternating sequences of symbolic states
and actions. Symbolic states are pairs (q, C) where q ∈ Q
and C is a constraint over X (see, e.g., [AS13]).

In practice, timed automata are often composed with each
other using the parallel composition ‖. Such a network of timed
automata results in a timed automaton. We assume a (common)
semantics where all automata using a given action a must fire
a (local) transition labeled with a together.

C. Stateful Timed CSP

We briefly recall stateful timed CSP [SLD+13], a timed
extension of timed CSP capable of specifying hierarchical real-
time systems. We assume a finite set Var of finite-domain
variables and a finite set Σ of actions. A variable valuation is
a function assigning to each variable a value in its domain. A
process P is defined by the grammar in Fig. 1, where d ∈ N.
P denotes the set of all possible processes.

P
.
= Stop inaction
| Skip termination
| e→ P event prefixing
| a{program} → P data operation
| P � Q external choice
| P \E hiding
| P ;Q sequential composition
| P |[E]| Q parallel composition
| Wait[d] delay
| P timeout[d] Q timeout
| P interrupt Q interrupt
| P interrupt[d] Q timed interrupt
| P within[d] timed responsiveness
| P deadline[d] deadline
| Q process referencing

Fig. 1. Syntax of STCSP processes

Definition 2: A stateful timed CSP model is a tuple M =
(Var, V0, P0) where V0 is the initial variable valuation, and
P0 ∈ P is a process.

Process Stop does nothing but idling. Process Skip termi-
nates, possibly after idling for some time. Process e → P
engages in action e first and then behaves as P . In order
to seamlessly integrate data operations, sequential programs
may be attached with actions. Process a{program} → P
executes the sequential program whilst generating action a, and
then behaves as P . The program may be a simple procedure
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updating data variables (e.g., a{v1 := 5; v2 := 3}, where
v1, v2 ∈ Var) or a more complicated sequential program.
Process P � Q offers an external choice1 between P and Q.
Process P ;Q behaves as P until P terminates and then
behaves as Q immediately. P \E hides occurrences of events
in E. Parallel composition of two processes is written as
P |[E]| Q, where P and Q may communicate via multi-
party action synchronization (following CSP rules [Hoa85])
or shared variables. We use P ‖ Q for P |[Σ(P )∩Σ(Q)]| Q,
where Σ(P ) denotes the alphabet of actions used by P .

Process Wait[d] idles for d time units. In process
P timeout[d] Q, the first observable action of P shall occur
no later than d time units. Otherwise, Q takes over the control
after exactly d time units. Process P interrupt Q behaves
exactly as P until the first observable action in Q, and then
Q takes over. Process P interrupt[d] Q behaves exactly
as P until d time units, and then Q takes over. Process
P within[d] must react within d time units, i.e., an observable
action must be engaged by process P within d time units.
Process P deadline[d] constrains P to terminate, possibly
after engaging in multiple observable events, before d time
units.

D. Observers

We propose here a definition for observers, in both timed
automata and stateful timed CSP. Observers are standard sub-
systems, with some assumptions. An observer must not have
any effect on the system, and must not prevent any behavior to
occur. In particular, it must not block time, nor prevent actions
to occur, nor create deadlocks that would not occur otherwise.
As a consequence, observers must be complete: in the example
of timed automata, all actions declared by the observer must
be allowed in any of the locations.

In the following, we differentiate the original model (i.e.,
the model to verify) from the global model (i.e., the original
model plus the observer).

In the formalism of timed automata, an observer is a stan-
dard timed automaton (see Definition 1) with some restrictions:

• the observer uses (at most) one local clock xobs (the
case with more than one local clock could be possible,
but is not used in this work), and no shared clock;

• the observer may contain a special bad location (de-
noted by lb), that has no outgoing transition (except
possibly self-loops);

• the observer may contain a set of good locations
(denoted by lg , l′g , etc.).

The global model is defined as A1 ‖ . . . ‖ An ‖ Aobs , where
A1 . . .An are the timed automata modeling the original model,
and Aobs is the observer automaton. The parallel composition
ensures that the actions shared by the observer and the original
model will synchronize.

In the case of stateful timed CSP, an observer is a standard
process (see Definition 2) with some restrictions:

1We leave out internal, general and conditional choices (see [SLD+13]).

• the observer cannot refer to any existing process
defined by the original model;

• the observer cannot write any existing variable used
in the original model;

• the observer features two special booleans, neither
read nor written by any other process defined by
the original model; these booleans, denoted by vbad
and vgood , act as a flag, and will be true (“T ”) when
a bad and a good behavior are detected, respectively
– and false (“F ”) otherwise. We assume here that
initially, we have vbad = F and vgood = T (the value
for vgood comes from the fact that, in all observers
making use of vgood , the initial state is good).

The global model results in a new model Mobs = (Var ∪
{vbad , vgood}, V0, P0 ‖ Pobs) where (Var, V0, P0) is the origi-
nal model, and Pobs is the observer process. Again, the parallel
composition ensures that the actions shared by the observer
and the original model will synchronize. We will denote by
Σobs the alphabet of the observer, i.e., the set of actions it
will synchronize on. We will often make use of a special
process PS acting as a “sink”, that is, accepting any action
in the observer alphabet. For example, if Σobs = {a1, a2},
then PS = (a1 → PS) � (a2 → PS).

III. OBSERVER PATTERNS

In this section, we introduce a library of correctness
patterns, that we translate to observers, so that simple tools
without complex model checking capabilities can verify them.
In the following, we make the assumption that the tool is able
to verify two kinds of properties. The first property is the non-
reachability property, i.e., a given (bad) state is not reachable,
in any of the possible runs. We assume the following abstract
syntax for the verification command:

assert unreachable(BAD)
where BAD is a state definition (see below).

The second property is a reachability property that requires
that each run ends in a (good) state. (If the run is finite, then
the notion of “end” refers to the last state; if the run is infinite,
from some point, it loops with a cycle; we require all of its
states to be good.) We assume the following abstract syntax:

assert alwaysEndWith(GOOD)
where GOOD is a state definition. Note that both properties
refer to properties that must be true (or false) for all runs
(operator “A” in the CTL logic [BK08]).

We require that the notion of “state” used by some patterns
must refer to the discrete part of the state only. For example, in
timed automata, it is out of question to refer to the values of
the system clocks when describing a state: first, it is likely
that engineers may not be familiar with the formalism of
timed automata; second, the timed automata may have been
automatically generated (e.g., from another more user-friendly
formalism), and one may not even want to have a look at their
internal structure. In the following, definitions of good or bad
states in timed automata will only refer to the locations of
the automata; for observers, it will hence refer to its good or
bad location(s). For stateful timed CSP, the notion of state will
refer to the value of the variables, i.e., of the vbad and vgood
observer variables.
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In the rest of this section, we propose 16 patterns organized
in 7 classes. For sake of better readability, we propose a quite
verbose abstract syntax. The concrete syntax can of course be
refined in model checking tools (see Section IV).

A. Non-Reachability

The property of non-reachability of some bad state is by far
the most common property used to characterize the correctness
of real-time systems. This pattern is somehow degenerated
since, for verification tools able to natively check the non-
reachability of a bad state, this property does not require the
use of an observer. Nevertheless, we still include it into our
pattern library since it is the most common one. Given a
bad state definition BAD, the non-reachability pattern can be
described as follows:

Abstract syntax:
assert unreachable(BAD)

English description:
“The state BAD never happens.”

The literature is full of such examples. Among the most
common case studies, the correctness of Fischer’s mutual
exclusion protocol (see, e.g., a timed version in [AHV93])
is usually seen as a non-reachability property: the bad state
is defined as a state where more than one process is in the
critical section. Similarly, in the train crossing problem (see,
e.g., a simple example in [AHV93]), the bad state corresponds
to a state where the train crosses the road although the gate is
still open.

B. Action Precedence

This class of patterns models the case of an action that
can only happen if another one has happened before. A typical
example is the case when one wants to avoid false positives for
alarms: an alarm must ring only if a given action (for instance,
an intrusion into a house) has happened before. (Note that this
property does not mean that the intrusion will always lead to
an alarm; this will be the subject of the “Eventual Response”
patterns in Section III-C.)

We consider three patterns in this class. All patterns are
similar, and checking their correctness always reduces to
non-reachability. Since these properties are all untimed, the
observers will not use any timed feature (for instance, the timed
automata will be finite-state automata).

1) Acyclic Version: In this pattern, we check that if an
action a2 happens, then action a1 has happened (at least once)
before the first occurrence of a2.

Abstract syntax:
if a2 then a1 has happened before
English description:
“If a2 happens at least once, then a1 has happened
before the first occurrence of a2.”

Note that this pattern does not require a2 to happen at all,
even if a1 occurred.

l0 l1

lb

a1

a1, a2

a2

a1, a2

(a) Acyclic version

l0 l1

lb

a1

a2

a2

a1

a1, a2

(b) Cyclic version

l0 l1

lb

a1

a2

a2
a1

a1, a2

(c) Strict cyclic version

Fig. 2. Observer timed automata for “Action Precedence” patterns

We give the corresponding timed automaton observer in
Fig. 2(a). The observer is simple: if a2 occurs first, the observer
enters its bad location lb and remains there forever. If a1
occurs, then the observer enters another sink location (l1), not
defined as bad, and remains there forever.

This observer is instantiated in stateful timed CSP below:

Pobs
.
= (a2{vbad := T} → PS) � (a1 → PS)

Similarly to the timed automaton observer, if a2 occurs first,
the observer sets the vbad variable to T , and derives to the
sink process PS that accepts occurrences of both a1 and a2;
otherwise, it directly derives to PS , and vbad remains false.

This pattern can be verified by a tool using the following
command. For timed automata:

assert unreachable(loc[observer] = lb),
where we assume that “loc[observer]” denotes the current
location of the observer automaton. In other words, the system
satisfies this property if the bad location of the observer is
never reached. The command for stateful timed CSP is similar:

assert unreachable(vbad = T ).
This verification command will be the same for all the non-
reachability patterns, i.e., all patterns containing only a “bad”
location (or variable), and no “good” one.

An example of use of this pattern in the hardware area
is the verification over one clock cycle of a latch circuit
designed by ST-Microelectronics (described in [And10]). The
behavior is correct if, at the end of the clock cycle (modeled
by action CK↘), the output signal Q has changed before
(modeled by action Q↗). Hence, the property is: if CK↘

then Q↗ has happened before.

2) Cyclic Version: In this pattern, we check that if an action
a2 occurs, then action a1 has happened (at least once) since
the last occurrence of a2, and so on in a cyclic manner. Again,
note that this pattern does not require a2 to happen at all, and
does not guarantee that a2 will occur an infinite number of
times. Furthermore, a1 may occur several times (at least once)
between any two occurrences of a2.

Abstract syntax:
every time a2 then a1 has happened before
English description:
“Every time a2 happens, then a1 has happened before,
since the last occurrence of a2 (if any).”

We give the corresponding timed automaton observer in
Fig. 2(b). If a2 occurs first, the observer enters its bad location
and remains there. Then, as long as at least one occurrence of
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a1 happens between any two occurrences of a2, the observer
does not enter the bad location.

This observer is instantiated in stateful timed CSP below:
Pobs

.
= P1

P1
.
= (a2{vbad := T} → PS) � (a1 → P2)

P2
.
= (a1 → P2) � (a2 → P1)

This process is a direct translation from the timed automaton.

An example of use of this pattern in the hardware area is
the verification over an arbitrary number of clock cycles of
the latch circuit mentioned above. The property is: every time
CK↘ then Q↗ has happened before.

3) Strict Cyclic Version: In this pattern, we check that if an
action a2 happens, then action a1 has happened exactly once
since the last occurrence of a2, and so on in a cyclic manner.
Again, note that this pattern does not require a2 to happen
at all, and does not guarantee that a2 will happen an infinite
number of times. In other words, this pattern requires a1 and
a2 to alternate, starting from a1.

Abstract syntax:
every time a2 then a1 has happened exactly once before
English description:
“Every time a2 happens, then a1 has happened before,
exactly once since the last occurrence of a2 (if any).”

We give the corresponding timed automaton observer in
Fig. 2(c). If a2 happens first, the observer enters its bad location
and remains there. Then, a1 and a2 alternate; otherwise, the
observer enters the bad location.

This observer is instantiated in stateful timed CSP below:
Pobs

.
= P1

P1
.
= (a2{vbad := T} → PS) � (a1 → P2)

P2
.
= (a1{vbad := T} → PS) � (a2 → P1)

Again, this process is a direct translation from the timed
automaton.

C. Eventual Response

This class of properties considers the case of an action
always eventually followed by another one. This class of
properties is often referred to as liveness; however, this word
has different semantics, and even model checking experts do
not all agree on its meaning2. Here, we propose the name
“eventual response” that sticks to the “eventually” operator in
temporal logics.

This class of patterns is the only one in this work not to be
based on non-reachability; instead, one must check that each
run ends in a “good state”. Again, since these properties are
all untimed, the observers will not use any timed feature.

1) Acyclic Version: In this pattern, we check that if an
action a1 happens, then action a2 eventually happens.

Abstract syntax:
if a1 then eventually a2
English description:
“If a1 happens, then a2 eventually happens.”

2See, e.g., https://cs.nyu.edu/acsys/beyond-safety/liveness.htm.

lg l1 l′g
a1

a2

a2

a1
a1, a2

(a) Acyclic version

lg l1

a2

a2

a1

a1

(b) Cyclic version

lg l1

lb

a2

a2

a1

a1

a1, a2

(c) Strict cyclic version

Fig. 3. Observer timed automata for “Eventual Response” patterns

Note that this pattern does not require a1 to happen.
Furthermore, a1 can happen several times before a2 happens.

We give the corresponding timed automaton observer in
Fig. 3(a). The observer starts in a good location; if a1 never
happens, it remains there. When a1 occurs, the observer enters
an intermediate location that is not good; only when a2 occurs,
the observer enters the second good location, and will remain
there forever.

This observer is instantiated in stateful timed CSP below
(recall that initially vgood = T ):

Pobs
.
= (a2 → Pobs) � (a1{vgood := F} → P1)

P1
.
= (a1 → P1) � (a2{vgood := T} → PS)

This pattern can be verified by a tool using the following
command. For timed automata:

assert alwaysEndWith(loc[observer] = lg).
The command for stateful timed CSP is similar:

assert alwaysEndWith(vgood = T ).

2) Cyclic Version: In this pattern, we check that every time
an action a1 happens, then action a2 eventually happens.

Abstract syntax:
every time a1 then eventually a2
English description:
“Every time a1 happens, then a2 eventually happens.”

Again, this pattern does not require a1 to happen. Further-
more, a1 can occur several times before a2 occurs.

We give the corresponding timed automaton observer in
Fig. 3(b). This observer is instantiated in stateful timed CSP
below:

Pobs
.
= (a2 → Pobs) � (a1{vgood := F} → P1)

P1
.
= (a1 → P1) � (a2{vgood := T} → Pobs)

This pattern can be verified by a tool using the same
command as the acyclic version.

3) Strict Cyclic Version: In this pattern, we check that
every time an action a1 happens, then action a2 eventually
happens.
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l0 l1

lb

xobs ≤ d

xobs := 0 a

xobs = d

a

a

Fig. 4. Observer timed automaton for pattern “Action Before Deadline”

Abstract syntax:
every time a1 then eventually a2 once before next a1
English description:
“Every time a1 happens, then a2 eventually happens
exactly once before the next occurrence of a1.”

In this pattern, a1 and a2 alternate, starting with a1 and,
every time a1 occurs, then a2 must occur too. Again, this
pattern does not require a1 to occur at all.

We give the corresponding timed automaton observer in
Fig. 3(c). This observer makes use of both the bad and the good
locations. However, it is sufficient to check that the system
ends in a good location. This observer is instantiated in stateful
timed CSP below:
Pobs

.
= (a2{vgood := F} → PS) � (a1{vgood := F} → P1)

P1
.
= (a1{vgood := F} → PS) � (a2{vgood := T} → Pobs)

This pattern can be verified by a tool using the same
command as the previous versions of this class.

This class of patterns is among the most common properties
met in practice, in particular the cyclic and strict cyclic
versions. To quote two examples, in Fischer’s mutual exclusion
protocol [AHV93], one may want to specify that “every time
that access is requested, then access is eventually granted”
(cyclic version). In the multi-lift system modeled in [SLD+13],
one may want to specify that “every time the doors open then
eventually the doors close before they open again” (strict cyclic
version).

D. Action Before Deadline

This pattern models the case of an action that must occur
no later than a given amount of time following the start of the
system. This pattern can be seen as a subcase of pattern “Time-
Bounded Action Precedence: Acyclic Version” (that will be
introduced in Section III-E).

Abstract syntax:
a no later than d
English description:
“a will happen no later than d units of time after the
system start.”

We give the corresponding timed automaton observer in
Fig. 4. The observer clock xobs is initially set to 0. Then, if
a occurs before d units of time (modeled by l0’s invariant
xobs ≤ d), it enters l1 where it will remain forever. But if a
does not occur within d units of time, the observer enters the
bad location.

This observer is instantiated in stateful timed CSP below:

Pobs
.
= (a→ PS) timeout[d](

(eobs{vbad := T} → PS) \ {eobs}
)

Process Pobs waits for an occurrence of a; if it occurs, it
derives to the sink process PS . Otherwise, timeout occurs:
variable vbad is set to true, and an internal action eobs (local
to Pobs ) is fired, and the process then derives to the sink
process. The internal action is hidden (“ \ {eobs}”) to prevent
any visible behavior from outside.

For example, the SPSMALL memory, designed and com-
mercialized by chipset manufacturer ST-Microelectronics, has
been modeled and verified using a network of timed au-
tomata [CEFX09]. Here, the raise of the output signal Q
(action Q↗) must occur within a given amount of time after
the system start.

E. Time-Bounded Action Precedence

This class of patterns models the case of an action that
can only occur if another one has happened within a given
interval of time before. This is a timed extension of the class
of patterns “Action Precedence”. To use again the example of
alarms, an alarm must ring only if an intrusion has occurred
within 5 seconds before. (Again, this property does not mean
that the intrusion will always lead to an alarm within a given
interval of time; this will be the subject of the “Time-Bounded
Response” patterns in Section III-F.)

1) Acyclic Version: Here, we check that if an action a2
happens, then action a1 has happened (at least once) before
the first occurrence of a2 within the past d units of time.

Abstract syntax:
if a2 then a1 has happened at most d units of time before
English description:
“If a2 happens at least once, then a1 has happened at
most d units of time before the first occurrence of a2.”

Note that this pattern does not require a2 to happen at all,
even if a1 does.

We give the corresponding timed automaton observer in
Fig. 5(a). The edge from l0 to lb models the fact that a2 cannot
occur first. Then, when a1 occurs, clock xobs is initialized.
The rest of the automaton is similar to pattern “Action Before
Deadline” (Fig. 4).

This observer is instantiated in stateful timed CSP below:
Pobs

.
= (a2{vbad := T} → PS) � (a1 → P2)

P2
.
=
(
(a1 → P2) � (a2 → PS)

)
timeout[d](

(a1 → P2) � (a2{vbad := T} → PS)
)

2) Cyclic Version: In this pattern, we check that every time
an action a2 happens, then action a1 has happened (at least
once) before the latest occurrence of a2.

Abstract syntax:
every time a2 then a1 has happened at most d units of
time before
English description:
“Every time a2 happens, then a1 has happened at most
d units of time before, and at least once since the latest
occurrence of a2 (if any).”
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l0 l1 l2

lb

a1

xobs := 0
xobs ≤ d

a2

xobs ≥ d
a2

a1

xobs := 0

a1, a2

a1, a2

a2

(a) Acyclic version

l0 l1

lb

a1

xobs := 0

xobs ≤ d
a2

a2

a1

xobs := 0

xobs ≥ d
a2

a1, a2

(b) Cyclic version

l0 l1

lb

a1

xobs := 0

xobs ≤ d
a2

a2

a1
xobs ≥ d

a2

a1, a2

(c) Strict cyclic version

Fig. 5. Observer timed automata for “Time-Bounded Action Precedence” patterns

Note that this pattern does not require a2 to occur at all,
even if a1 does.

We give the corresponding timed automaton observer in
Fig. 5(b). The edge from l0 to lb models the fact that a2
cannot occur first. Then, every time a1 occurs, clock xobs
is initialized. If a2 occurs at most d units of time later
(guard xobs ≤ d) then the system continues. Otherwise (guard
xobs ≥ d), the observer enters the bad location.

This observer is instantiated in stateful timed CSP below:
Pobs

.
= P1

P1
.
= (a2{vbad := T} → PS) � (a1 → P2)

P2
.
=
(
(a1 → P2) � (a2 → P1)

)
timeout[d](

(a1 → P2) � (a2{vbad := T} → PS)
)

3) Strict Cyclic Version: In this pattern, we check that
every time an action a2 happens, then action a1 has happened
exactly once before the latest occurrence of a2, and at most d
units of time since this latest occurrence.

Abstract syntax:
every time a2 then a1 has happened exactly once at most
d units of time before
English description:
“Every time a2 happens, then a1 has happened at most
d units of time before, and exactly once since the last
occurrence of a2 (if any).”

In other words, a1 and a2 alternate, starting with a1, and
with at most d units of time between a1 and a2. Note that this
pattern does not require a2 to occur at all, even if a1 does.

We give the corresponding timed automaton observer in
Fig. 5(c). This pattern is identical to the one in Fig. 5(b) with
the difference that a1 cannot occur twice in a row, which
explains the left-hand edge (labeled with a1) from l1 to lb.

This observer is instantiated in stateful timed CSP below:
Pobs

.
=P1

P1
.
=(a2{vbad := T} → PS) � (a1 → P2)

P2
.
=
(
(a1{vbad := T} → PS) � (a2 → P1)

)
timeout[d](

(eobs{vbad := T} → PS) \ {eobs}
)

F. Time-Bounded Response

This class of properties considers the case of an action al-
ways eventually followed by another one within some interval
of time. It can be seen as a timed extension of the “Eventual
Response” pattern. Again, the name of this pattern is subject

to some debates. Another classical name is “Time-Bounded
Liveness” (used, e.g., in [BLR05]).

1) Acyclic Version: In this pattern, we model that if an
action a1 happens, then action a2 will happen within d units
of time.

Abstract syntax:
if a1 then eventually a2 within d
English description:
“If a1 happens, then a2 will eventually happen within d
units of time.”

Again, this pattern does not require a1 to happen at all,
even if a2 does.

We give the corresponding timed automaton observer in
Fig. 6(a). At first, a2 can occur anytime. Then, once a1 occurs,
the clock xobs is initialized. If a2 occurs within d units of time
(guaranteed by invariant xobs ≤ d) then the system enters a
sink state, and both a1 and a2 can occur anytime. Otherwise,
after d units of time, the system enters the bad location, and
remains there.

This observer is instantiated in stateful timed CSP below:
Pobs

.
= (a2 → Pobs) � (a1 → P2)

P1
.
= (a1 → P1)

P2
.
=
(
(P1 interrupt a2 → Skip) deadline[d];PS

)
�
(
(P1 interrupt[d] eobs{vbad := T} → PS)
\ {eobs}

)
2) Cyclic Version: Here, we model that every time an

action a1 happens, then action a2 will happen within d units
of time.

Abstract syntax:
every time a1 then eventually a2 within d
English description:
“Every time a1 happens, then a2 will eventually happen
within d units of time, and before the next occurrence
of a1 (if any).”

Again, this pattern does not require a1 to occur at all, even
if a2 does.

We give the corresponding timed automaton observer in
Fig. 6(b). The observer is very close to the acyclic pattern
(Fig. 6(a)) with the addition of the back edge from l1 to l0.

This observer is instantiated in stateful timed CSP below:
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l0 l1 l2

lb

xobs ≤ d
a1

xobs := 0

a2

a2

a1xobs = d

a1, a2

a1, a2

(a) Acyclic version

l0 l1

lb

xobs ≤ da2 a2

a1

a1

xobs := 0
xobs = d

a1, a2

(b) Cyclic version

l0 l1

lb

xobs ≤ d

a2

a1

xobs := 0

a2

a1 xobs = d

a1, a2

(c) Strict cyclic version

Fig. 6. Observer timed automata for “Time-Bounded Response” patterns

Pobs
.
= (a2 → Pobs) � (a1 → P2)

P1
.
= (a1 → P1)

P2
.
=
(
(P1 interrupt a2 → Skip) deadline[d];Pobs

)
�
(
(P1 interrupt[d] eobs{vbad := T} → PS)
\ {eobs}

)
3) Strict Cyclic Version: Here, we model that every time an

action a1 happens, then action a2 will happen within d units
of time.

Abstract syntax:
every time a1 then eventually a2 within d once before
next a1
English description:
“Every time a1 happens, then a2 will eventually happen
within d units of time, exactly once, and before the next
occurrence of a1 (if any).”

In other words, a1 and a2 alternate, starting with a1 and,
every time a1 occurs, then a2 must occur too within d units
of time. Again, this pattern does not require a1 to occur at all.

We give the corresponding timed automaton observer in
Fig. 6(c). The observer is very close to the acyclic pattern
(Fig. 6(b)) with the addition of the left-hand edge from l1 to lb,
corresponding to a second a1 in a row.

This observer is instantiated in stateful timed CSP below:
Pobs

.
= P1

P1
.
= (a1 → P2) � (a2{vbad := T} → PS)

P2
.
=
(
(a1{vbad := T} → PS) � (a2 → P1)

)
timeout[d](

(eobs{vbad := T} → Pa) \ {eobs}
)

Again, this class of correctness patterns is very common
in practice. An example of use of this pattern in hardware
verification is the flip-flop circuit (see [CC07, Fig. 16]). In
this circuit verified over one single clock cycle, signal Q
must change at most TCK→Q units of time after signal CK ’s
rising edge (this corresponds to the acyclic version of “Time-
Bounded Response”). In the bounded retransmission protocol
(see, e.g., [DKRT97]), one specifies that premature time-outs
are not possible, i.e., a message must not come after the
timer expires: hence, when the timer starts, the message must
eventually arrive before d units of time, where d is the timer
expiration time, and before the next timer start (cyclic version).
This pattern is also common in scheduling problems (see, e.g.,
[FLMS12] in the setting of parametric schedulability analysis):
in scheduling problems, each job i must finish within di time
units, i.e., each action corresponding to the job start must be
followed by the job end within di time units before it starts

again (strict cyclic version). The same pattern applies again to
characterize the global system execution time.

G. Sequence

This class of 2 patterns models sequences of actions. By
sequence, we mean n actions followed by each other in a
predefined order. The two patterns are the ayclic version, where
the sequence must occur once (after which the behavior is free)
and the cyclic version.

1) Acyclic Version:

Abstract syntax:
sequence a1, . . . , an
English description:
“Actions a1, . . . , an must occur in this order.”

Again, this pattern imposes an order, but does require the
actions to happen. The sequence may also stop in the middle.

We give the corresponding timed automaton observer in
Fig. 7(a). For sake of saving space, we denote by Σ

\i
obs the

alphabet of the observer except action ai, that is Σ
\i
obs =

Σobs \ {ai}. Basically, as soon as an action non-conform to
the predefined order occurs, the observer goes into the bad
location.

This pattern is instantiated in stateful timed CSP below:

Pobs
.
= P1

P1
.
= (a1 → P2) � (a2{vbad := T} → PS) � . . .

� (an{vbad := T} → PS)
P2

.
= (a1{vbad := T} → PS) � (a2 → P3) � . . .

� (an{vbad := T} → PS)
· · ·

Pn
.
= (a1{vbad := T} → PS) � . . . �

(an−1{vbad := T} → PS) � (an → Pf )
Pf

.
= PS

2) Cyclic Version:

Abstract syntax:
always sequence a1, . . . , an
English description:
“Actions a1, . . . , an, a1, . . . must occur in this order.”

Again, this pattern imposes an order, but does require the
actions to happen. The sequence may also not be infinite.
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We give the corresponding timed automaton observer in
Fig. 7(b). We use the same notations as for Fig. 7(a).

This pattern is instantiated in stateful timed CSP below:

Pobs
.
= P1

P1
.
= (a1 → P2) � (a2{vbad := T} → PS) � . . .

� (an{vbad := T} → PS)
P2

.
= (a1{vbad := T} → PS) � (a2 → P3) � . . .

� (an{vbad := T} → PS)
· · ·

Pn
.
= (a1{vbad := T} → PS) � . . . �

(an−1{vbad := T} → PS) � (an → P1)

l0 l1 · · · ln−1 lf

lb

a1 a2 an−1 an

Σ
\1
obs

Σ
\2
obs

Σ
\n
obs

Σobs

Σobs

(a) Acyclic version

l0 l1 · · · ln−1

lb

a1 a2 an−1

an

Σ
\1
obs

Σ
\2
obs

Σ
\n
obs

Σobs

(b) Cyclic version

Fig. 7. Observer timed automata for “Sequence” patterns

For example, in the “And–Or” circuit of [CC05, Figure 3],
the system behavior consists in an alternating sequence of
signal changes. Any other order is considered to be wrong.

IV. IMPLEMENTATION

A. Motivation

These patterns have been implemented in IMITA-
TOR [AFKS12]. This tool performs parameter synthesis for
a parametric extension of timed automata [AHV93], where
constants in guards and invariants can be replaced with param-
eters (i.e., unknown constants). One of IMITATOR’s features
is to be able to cover a bounded parametric subspace with
constraints (or tiles); this gives a behavioral cartography of
the system [AS13]. It has been shown that the obtained tiling
does not depend on any property. However, splitting the tiles
into good and bad tiles does depend on a given property
to be checked. Although it has been first performed in a
manual manner (for small systems) or in a semi-automatic
manner (using scripts) for larger systems, we finally went
for an automated property-checking implemented natively in
IMITATOR. An interesting advantage of an integrated bad-state
oriented approach is that, as soon as a bad state is reached,
a tile can be classified as bad without performing the whole
analysis (under certain assumptions).

B. Patterns Syntax

When computing the behavioral cartography, IMITATOR
requires the definition of the property for splitting tiles between

good and bad. The syntax is: property := [PROP_DEF],
where “PROP_DEF” corresponds to the concrete syntax of one
of the patterns. The concrete syntax implemented in IMITATOR
is almost the same as the abstract syntax (see Appendix A). We
believe that such a verbose syntax helps to be more readable
by non-experts in formal methods.

Then, IMITATOR translates the correctness pattern into
an observer automaton, following the rules of Section III,
and launches the corresponding verification command (either
unreachable, or alwaysEndWith).

The latest version of IMITATOR (2.6), implementing these
patterns, can be found in IMITATOR Web page3.

V. FINAL REMARKS

We propose here a set of patterns commonly used to
specify the correctness of complex real-time systems. The
main advantages are as follows. First, the engineer non-expert
in formal methods can easily specify the system correctness
from a library of common properties expressed in an intuitive
language. Second, the tool developer can easily verify these
properties based on the sole (non-)reachability algorithm.

This work has been partially motivated by problems of
parameter synthesis and extends in a straightforward manner
to parametric real-time systems. In such systems, the constants
appearing in the model are unknown, and called parameters.
The synthesis problem consists in finding values for these
parameters such that the system behaves well according to
a given property. The observer patterns implemented in IMI-
TATOR all allow the use of parameters instead of constants.
In particular, one can use a parameterized deadline in the
observer, and hence synthesize values for this deadline such
that the system behaves well. This approach allows a double-
parameterized verification, where both the model and the
property are parameterized (as in, e.g., [BR07]).

So far, only patterns expressing properties that must be true
(or false) for all runs (operator “A” in the CTL logic [BK08])
have been considered, because they are by far the most
commonly found in the large set of case studies we considered.
Extending our set of patterns (e.g., to the “E” operator) is the
subject of future work.

Different from patterns in [DHQ+08], our patterns shall
not be composed. Compositional patterns could be designed
without theoretical problem; for example, the “sequence” pat-
tern could be seen as the composition of n simpler sequence
patterns allowing only 2 actions. Or the “Time-Bounded
Response” can be seen as the composition of “Eventual
Response” with a new “Deadline” pattern. Structuring our
patterns can be an interesting direction of future research.
Nevertheless, we see it as somehow dangerous in some cases,
because our goal is precisely to discard behaviors complicated
or rarely met in practice, that could be allowed by arbitrary
compositions of patterns. Most importantly, we found very
few examples of systems that would require compositional
observer patterns, or in which case they consist in very simple
compositions. An example is the industrial networked automa-
ton system of [ACD+09], where the correctness is defined
as a sequence of 3 actions (pattern “Sequence (acyclic)”),

3http://www.lsv.ens-cachan.fr/Software/imitator/

9

http://www.lsv.ens-cachan.fr/Software/imitator/


itself eventually followed by a fourth action within a deadline
(pattern “Time-Bounded Response (acyclic)”).

Still, a conjunction of patterns could be useful in the case
when one wants to verify several properties. In the case of our
patterns, it would be interesting to set up a mechanism such
that different properties could be checked at the same time,
using a single definition of bad state. Hence, if the bad state
is not reachable, all properties are true.

Among the future directions of research is the extension of
our library of patterns to hybrid systems. In hybrid systems,
clocks are generalized to continuous variables, that can have
a (possibly nonlinear) flow. Although our patterns extend in
a straightforward manner to hybrid systems, they may not be
sufficient to capture common correctness properties. Indeed,
the correctness of hybrid systems is often specified in terms
of variables being in between certain bounds, e.g., the level of a
water tank must remain above some minimum and below some
maximum. Designing correctness patterns for probabilistic
extensions of real-time systems is also the subject of future
work.
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APPENDIX

A. Patterns Syntax in IMITATOR

In the following, a, a1, a2, . . . , an must be actions
declared in the model. The deadline d can be either a constant
linear expression or a parameter, hence allowing in the latter
case for synthesis of the deadline parameter.

Pattern “1. Non-reachability”:
property := unreachable [BAD_DEF]

Pattern “2a. Action Precedence (Acyclic)”:
property := if a2 then a1 has happened before

Pattern “2b. Action Precedence (Cyclic)”:
property := everytime a2 then a1 has happened before

Pattern “2c. Action Precedence (Strict Cyclic)”:
property := everytime a2 then a1 has happened once

before

Pattern “3a. Eventual Response (Acyclic)”:
property := if a1 then eventually a2

Pattern “3b. Eventual Response (Cyclic)”:
property := everytime a1 then eventually a2

Pattern “3c. Eventual Response (Strict Cyclic)”:
property := everytime a1 then eventually a2 once

before next

Pattern “4. Action Before Deadline”:
property := a within d

Pattern “5a. Time-Bounded Action Precedence (Acyclic)”:
property := if a2 then a1 has happened within d

before

Pattern “5b. Time-Bounded Action Precedence (Cyclic)”:
property := everytime a2 then a1 has happened within

d before

Pattern “5c. Time-Bounded Action Precedence (Strict
Cyclic)”:
property := everytime a2 then a1 has happened once

within d before

Pattern “6a. Time-Bounded Response (Acyclic)”:
property := if a1 then eventually a2 within d

Pattern “6b. Time-Bounded Response (Cyclic)”:
property := everytime a1 then eventually a2 within d

Pattern “6c. Time-Bounded Response (Strict Cyclic)”:
property := if a1 then eventually a2 within d once

before next

Pattern “7a. Sequence (Acyclic)”:
property := sequence a1, ..., an

Pattern “7b. Sequence (Cyclic)”:
property := always sequence a1, ..., an
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