
IMITATOR
Formal Verification of Real-time Systems Under Uncertainty

Étienne André1 Giuseppe Lipari2 and Youcheng Sun3

1LIPN, CNRS UMR 7030, Université Paris 13, France
2CRIStAL – UMR 9189, Université de Lille, USR 3380 CNRS, France

3Scuola Superiore Sant’Anna, Pisa, Italy

Context: Formal Verification of Real-Time Systems

Critical systems involve timing constants and concurrency
I Bugs can be dramatic (risk of loss of lives or huge financial loss)

⇒ Need for formal verification

Problem: what if the system constants are uncertain or are not
yet known?

Solution: parametric verification
I Timing constants become parameters

Objective: derive values for these parameters ensuring the
absence of bug (usually under the form of a set of constraints)

Parametric Timed Automata (PTA) [Alur et al., 1993]

I Finite automata (sets of locations and actions) extended with:
I Clocks: real-valued variables evolving linearly
I Parameters: unknown constants

I Example: Coffee machine

idle sugar coffee

y ≤ p2

y ≤ p3

press?
x := 0
y := 0

y = p2
cup!

x ≥ p1
press?
x := 0

y = p3
coffee!

IMITATOR: Parameter Synthesis for Critical Systems

Input: a real-time system modeled by a network of PTA

Output: a constraint over the parameters guaranteeing the
system correctness (e.g., non-reachability of some unsafe state)

Several algorithms:
I Non-reachability synthesis
I Parametric language preservation
I Behavioral cartography

Try IMITATOR! [André et al., 2012]

I Entirely written in OCaml

I Graphical outputs (behaviors, parameter constraints, etc.)

I Large repository of benchmarks
I Asynchronous hardware circuits, scheduling problems, communication

protocols, train controllers. . . and more!

I Available for free under the GNU-GPL license

www.imitator.fr

What’s next?

I Improved optimizations to address scalability

I Distributed and multi-core algorithms
I An input language for IMITATOR dedicated to real-time systems

I Followed by a translation to PTA

A Case Study: The FMTV Challenge

I A problem proposed by Thales Research & Technology for the
video capture in an aerial video system (2014)

I A distributed video processing system (abstract view)

τ1 τ2

register
τ3

buffer
τ4

sync

CPU1 CPU2 CPU3 CPU4

I τ1, τ3 and τ4 are periodic tasks
I The exact value for each task’s period is constant but unknown

I P1 ∈ [40− 0.004 ms, 40 + 0.004 ms]
I P3 ∈ [40

3 −
1

150 ms, 40
3 + 1

150 ms]
I P4 ∈ [40− 0.004 ms, 40 + 0.004 ms]

I τ2 is triggered by the completion of τ1

I The FIFO buffer between τ3 and τ4 has a size n = 1 or n = 3

I Challenge: find the min/max end-to-end latency that a frame
may experience in this system

Our Solution: Parametric Analysis [André et al., 2015]

I Task periods are modeled as parameters
I E.g., P4 uncertain ∈ [40− 0.004 ms, 40 + 0.004 ms]

I Another parameter: the end-to-end latency E2E
I To focus on the E2E of an arbitrary frame (denoted as target)

I Some of the PTA modeling the system (for n = 1)
I The system status is initialized to be arbitrary so that the worst-case and

best-case scenarios for E2E will be included

camera0
WCET1 = ckT1T2

camera1WCET1 = ckT1T2

camera2WCET1 = ckT1T2 camera3
WCET1 = ckT1T2

T1T2
WCET1 + WCL2 ≥ ckT1T2

T1T2done

init buffer empty
buffer3,4 := 0

highest3,4 := 0

init buffer nonempty
buffer3,4 := 1

highest3,4 := 1

frame in 3 := 0 frame in 3 := 2

reg2,3 := 0

reg2,3 := 3

start

WCET1 + BCL2 ≤ ckT1T2
T2done

register2,3 := target

I PTA model for task τ4

T4wait

P4 uncertain ≥ ckT4

T4process nonempty

10 ≥ ckT4

T4end ok

0 = ckT4

P4 uncertain = ckT4
∧ buffer3,4 = 0

ckT4 := 0

P4 uncertain = ckT4
∧ buffer3,4 > 0

ckT4 := 0
read by T4()

10 = ckT4
∧

frame in 4 6= target

10 = ckT4 ∧ frame in 4 = target
∧ E2E = ckT1T2

ckT4 := 0

I The end-to-end latency results returned by IMITATOR
I E2E ∈ [63 ms, 145.008 ms] (for n = 1)
I E2E ∈ [63 ms, 225.016 ms] (for n = 3)

I Runtime costs: 7.908 s with n = 1 and 115.247 s with n = 3

Conclusion

I Solved a problem with uncertain timing constants using
parametric analysis, which turned out to be an efficient option

References

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993).
Parametric real-time reasoning.
In STOC, pages 592–601. ACM.

André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012).
IMITATOR 2.5: A tool for analyzing robustness in scheduling problems.
In FM, volume 7436 of Lecture Notes in Computer Science, pages 33–36. Springer.

André, É., Lipari, G., and Sun, Y. (2015).
Verification of two real-time systems using parametric timed automata.
In WATERS.

www.imitator.fr
Credits: IMITATOR logo: “tippender Affe” by KaterBegemot (CC-by-sa) // Miracle on the Hudson: Janis Krums (CC-by) // Deepwater Horizon Offshore Drilling Platform on Fire: ideum (CC-by-sa) // IMITATOR outputs // AVS picture by Thales

www.imitator.fr
www.imitator.fr

