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Context: Formal Verification of Real-Time Systems

Critical systems involve timing constants and concurrency
I Bugs can be dramatic (risk of loss of lives or huge financial loss)

⇒ Need for formal verification

Problem: what if the system constants are uncertain or are not
yet known?

Solution: parametric verification
I Timing constants become parameters

Objective: derive values for these parameters ensuring the
absence of bug (usually under the form of a set of constraints)

Parametric Timed Automata (PTA) [Alur et al., 1993]

I Finite automata (sets of locations and actions) extended with:
I Clocks: real-valued variables evolving linearly
I Parameters: unknown constants

I Example: Coffee machine

idle sugar coffee

y ≤ p2

y ≤ p3

press?
x := 0
y := 0

y = p2
cup!

x ≥ p1
press?
x := 0

y = p3
coffee!

IMITATOR: Parameter Synthesis for Critical Systems

Input: a real-time system modeled by a network of PTA

Output: a constraint over the parameters guaranteeing the
system correctness (e.g., non-reachability of some unsafe state)

Several algorithms:
I Non-reachability synthesis
I Parametric language preservation
I Behavioral cartography

Try IMITATOR! [André et al., 2012]

I Entirely written in OCaml

I Graphical outputs (behaviors, parameter constraints, etc.)

I Large repository of benchmarks
I Asynchronous hardware circuits, scheduling problems, communication

protocols, train controllers. . . and more!

I Available for free under the GNU-GPL license

www.imitator.fr

What’s next?

I Improved optimizations to address scalability

I Distributed and multi-core algorithms
I An input language for IMITATOR dedicated to real-time systems

I Followed by a translation to PTA

A Case Study: The FMTV Challenge

I A problem proposed by Thales Research & Technology for the
video capture in an aerial video system (2014)

I A distributed video processing system (abstract view)
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I τ1, τ3 and τ4 are periodic tasks
I The exact value for each task’s period is constant but unknown

I P1 ∈ [40− 0.004 ms, 40 + 0.004 ms]
I P3 ∈ [40

3 −
1

150 ms, 40
3 + 1

150 ms]
I P4 ∈ [40− 0.004 ms, 40 + 0.004 ms]

I τ2 is triggered by the completion of τ1

I The FIFO buffer between τ3 and τ4 has a size n = 1 or n = 3

I Challenge: find the min/max end-to-end latency that a frame
may experience in this system

Our Solution: Parametric Analysis [André et al., 2015]

I Task periods are modeled as parameters
I E.g., P4 uncertain ∈ [40− 0.004 ms, 40 + 0.004 ms]

I Another parameter: the end-to-end latency E2E
I To focus on the E2E of an arbitrary frame (denoted as target)

I Some of the PTA modeling the system (for n = 1)
I The system status is initialized to be arbitrary so that the worst-case and

best-case scenarios for E2E will be included

camera0
WCET1 = ckT1T2

camera1WCET1 = ckT1T2

camera2WCET1 = ckT1T2 camera3
WCET1 = ckT1T2

T1T2
WCET1 + WCL2 ≥ ckT1T2

T1T2done

init buffer empty
buffer3,4 := 0

highest3,4 := 0

init buffer nonempty
buffer3,4 := 1

highest3,4 := 1

frame in 3 := 0 frame in 3 := 2

reg2,3 := 0

reg2,3 := 3

start

WCET1 + BCL2 ≤ ckT1T2
T2done

register2,3 := target

I PTA model for task τ4

T4wait

P4 uncertain ≥ ckT4

T4process nonempty

10 ≥ ckT4

T4end ok

0 = ckT4

P4 uncertain = ckT4
∧ buffer3,4 = 0

ckT4 := 0

P4 uncertain = ckT4
∧ buffer3,4 > 0

ckT4 := 0
read by T4()

10 = ckT4
∧

frame in 4 6= target

10 = ckT4 ∧ frame in 4 = target
∧ E2E = ckT1T2

ckT4 := 0

I The end-to-end latency results returned by IMITATOR
I E2E ∈ [63 ms, 145.008 ms] (for n = 1)
I E2E ∈ [63 ms, 225.016 ms] (for n = 3)

I Runtime costs: 7.908 s with n = 1 and 115.247 s with n = 3

Conclusion

I Solved a problem with uncertain timing constants using
parametric analysis, which turned out to be an efficient option
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