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Abstract. Parametric timed automata (PTAs) are a powerful formal-
ism to reason about, model and verify real-time systems in which some
constraints are unknown, or subject to uncertainty. In the literature,
PTAs come in several variants: in particular the domain of parameters
can be integers or rationals, and can be bounded or not. Also clocks
can either be compared only to a single parameter, or to more complex
linear expressions. Yet we do not know how these variants compare in
terms of expressiveness, and even the notion of expressiveness for para-
metric timed models does not exist in the literature. Furthermore, since
most interesting problems are undecidable for PTAs, subclasses, such as
L/U-PTAs, have been proposed for which some of those problems are de-
cidable. It is not clear however what can actually be modeled with those
restricted formalisms and their expressiveness is thus a crucial issue. We
therefore propose two definitions for the expressiveness of parametric
timed models: the first in terms of all the untimed words that can be gen-
erated for all possible valuations of the parameters, the second with the
additional information of which parameter valuations allow which word,
thus more suitable for synthesis issues. We then use these two definitions
to propose a first comparison of the aforementioned PTA variants.
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1 Introduction

Designing real-time systems is a challenging issue and formal models and reason-
ing are key elements in attaining this objective. In this context, timed automata
(TAs) [AD94] are a powerful and popular modeling formalism. They extend fi-
nite automata with timing constraints, in which clocks are compared to integer
constants that model timing features of the system. In the early design phases
these features may not be known with precision and therefore parametric timed
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automata (PTAs) [AHV93] allow these constants to be replaced by unknown
parameters, the correct values of which will be synthesized as part of the ver-
ification process. Unfortunately, most interesting problems are undecidable for
PTAs, including the basic question of the existence of values for the parameters
such that a given location is reachable [AHV93] (sometimes called EF-emptiness
problem).

Since the seminal definition, many variants of PTAs have been defined in
the literature, both as an effort to further increase the convenience of model-
ing by allowing complex linear expressions on parameters in the timing con-
straints (such as in [HRSV02,JLR15]), or in order to better assess the frontier
of decidability for PTAs. In the latter objective, parameters have been con-
sidered to be integers [AHV93,Mil00,BL09,BO14,BBLS15,JLR15,AM15] or ra-
tionals [AHV93,Mil00,HRSV02,Doy07,JLR15,AM15], possibly bounded a priori
[JLR15], or even restricted to be used as either always upper bounds or always
lower bounds, giving so-called L/U-PTAs [HRSV02,BL09].

This difference in the class of constraints may have a direct impact on the
decidability or complexity: for example, [BO14] recently improved the complex-
ity of [AHV93] (NEXPTIME-complete instead of non-elementary) of the EF-
emptiness problem over discrete time for one parametric clock and arbitrarily
many non-parametric clocks and (integer-valued) parameters, but requires non-
strict inequalities and uses invariants, features not used in the constructions
of [AHV93]; it is hence unclear whether the result of [AHV93] is really sub-
sumed by [BO14].

In order to be able to compare these definitions, one must first agree on a
notion of expressiveness for timed parametric models, since none exists in the
literature. This is the main objective of this work.

Contribution We propose the following two definitions of expressiveness: 1) as
the union over all parameter valuations of the accepting untimed words (“un-
timed language”); 2) as the pairs of untimed words with the parameter valuations
that allow them (“constrained untimed language”).

We first prove that considering rational parameter valuations or unbounded
integer parameter valuations in PTAs and L/U-PTAs is actually equivalent with
respect to the untimed language.

We also prove that, whereas the untimed language recognized by a PTA
with a single clock and arbitrarily many parameters is regular, adding a single
non-parametric clock (i. e., a clock compared at least once to a parameter), even
with a single parameter, gives a language that is at least context-sensitive, hence
beyond the class of regular languages.

We then compare the expressiveness, w.r.t. untimed language and constrained
untimed language, of several known subclasses of PTAs with integer parameters,
in particular L/U-PTAs, and PTAs with bounded parameters. It turns out that,
when considering the expressiveness as the untimed language, most subclasses of
PTAs with integer parameters (including PTAs with bounded parameters, and
L/U-PTAs) are in fact not more expressive than TAs. However, classical PTAs
remain strictly more expressive than TAs. We also show that adding fully para-
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metric constraints (i. e., comparison of parametric linear terms with 0, without
any clock) does not increase the expressiveness of PTAs seen as the untimed
language.

We also propose and focus on a new class of PTAs in which some parameters
are hidden, i. e., do not occur in the constrained untimed language. While adding
hidden parameters does not increase the expressiveness w.r.t. the untimed lan-
guage (since in that case all parameters can be considered as hidden), when
considering the expressiveness as the constrained untimed language, we show
that hidden parameters strictly extend the expressiveness of PTAs. And inter-
estingly, for this second definition of expressiveness, L/U-PTAs with bounded
parameters turn out to be incomparable with classical L/U-PTAs.

Outline We introduce the basic notions in Section 2. We propose our two defini-
tions of expressiveness in Section 3. We then show that rational-valued param-
eters are not more expressive than integer-valued parameters for the untimed
language (Section 4). Focusing on integer-valued parameters, we then classify
PTAs, their subclasses, and their extensions with hidden parameters w.r.t. the
untimed language (Section 5) and the constrained untimed language (Section 6).
We conclude and outline perspectives in Section 7.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, and R+ denote the sets of non-negative integers, integers, and non-
negative real numbers respectively. Let I(N) denote the set of closed intervals
on N, i. e., the set of intervals [a, b] where a, b ∈ N and a ≤ b.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation is a function
µ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, µ+ d denotes the valuation such that (µ+ d)(x) = µ(x) + d, for
all x ∈ X. Given R ⊆ X, we define the reset of a valuation µ, denoted by [µ]R,
as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown integer-
valued constants (except in Section 4 where parameters can also be rational-
valued). A parameter valuation v is a function v : P → N.

In the following, we assume ≺ ∈ {<,≤} and ∼ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ Z. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A con-
straint C (i. e., a convex polyhedron) over X ∪P is a conjunction of inequalities
of the form lt ∼ 0. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation µ, µ(v(C)) denotes the Boolean value obtained by replacing
each clock x in v(C) with µ(x).
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A guard g is a constraint over X ∪ P defined by inequalities of the form
x ∼ plt .

2.2 Parametric Timed Automata with Hidden Parameters

Parametric timed automata (PTAs) extend timed automata with parameters
within guards and invariants in place of integer constants [AHV93].

We actually first define an extension of PTAs (namely hPTAs) that will allow
us to compare models with a different number of parameters, by considering that
some of them are hidden. We will define PTAs as a restriction of hPTAs.

Definition 1 (PTA with hidden parameters). A parametric timed automa-
ton with hidden parameters (hereafter hPTA) A is a tuple (Σ,L, l0, F,X, P, I, E),
where: i) Σ is a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L
is the initial location, iv) F ⊆ L is a set of accepting locations, v) X is a finite
set of clocks, vi) P = Pv]Pv is a finite set of parameters partitioned into hidden
parameters Pv and visible parameters Pv, vii) I is the invariant, assigning to
every l ∈ L a guard I(l), viii) E is a finite set of edges e = (l, g, a,R, l′) where
l, l′ ∈ L are the source and target locations, a ∈ Σ ∪ {ε} (ε being the silent
action), R ⊆ X is a set of clocks to be reset, and g is a guard.

We define a PTA as an hPTA in which P = Pv.
Observe that we allow ε-transitions (or silent transitions), i. e., transitions

not labeled with any action.
Given an hPTA A and a parameter valuation v, we denote by v(A) the non-

parametric timed automaton where all occurrences of a parameter pi have been
replaced by v(pi).

Concrete Semantics

Definition 2 (Concrete semantics of a TA). Given an hPTA A =
(Σ,L, l0, F,X, P, I, E), and a parameter valuation v, the concrete semantics
of v(A) is given by the timed transition system (S, s0,→), with S = {(l, µ) ∈
L × RH

+ | µ(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and
(continuous) delay transition relations:

– discrete transitions: (l, µ)
e→ (l′, µ′), if (l, µ), (l′, µ′) ∈ S, there exists e =

(l, g, a,R, l′) ∈ E, µ′ = [µ]R, and µ(v(g)) is true.

– delay transitions: (l, µ)
d→ (l, µ+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, µ+d′) ∈ S.

A (concrete) run is a sequence ρ = s1α1s2α2 · · · snαn · · · such that
∀i, (si, αi, si+1) ∈ →. We consider as usual that concrete runs strictly alter-
nate delays di and discrete transitions ei and we thus write concrete runs in the

form ρ = s1
(d1,e1)→ s2

(d2,e2)→ · · · . We refer to a state of a run starting from the
initial state of a TA A as a concrete state (or just as a state) of A. Note that
when a run is finite, it must end with a state. The duration of a concrete run is
the sum of all the delays di appearing in this run.
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An untimed run of v(A) is a sequence l1e1l2e2 · · · ln · · · such that for all i

there exist a clock valuation µi and di ≥ 0 such that (l1, µ1)
(d1,e1)→ (l2, µ2)

(d2,e2)→
· · · (ln, µn)

(dn,en)→ · · · is a run of v(A). Given a run ρ, we denote by Untime(ρ)
its corresponding untimed run.

The trace of an untimed run l1e1l2e2 · · · ln · · · is the sequence e1e2 · · · en · · · .
The (untimed) trace of a concrete run ρ is the trace of Untime(ρ).
A run ρ is accepted by v(A) if it is finite and the location of its last state

belongs to F . An untimed run is accepted by v(A) if it is finite and its last
location belongs to F .

The (untimed) language of v(A) is the set of the traces of runs accepted
by v(A).

2.3 Subclasses of Parametric Timed Automata

L/U-PTAs have been introduced as a subclass of PTAs for which the EF-
emptiness problem (i. e., the existence of values for the parameters such that
a given location is reachable) is decidable [HRSV02]:

Definition 3 (hL/U-PTA). An hL/U-PTA is an hPTA where the set of pa-
rameters is partitioned into a set of lower-bound parameters P− and a set of
upper-bound parameters P+. A parameter p belongs to P+ (resp. P−), if it
appears in constraints x ≤ plt or x < plt always with a non-negative (resp.
non-positive) coefficient, and in constraints x ≥ plt or x > plt always with a
non-positive (resp. non-negative) coefficient.

Just as for PTAs, we define an L/U-PTA as an hL/U-PTA in which P = Pv.
Decidability comes from the fact that in L/U-PTAs increasing the value of an

upper bound parameter or decreasing that of a lower bound parameter always
only increase the possible behavior:

Lemma 1 (monotonicity of hL/U-PTAs [HRSV02]). Let A be an hL/U-
PTA and v be a parameter valuation. Let v′ be a valuation such that for each
upper-bound parameter p+, v′(p+) ≥ v(p+) and for each lower-bound parame-
ter p−, v′(p−) ≤ v(p−). Then any run of v(A) is a run of v′(A).

We will often use the notation p+ (resp. p−) for upper (resp. lower) bound
parameters in hL/U-PTAs.

Given an hL/U-PTA, we denote by v0/∞ the special parameter valuation
(mentioned in, e. g., [HRSV02]) assigning 0 to all lower-bound parameters and
∞ to all upper-bound parameters.3

Let us now define a bounded PTA as a PTA where the domain of each
parameter is bounded, i. e., ranges between two integer-valued constants.

3 Technically, v0/∞ is not a parameter valuation, as the definition of valuation does
not allow∞. However, we will use it only to valuate an L/U-PTA (or an hL/U-PTA)
with it; observe that valuating an L/U-PTA with v0/∞ still gives a valid TA.
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Definition 4 (bounded hPTA). A bounded hPTA is A|bounds , where A is
an hPTA, and bounds : P → I(N) assigns to each parameter p an interval
[min,max], with min,max ∈ N.

We define similarly bounded hL/U-PTAs.

3 Defining the Expressiveness of PTAs

In the following, we denote by V(P ), V(Pv), and V(Pv) the sets of valuations of
respectively all the parameters, the visible parameters, and the hidden parame-
ters of an hPTA.

Definition 5 (untimed language of an hPTA). Given an hPTA A, the
untimed language of A, denoted by UL(A) is the union over all parameter valu-
ations v of the sets of untimed words accepted by v(A), i. e.,⋃

v∈V(P )

{
w | w is an untimed word accepted by v(A)

}

TA is a subclass of PTA, hence, given a TA A, we also denote UL(A) its
untimed language.

We propose below another definition of language for hPTAs, in which we
consider not only the accepting untimed words, but also the parameter valua-
tions associated with these words; this definition is more suited to compare the
possibilities offered by parameter synthesis. Note that we only expose the visible
parameter valuations.

Definition 6 (constrained untimed language of an hPTA). Given an
hPTA A, the constrained untimed language of A, denoted by CUL(A) is⋃
v∈V(Pv)

{
(w, v) | ∃v′ ∈ V(Pv) s.t. w is an untimed word accepted by v(v′(A))

}

Note that since Pv and Pv are disjoint, we can write indifferently v(v′(A))
and v′(v(A)).

We use the word “constrained” because another way to represent the con-
strained language of an hPTA is in the form of a set of elements (w,K), where
w is an untimed word, and K is a parametric constraint such that for all v in K,
then w is an untimed word accepted by v(v′(A)) for some v′ ∈ V(Pv).

Example 1. Let us consider the hPTA A of Figure 1a, where Pv = {p1} and
Pv = {p2}.

– Its untimed language is UL(A) = {a} ∪ {ban | n ∈ N} that we note with the
rational expression UL(A) = a+ ba∗.

6



l1
x ≤ 1

l2

l3
x = 1

a
x := 0

x = 1
∧ x ≤ p2

b
x := 0

x = p1
a

(a) A PTA

l′0

x = 1
ε

x := 0

x = 0 ∧ y = p
ε

y := 0

(b) Gadget enforcing a non-negative integer
value for p

Fig. 1: An example of PTA, and a PTA gadget

– Its constrained untimed language is CUL(A) =
{

(a, p1 = i) | 0 ≤ i ≤

1
}⋃{

(ban, p1 = i) | i ∈ N, n ∈ N
}

that we can also note CUL(A) ={
(a, p1 ≤ 1), (ba∗, p1 ≥ 0)

}
, with p1 ∈ N. Note that both the parameter p2

and the fact that p2 must be at least 1 to go to l2 are hidden.

Definition 7 (regular constrained language). The constrained untimed lan-
guage of an hPTA A is regular if for all visible parameter valuations v ∈ V(Pv),
the language {w | (w, v) ∈ CUL(A)} is regular.

Remark 1. Since valuating a PTA with any rational parameter valuation gives
a TA, the constrained untimed language of any PTA is regular in the sense of
Definition 7.

Note that the idea of combining the untimed language with the parame-
ter valuations leading to it is close to the idea of the behavioral cartography
of parametric timed automata [AF10], that consists in computing parameter
constraints together with a “trace set”, i. e., the untimed language (that also
includes in [AF10] the locations).

In the following, a class refers to an element in the set of TAs, bounded
L/U-PTAs, L/U-PTAs, bounded PTAs and PTAs, and their counterparts with
hidden parameters. An instance of a class is a model of that class.

A first class is strictly more expressive than a second one w.r.t. the untimed
language if i) for any instance of the second one, their exists an instance of the
first one that has the same untimed language, and ii) there exists an instance
of the first one for which no instance of the second one has the same untimed
language. Two classes are equally expressive w.r.t. the untimed language if for
any instance of either class, their exists an instance of the other class that has
the same untimed language. The comparison of the expressiveness w.r.t. the con-
strained untimed language can be defined similarly, with the additional require-
ment that the two instances must contain the same visible parameters (possibly
after some renaming).
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4 An Equivalence Between Integer and Rational
Parameters

In the literature, some works focus on integer parameters [BO14,BBLS15,BL09],
some others on rational parameters [HRSV02,Doy07], and also some propose
constructions working in both settings [AHV93,Mil00,JLR15,AM15].

In this section, we prove that considering rational parameter valuations or
unbounded integer parameter valuations in PTAs and L/U-PTAs is actually
equivalent with respect to untimed languages.4

First, remark that any PTA with rational parameter valuations can be con-
strained to accept only non-negative integer parameter valuations. We just need
to insert a copy of the gadget in Figure 1b for each parameter p before the initial
location. We connect them to each other in sequence, in any order, and x and y
can be clocks from the original PTA. In that gadget x is zero only when y is a
non-negative integer and therefore p must be a non-negative integer to permit
the exit from l′0. Clearly, when considering only non-negative integer parameter
valuations, both PTAs have the same untimed language.

With the above construction, we can filter out non-integer valuations. We
can actually go a bit further and establish the following result:

Lemma 2. For each PTA A, there exists a PTA A′ such that:

1. for all rational parameter valuations v of A there exists an integer parameter
valuation v′ of A′ such that v(A) and v′(A′) have the same untimed language.

2. for all integer parameter valuations v′ of A′ there exists a rational parameter
valuation v of A such that v(A) and v′(A′) have the same untimed language.

Proof. The idea of the proof is to scale all the expressions to which clocks are
constrained so that they are integers. However, since we do not know in advance
by how much we have to scale, we use an additional parameter to account for
this scaling factor.

Let A be a PTA. Let p be a fresh parameter and let A′′ be the PTA obtained
from A by replacing every inhomogeneous (i. e., constant) term c in the linear
expressions of guards and invariants by c ∗ p. For instance, the constraint x ≤
3p1 + 2p2 + 7 becomes x ≤ 3p1 + 2p2 + 7p.

We now build A′ as follows: we add a new location (which will be the initial
location of A′), from which two transitions, labeled ε and resetting all clocks,
exit. The first one has guard x 6= 0 ∧ x = p and goes to the initial location
of A′′. The second has guard x = 0 ∧ x = p and goes to the initial location of
an exact copy of A. By construction the first one can be taken only if p 6= 0 and
the second one only if p = 0.

1. Let v be a rational parameter valuation of A. Let m be the least common
multiple (LCM) of the denominators of the values assigned to parameters

4 Comparing constrained languages would make no sense since obviously the param-
eter valuations cannot match in general in the rational and integer settings.
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by v. Let v′ be defined as: ∀pi 6= p, v′(pi) = m ∗ v(pi) and v′(p) = m. Then,
by construction, v′ is an integer valuation of A′, v′(p) 6= 0 and v′(A′′) is a TA
that is scaled by m from the TA v(A). Then by [AD94, Lemma 4.1], v(A)
and v′(A′′) have the same untimed runs up to renaming. And finally, v(A)
and v′(A′) have the same untimed language.

2. The opposite direction works similarly: let v′ be an integer parameter valu-
ation of A′. If v′(p) = 0, then in A′′ we can only go to the copy of A. We can
therefore choose v(pi) = v′(pi) and obtain the same untimed language. If

v′(p) 6= 0, we define v by v(pi) = v′(pi)
v′(p) . Then v is a rational parameter val-

uation of A and v(A) is a scaled down version of v′(A′′), which therefore has
the same untimed runs. And again, v(A) and v′(A′) have the same untimed
language.

ut

First remark that, in order to show the equivalence between integer- and
rational-valued parameters, we provided a construction that added one addi-
tional parameter, and possibly some parametric clocks. This is consistent with
the fact that PTAs with integer parameters typically have decidability results for
slightly more parametric clocks and parameters than with rational parameters.
For instance, the existence of a rational parameter valuation such that a given
location is reachable is undecidable for PTAs with 1 parametric clock (a clock
compared to parameters) and 3 normal clocks [Mil00], while the existence of an
integer parameter valuation is decidable in that setting [BBLS15].

Second, in the construction, we need the integer parameters to be unbounded
because the LCM can be arbitrarily big.

Finally, this result is not directly applicable to L/U-PTAs as we cannot en-
sure that the parameterized scaling factor would be the same for upper bound
inhomogeneous terms as for lower bound ones. However, for L/U-PTAs, we can
derive the same result from the monotonicity property:

Lemma 3. For an L/U-PTA A, the set of untimed runs produced with only
integer parameter valuations or with all rational parameter valuations is the
same.

Proof. Clearly the set of untimed runs produced by considering only integer
parameter valuations is included in the one obtained by considering all rational
parameter valuations.

In the other direction: let v be a rational parameter valuation of A and let v′

be the integer parameter valuation obtained from v by rounding up the values
for upper bound parameters, and rounding down for lower bound parameters.
Then, by Lemma 1, v′(A) contains all the untimed runs of v(A). ut

Here also we need integer parameters to be unbounded because the rational
parameter valuations can themselves be arbitrarily big and we get accordingly
big integers when rounding up.

We can now conclude the following:
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Proposition 1. PTAs (resp. L/U-PTAs) with rational parameters and PTAs
(resp. L/U-PTAs) with unbounded integer parameters are equivalent with respect
to the untimed language.

When the parameters are bounded, we will see in Proposition 2 that the in-
teger setting leads to regular languages. So, when bounded, PTAs with rational
parameters are obviously strictly more expressive than their integer parameter
counterpart. For L/U-PTAs, using again the monotonicity property, we trivially
see that the valuation setting all upper-bound parameters to the maximal value
allowed by the bounded domain, and lower-bound parameters to the minimal
value gives all the untimed runs that are possible with other valuations. That “ex-
tremal” valuation is an integer valuation by definition. So, even when bounded,
L/U-PTAs are still equally expressive in the rational and integer settings.

5 Expressiveness as the Untimed Language

5.1 PTAs in the Hierarchy of Chomsky

Let us show that (without surprise) Turing-recognizable languages (type-0 in
Chomsky’s hierarchy) can be recognized by PTAs (with enough clocks and pa-
rameters).

Lemma 4. Turing-recognizable languages are also recognizable by PTAs.

Proof. Consider a Turing-machine: it can be simulated by a 2-counter machine
(with labelled instructions), which can in turn be simulated by a PTA. The
transitions of the encoding PTA can be easily labeled accordingly (using also ε
transitions). Assume that a word is accepted by the machine when it halts (i. e.,
it reaches lhalt). If the machine does not halt, lhalt is reachable for no parameter
valuation, hence the language of the machine is empty and that of the encoding
PTA also. If the machine halts, lhalt is reachable for parameter valuations cor-
rectly encoding the machine (i. e., depending on the proof, large enough or small
enough to correctly encode the maximum value of the two counters). Hence, by
taking the union over all parameter valuations of all untimed words accepted by
the encoding PTA, one obtains exactly the language recognized by the machine.

ut

Lemma 4 only holds with enough clocks and parameters, typically 3 paramet-
ric clocks and 1 integer-valued or rational-valued parameter [BBLS15], or 1 para-
metric clock, 3 non-parametric clocks and 1 rational-valued parameter [Mil00].

For lower numbers, either decidability of the EF-emptiness problem is en-
sured (in which case the language cannot be type-0), or this problem remains
open.

Let us point out a direct consequence of a result of [AM15] on PTAs with a
single (necessarily parametric) clock.

Lemma 5. The untimed language recognized by a PTA with a single clock and
arbitrarily many parameters is regular.
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l1

x1 ≤ 1
∧ x2 ≤ p

l2

x1 ≤ 1
∧ x2 ≤ p

l3

x1 ≤ 1
∧ x2 ≤ p

l4

x1 = 1
a

x1 := 0

x1 = 1
∧ x2 = p

a
x1, x2 := 0

x1 = 1
b

x1 := 0

x1 = 1
∧ x2 = p

b
x1, x2 := 0

x1 = 1
c

x1 := 0

x1 = 1
∧ x2 = p

c

Fig. 2: A PTA with untimed language anbncn

Proof. In [AM15, Theorem 20], we proved that the parametric zone graph (an
extension of the zone graph for PTAs, following e. g., [JLR15]) of a PTA with a
single (necessarily parametric) clock and arbitrarily many parameters is finite.
This gives that the language recognized by a PTA with a single clock is regular.

ut

We now show that adding to the setting of Lemma 5 a single non-parametric
clock, even with a single parameter, may give a language that is at least context-
sensitive, hence beyond the class of regular languages.

Theorem 1. PTAs with 1 parametric clock, 1 non-parametric clock and 1 pa-
rameter can recognize languages that are context-sensitive.

Proof. Consider the PTA A in Figure 2. Consider an integer parameter valua-
tion v such that v(p) = i, with i ∈ N. The idea is that we use the parameter
to first count the number of as, and then ensure that we perform an identical
number of bs and cs; such counting feature is not possible in TAs (at least not for
any value of i as is the case here). Clearly, due to the invariant x1 ≤ 1 in l1, one
must take the self-loop on l1 every 1 time unit; then, one can take the transition
to l2 only after i such loops. The same reasoning applies to locations l2 and l3.
Hence, the language accepted by the TA v(A) is ai+1bi+1ci+1.

Hence the union over all parameter valuations of the words accepted by A is
{anbncn | n ≥ 1}. This language is known to be in the class of context-sensitive
languages (type-1 in Chomsky’s hierarchy), hence beyond the class of regular
languages (type-3). ut

This result is interesting for several reasons. First, it shows that adding a
single clock, even non-parametric, to a PTA with a single clock immediately
increases its expressiveness. Second, it falls into the interesting class of PTAs
with 2 clocks, for which many problems remain open: the PTA exhibited in the
proof of Theorem 1 (1 parametric clock and 1 non-parametric) falls into the class
of 1 parametric clock, arbitrarily many non-parametric clocks and arbitrarily
many integer-valued parameters, for which the EF-emptiness is known to be
decidable [BBLS15]. When replacing the integer-valued with a rational-valued
parameter (which does not fundamentally change our example), it also falls into
the class of 1 parametric clock, 1 non-parametric clock and 1 rational-valued
parameter, for which the EF-emptiness is known to be open [And15]. In both
cases, it gives a lower bound on the class of languages recognized by such a PTA.
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5.2 Comparison of Expressiveness

In this section, we compare the expressiveness of PTAs w.r.t. their untimed
language UL.

First, we show in the following lemma that the untimed language of an L/U-
PTA is equal to that of the same L/U-PTA valuated with v0/∞.

Lemma 6. Let A be an L/U-PTA. Then: UL(A) = UL(v0/∞(A)).

Proof. ⊆ Let us first show that any accepting run of A for some parameter
valuation is also an accepting run of v0/∞(A), in the spirit of [HRSV02]. Let
v be a parameter valuation. Let ρ be an accepting run of v(A). Observe that,
by definition, the guards and invariants of v0/∞(A) are more relaxed than
that of v(A). Hence, any transition of ρ is also enabled in v0/∞(A). Hence, ρ
is also an accepting run of v0/∞(A).

⊇ Conversely, let us show that, for any accepting run of v0/∞(A), there exists
a parameter valuation v such that this run is also an accepting run of v(A).
It suffices to show that, for a given run, there exists one parameter valuation
accepting this run, as we define UL as the union over all parameter valuations.

Let ρ : s0
(e0,d0)→ s1

(e1,d1)→ · · · (em−1,dm−1)→ sm be an accepting run of v0/∞(A).
Let d be the duration of this run. Let k = dde+1. Let v0/k be the parameter
valuation assigning 0 to all lower-bound parameters, and k to all upper-
bound parameters. Now, observe that v0/∞(A) and v0/k(A) are identical
TAs, with the exception that some guards and invariants in v0/k(A) may
include additional constraints of the form x ≤ i × k or x < i × k (for some
clock x and some i > 0, i ∈ N). Since the duration of ρ is strictly less than k,
then no clock will reach value k and therefore this run cannot be impacted
by these additional constraints; hence, ρ is an accepting run of v0/k(A) too.

ut

Proposition 2. TAs, L/U-PTAs and bounded PTAs are equally expressive
w.r.t. the union of untimed languages.

Proof. L/U-PTAs = TAs Direct from Lemma 6, and the fact that any TA is
an L/U-PTA with no parameter.

bounded PTAs = TAs The untimed language of a PTA is the union of the
untimed language of the TAs over all possible parameter valuations. As we
consider integer-valued parameters, there is a finite number of valuations in a
bounded PTA. Since the language recognized by a TA is a regular language,
and the class of regular languages is closed under finite union, then bounded
PTAs also recognize regular languages, and are therefore equally expressive
with TAs.

ut

Proposition 3. L/U-PTAs and hL/U-PTAs are equally expressive w.r.t. the
union of untimed languages.

12



Proof. Consider an L/U-PTA A. Let Ah be the hL/U-PTA that is identical
to A and contains no hidden parameters (i. e., Pv = P and Pv = ∅). Then
UL(Ah) = UL(A).

Conversely, consider an hL/U-PTA Ah with visible parameters Pv and hidden
parameters Pv. Let A be the L/U-PTA such that P = Pv ∪ Pv. Then UL(A) =
UL(Ah). ut

Proposition 4. PTAs are strictly more expressive than TAs w.r.t. the union of
untimed languages.

Proof. Since the untimed words recognized by TA form a regular language
[AD94], then the PTA exhibited in Theorem 1 recognizes a language not recog-
nized by any TA. Conversely, any TA is a PTA (with no parameter) which gives
that the expressiveness of PTAs is strictly larger than that of TAs.

ut

In the following, we show that neither hidden parameters nor fully parametric
linear constraints increase the expressive power of PTAs w.r.t. the union of
untimed languages.

Proposition 5. PTAs and hPTAs are equally expressive w.r.t. the union of
untimed languages.

Proof. Following the same reasoning as in Proposition 3. ut

Impact of the syntax of the guards Recall that our guards and invariants
are of the form x ∼ plt , with plt a parametric linear term. Several alternative
definitions exist in the literature. In addition to the PTAs defined in Defini-
tion 1, we consider here two other definitions, one that can be seen as the most
restrictive (and used in e. g., [AHV93]), and one that is very permissive, with
even constraints involving no clocks. We denote by a simple guard a constraint
over X ∪P defined by inequalities of the form x ∼ z, where z is either a param-
eter or a constant in Z. We define an AHV93-PTA as a PTA the guards and
invariants of which are all conjunctions of simple guards. We define a PTA with
fully parametric constraints (fpc-PTA) as a PTA the guards and invariants of
which are conjunctions of inequalities either of the form x ∼ plt (“guards”), or
plt ∼ 0 (“fully parametric guards”). Let us show that all three definitions are
equivalently expressive w.r.t. the untimed language.

Proposition 6. PTAs and AHV93-PTAs are equally expressive w.r.t. the union
of untimed languages.

Proof. See Appendix A. ut

This result extends in a straightforward manner to fpc-PTAs.

Proposition 7. PTAs and fpc-PTAs are equally expressive w.r.t. the union of
untimed languages.

Proof. See Appendix B. ut

13



l′1 l′2 l′3

x = min
∧ x ≤ p

ε

x = max
∧ p ≤ x

ε

(a) Bounding a PTA

l0 l1

x = 0
∧ x ≤ p

a

(b) PTA accepting a for any valuation

Fig. 3: A PTA gadget and a PTA

6 Expressiveness as the Constrained Untimed Language

In this section, we compare the expressiveness of PTAs w.r.t. their visible con-
strained untimed language.

Proposition 8. Bounded PTAs are strictly less expressive than PTAs w.r.t. the
constrained untimed language.

Proof. Bounded PTAs can easily be simulated using a non-bounded PTA, by
bounding the parameters using one clock and appropriate extra locations and
transitions prior to the original initial location of the PTA. For example, if x is
reset when entering l′1, the gadget in Figure 3a ensures that p ∈ [min,max]. All
such gadgets (one per parameter) must be added in a sequential manner, reset-
ting x prior to each gadget, and resetting all clocks when entering the original
initial location after the last gadget.

Now, it is easy to find a PTA that has a larger constrained untimed language
than any bounded PTA. This is the case of any PTA for which a word is accepting
for parameter valuations arbitrarily large (e. g., Figure 3b). ut

We now show that, interestingly, this result does not extend to L/U-PTAs,
i. e., bounded L/U-PTAs are not strictly less expressive than but incomparable
with L/U-PTAs.

Proposition 9. Bounded L/U-PTAs are incomparable with L/U-PTAs w.r.t.
the constrained untimed language.

Proof. – Let us show that the constrained untimed language of a given
bounded L/U-PTA cannot be obtained for any L/U-PTA. Consider a
bounded U-PTA with a single parameter p+ with bounds such that p+ ∈
[0, 1], and accepting a for any valuation of p+ ∈ [0, 1]. From Lemma 1, if
this run is accepted in an L/U-PTA A′, then this run is also accepted for
any valuation v′ such that v′(p+) ≥ 0, including for instance v′(p+) > 1.
Hence accepting a only for valuations of p+ ∈ [0, 1] cannot be obtained in
an L/U-PTA, and therefore no L/U-PTA yields this constrained untimed
language.

– This converse is immediate: assume an L/U-PTA with a single parameter p+,
accepting a for any valuation of p+ ∈ [0,∞). From the definition of bounded
(L/U-)PTAs, all parameters must be bounded, and therefore there exists no
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bounded L/U-PTA that can accept a run for p+ ∈ [0,∞). Hence no bounded
L/U-PTA yields this constrained untimed language.

ut

We now show that hidden parameters do not extend the expressiveness of
L/U-PTAs (proof is in Appendix C).

Proposition 10. hL/U-PTAs are equally expressive with L/U-PTAs w.r.t. the
constrained untimed language.

Hidden parameters however strictly extend the expressiveness of PTAs.

Lemma 7. There exists an hPTA A such that CUL(A) is not regular.

Proof. Assume a PTA with no parameter. Its constrained untimed language is a
set of pairs (w, v), where v is a degenerate parameter valuation (i. e., a valuation
v : ∅ → N as this PTA contains no parameter). The projection of this set of pairs
onto the words (i. e., {w | (w, v) ∈ CUL(A)}) yields a regular language, as a PTA
without parameters is a TA, the class of language recognized by which is that
of regular languages. Now consider an hPTA where all parameters are hidden.
This time, from Theorem 1 the projection of its constrained untimed language
onto the words yields a language that goes beyond the class of regular languages.
Hence there exists an hPTA for which the constrained untimed language is not
regular. ut

Remark 2. The idea used in the proof of Lemma 7 uses a PTA with no (visible)
parameter. But such a result can be generalized to a PTA with an arbitrary
number of visible parameters: assume such a PTA, and assume one of its param-
eter valuations v. We can extend this PTA into a PTA A′ with a single hidden
parameter such that, for the valuation v (of the visible parameters), the PTA
will produce anbncn using the construction in Theorem 1. Hence, the constrained
untimed language of A′ is not regular.

Proposition 11. hPTAs are strictly more expressive than PTAs w.r.t. the con-
strained untimed language.

Proof. From Remark 1 and Lemma 7. ut

Let us finally show that PTAs and fpc-PTAs (involving additionally plt ∼ 0)
are not more expressive than AHV93-PTAs with hidden parameters.

Proposition 12. PTAs and fpc-PTAs are not more expressive than AHV93-
PTAs with hidden parameters w.r.t. the constrained untimed language.

Proof. In Propositions 6 and 7, we used a construction to show the equivalent
expressiveness of the untimed language of PTAs, fpc-PTAs and AHV93-PTAs.
This construction transforms a PTA or an fpc-PTA into an AHV93-PTAs. Since
we use extra parameters in this construction, it suffices to hide these extra pa-
rameters, and we therefore obtain an AHV93-PTA with the same CUL as the
original (fpc-)PTA. ut
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Remark 3. In fact, we highly suspect that PTAs and fpc-PTAs are not more
expressive than AHV93-PTAs (without hidden parameters). We cannot use our
construction of Propositions 6 and 7 as it adds extra parameters, and therefore
cannot ensure the equality of the CUL. However, we could propose an alternative
construction using no extra parameter, at the cost of (many) extra parametric
clocks (typically two per different guard in the PTA) and many extra locations.
The idea would be to replace each guard with a gadget to be synchronized with
the original PTA: this gadget will ensure that the sum of parameters is indeed
achieved, using an extra clock counting each parameter. For negative parameter
coefficients, this can be achieved thanks to another clock nondeterministically
reset, and that must be equal to p2 whenever the original clock x is reset. Typi-
cally, to ensure x ∼ p1− p2, we nondeterministically reset x1, x2; then whenever
we reset x, then we must have x2 = p2. Finally, the guard x ∼ p1 − p2 becomes
x1 ∼ p1. Proposing a formal construction is among our future works.

7 Conclusion and Perspectives

In this paper, we proposed a first attempt at defining the expressiveness of
parametric timed automata, also introducing the notion of hidden parameters
to compare models with different numbers of parameters. When considering the
union over all parameter valuations of the untimed language, it turns out that
all subclasses of PTAs with integer parameters are not more expressive than
TAs. However, PTAs are strictly more expressive than TAs (from 1 parametric
clock and 1 non-parametric clock); extending PTAs with hidden parameters or
fully parametric constraints does not increase their expressiveness. In addition,
integer-valued or rational-valued parameters turn out to be equivalent.

When considering the set of accepting untimed words together with their as-
sociated parameter valuations, then subclasses of PTAs with integer parameters
have a varying expressiveness. An interesting result is that bounded L/U-PTAs
turn out to be incomparable with L/U-PTAs. In addition, hidden parameters
strictly extend the expressiveness of PTAs.

Future works We compared so far general formalisms; it now remains to be
studied what consequences on decidability the forms of guards and invariants
together with a fixed number of clocks and parameters may have: a ultimate
goal would be to unify the wealth of (un)decidability results from the literature
with all different syntactic contexts.

We showed that rational-valued parameters are not more expressive than
integer-valued parameters; our construction makes use of an extra parameter. It
remains to be shown whether this construction is optimal or not.

Finally, forbidding ε-transitions may also change our comparison of for-
malisms, as such silent transitions have an impact on the expressiveness of TAs
(see, e. g., [BPDG98]).
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Appendix

A Proof of Proposition 6

Proposition 6 (recalled). PTAs and AHV93-PTAs are equally expressive
w.r.t. the union of untimed languages.

Proof. The first direction (AHV93-PTAs are not more expressive than PTAs) is
trivial: any AHV93-PTA is a PTA.

Let us consider the other direction. We transform a PTA A into an equivalent
AHV93-PTA, that will contain two additional parametric clocks (x1, x2, that
can be existing clocks of the PTA) and several additional parameters (one per
different parametric linear term).

Consider a constraint of the form x ∼
∑

i βipi appearing in a guard or
an invariant. The idea is to create an additional parameter p, and ensure
that

∑
i βipi = p. We transform the equality

∑
i βipi = p into

∑
j βijpij =∑

k βikpik + p, where βij , βik ∈ N, that is we move to the right-hand side all
negative coefficients so that they become positive. Then, we create the gadget as
in Figure 4. Note that we make use of the shortcut x1 = βi×pi for βi consecutive
transitions with guard x1 = pi and resetting x1 (recall that all our coefficients
are now non-negative, since we moved the negative coefficient to the other side
of the equality).

This gadget consists in the product of two PTA parts, that synchronize as
follows: they start in their initial location (i. e., l1i and l2i respectively) with their
respective clock (x1 and x2) equal to 0. Then, we synchronize the PTA parts
through strong synchronization with renaming (via the a transitions), where the
transitions to the respective final location (i. e., l1f and l2f respectively) can only
be synchronized if both PTA parts are ready to take it together; note that they
must reach the location preceding the a transition exactly at the same time due
to the urgent invariants. We assume that a is a fresh label not used in the original
PTA, and that the a label is renamed into ε when synchronized.

Through this synchronization, this ensures that the duration of the upper
PTA part (

∑
j βijpij ) is equal to that of the lower PTA part (

∑
k βikpik + p).

All these transitions are labeled with ε. At the end of this gadget, we neces-
sarily have p =

∑
i βipi.

A′ is obtained from A as follows: first, we replace all occurrences in A of a
constraint x ∼ plt with x ∼ p (where p is the additional parameter created
when handling plt using the above construction). Second, we add before the
initial location of A all necessary gadgets in a sequential manner, and we reset
all clocks on the transition leading to the original initial location of A.

The initial location of A′ is the initial location of the first gadget (i. e., one in
the form of Figure 4). Since all transitions in the initial gadget are labeled with ε
(recall that we use a synchronization with renaming so that the a transitions
become ε when synchronized), the untimed language of A′ is not impacted. ut
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l1i . . . l1f
x1 = 0

x1 = 0

ε

x1 = βi1pi1
x1 := 0

ε

x1 = βi2pi2
x1 := 0

ε

x1 = βinpin
x1 := 0

ε a

l2i . . . l2f
x2 = 0

x2 = 0

ε

x2 = βj1pj1
x2 := 0

ε

x2 = βj2pj2
x2 := 0

ε

x2 = βjmpjm
x2 := 0

ε

x2 = p
x2 := 0

ε a

Fig. 4: Encoding a parametric constraint

B Proof of Proposition 7

Proposition 7 (recalled). PTAs and fpc-PTAs are equally expressive w.r.t.
the union of untimed languages.

Proof. Fpc-PTAs may also contain constraints of the form plt ∼ 0. The same
construction as in Proposition 6 can be used, except that in the PTA the con-
straint plt ∼ 0 is replaced with p ∼ 0. Technically, the constraint p ∼ 0 is not
allowed in an AHV93-PTA; it can be simulated using an extra clock equal to 0,
and to be compared with p. (Ensuring this clock is equal to 0 may require to
duplicate the current location and to add an ε-transition.) ut

Remark 4. The above construction requires two additional clocks and as many
additional parameters as the number of (different) parametric constraints in the
PTA. Clearly, our two additional clocks in the initial gadgets are not necessary,
as the other clocks used in the PTA can be used instead. However, for fpc-PTAs,
the clock used to simulate “p ∼ 0” is necessary in our construction; and so seem
to be the ε-transitions, the extra locations, and all extra parameters.

C Proof of Proposition 10

Proposition 10 (recalled). hL/U-PTAs are equally expressive with L/U-
PTAs w.r.t. the constrained untimed language.

Proof. ⊆ Let Ah = (Σ,L, l0, F,X, P, I, E) be an hL/U-PTA, where P = Pv]Pv.

Let vp0/∞ be the partial parameter valuation assigning 0 to any lower-bound

parameter of Pv and∞ to any upper-bound parameter of Pv (and not defined

for parameters in Pv). As an abuse of notation, we denote by vp0/∞(Ah) the

PTA where each occurrence of a parameter p ∈ Pv has been replaced with
vp0/∞(p). The obtained automaton is still parametric, as parameters in Pv

are left untouched; also note that the obtained PTA contains no hidden
parameter. We will show in the following that CUL(Ah) = CUL(vp0/∞(Ah)).
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– Let (w, v) ∈ CUL(Ah). Then there exists a valuation v′ of the hidden
parameters such that w is accepted by v′(v(Ah)). By the monotonicity
property ([HRSV02]) of the L/U-PTA v(Ah), replacing upper bounds in
the parameters assigned by v′ by +∞ and lower bounds by 0 gives a
TA in which w is still accepted: w is accepted by vp0/∞(v(Ah)). Finally,

the hidden and visible parameter sets being disjoint, this means w is
accepted by v(vp0/∞(Ah)), i. e., (w, v) ∈ CUL(vp0/∞(Ah)).

– (w, v) ∈ CUL(vp0/∞(Ah)). Then, as before, w is accepted by vp0/∞(v(Ah))

and v(Ah) is an L/U-PTA. Then using the bound of [HRSV02, Proposi-
tion 4.4], which we will call N here, we know that if v′ is the valuation
of hidden parameters that assigns 0 to lower bound parameters and N
to upper bound parameters then w is accepted by v′(v(Ah)), which in
turn means that (w, v) ∈ CUL(Ah).

⊇ The converse is trivial: let A be an L/U-PTA A = (Σ,L, l0, F,X, P, I, E).
Then A is in itself an hL/U-PTA with no hidden parameters, and there-
fore there exists an hL/U-PTA (itself) with the same constrained untimed
language as A.

ut
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