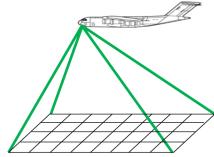

IMITATOR Formal Verification of Real-time Systems Under Uncertainty

Étienne André¹ Giuseppe Lipari² and Youcheng Sun³

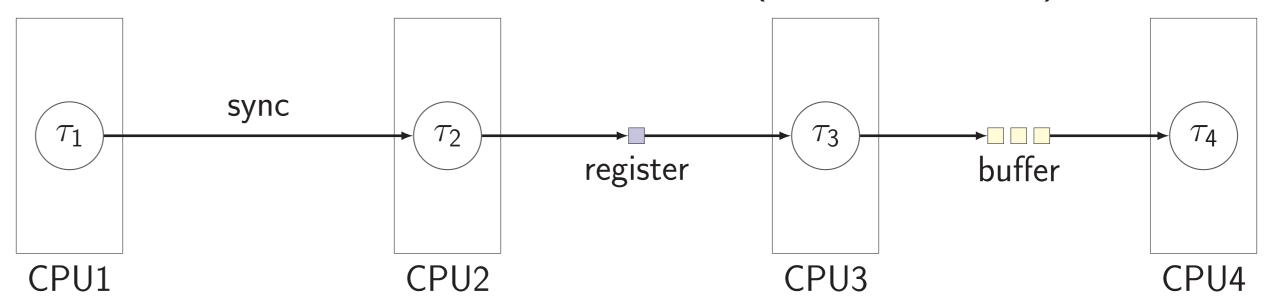
¹LIPN, CNRS UMR 7030, Université Paris 13, France ²CRIStAL – UMR 9189, Université de Lille, USR 3380 CNRS, France ³Scuola Superiore Sant'Anna, Pisa, Italy

Context: Formal Verification of Real-Time Systems

Critical systems involve timing constants and concurrency Bugs can be dramatic (risk of loss of lives or huge financial loss)



 \Rightarrow Need for formal verification

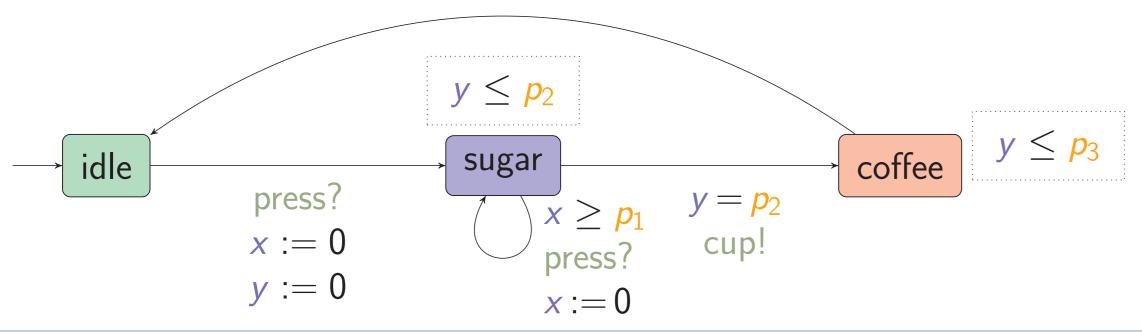

Problem: what if the system constants are uncertain or are not yet known?

A Case Study: The FMTV Challenge

► A problem proposed by Thales Research & Technology for the video capture in an aerial video system (2014)

► A distributed video processing system (abstract view)

- Solution: parametric verification
- Timing constants become parameters


Objective: derive values for these parameters ensuring the absence of bug (usually under the form of a set of constraints)

Parametric Timed Automata (PTA) [Alur et al., 1993]

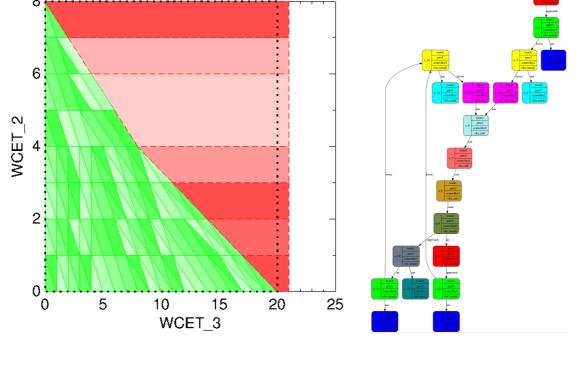
- ► Finite automata (sets of locations and actions) extended with: Clocks: real-valued variables evolving linearly
- Parameters: unknown constants

Example: Coffee machine

 $y = p_3$ coffee!

- $\triangleright \tau_1$, τ_3 and τ_4 are periodic tasks ► The exact value for each task's period is constant but unknown $P1 \in [40 - 0.004 \,\mathrm{ms}, 40 + 0.004 \,\mathrm{ms}]$ ► $P3 \in \left[\frac{40}{3} - \frac{1}{150} \text{ ms}, \frac{40}{3} + \frac{1}{150} \text{ ms}\right]$ $P4 \in [40 - 0.004 \, \text{ms}, 40 + 0.004 \, \text{ms}]$
- $ightarrow au_2$ is triggered by the completion of au_1
- ► The FIFO buffer between τ_3 and τ_4 has a size n = 1 or n = 3
- Challenge: find the min/max end-to-end latency that a frame may experience in this system

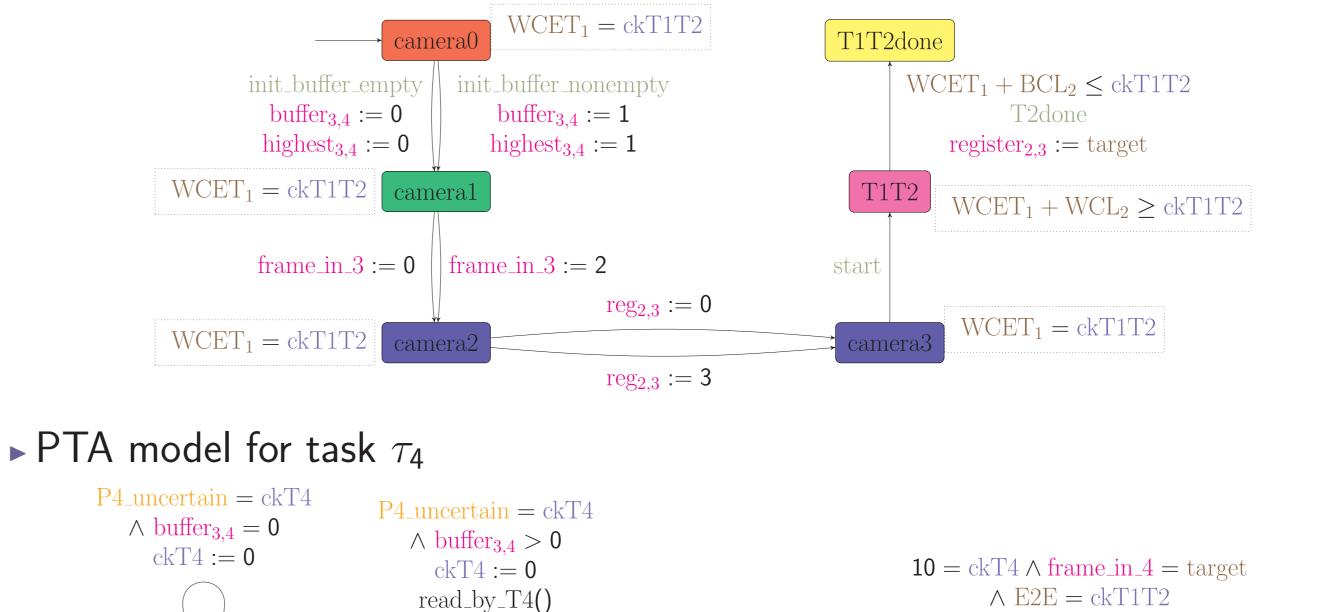
Our Solution: Parametric Analysis [André et al., 2015]


- ► Task periods are modeled as parameters
- ► E.g., $P4_uncertain \in [40 0.004 \text{ ms}, 40 + 0.004 \text{ ms}]$
- ► Another parameter: the end-to-end latency E2E ► To focus on the E2E of an arbitrary frame (denoted as target)
- Some of the PTA modeling the system (for n = 1)
 - ► The system status is initialized to be arbitrary so that the worst-case and best-case scenarios for E2E will be included

IMITATOR: Parameter Synthesis for Critical Systems

Input: a real-time system modeled by a network of PTA **Output**: a constraint over the parameters guaranteeing the system correctness (e.g., non-reachability of some unsafe state)

Several algorithms:


- Non-reachability synthesis
- Parametric language preservation Behavioral cartography

Try IMITATOR! [André et al., 2012]

Entirely written in OCaml

- Graphical outputs (behaviors, parameter constraints, etc.)
- Large repository of benchmarks
 - Asynchronous hardware circuits, scheduling problems, communication protocols, train controllers... and more!

1'4process_nonempty

 $10 \ge ckT4$

ckT4 := 0

T4end_ok

 $\mathbf{0} = \mathrm{ckT4}$

The end-to-end latency results returned by IMITATOR ▶ $E2E \in [63 \text{ ms}, 145.008 \text{ ms}]$ (for n = 1) ▶ $E2E \in [63 \text{ ms}, 225.016 \text{ ms}]$ (for n = 3)

10 = ckT4

 $frame_in_4 \neq target$

Runtime costs: 7.908 s with n = 1 and 115.247 s with n = 3

Conclusion

Γ4wait

 $P4_{uncertain} \ge ckT4$

Available for free under the GNU-GPL license

www.imitator.fr

What's next?

- Improved optimizations to address scalability
- Distributed and multi-core algorithms ► An input language for IMITATOR dedicated to real-time systems Followed by a translation to PTA

Solved a problem with uncertain timing constants using parametric analysis, which turned out to be an efficient option

References

■ Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC, pages 592-601. ACM.

André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012). IMITATOR 2.5: A tool for analyzing robustness in scheduling problems. In FM, volume 7436 of Lecture Notes in Computer Science, pages 33-36. Springer. ■ André, É., Lipari, G., and Sun, Y. (2015).

Verification of two real-time systems using parametric timed automata. In WATERS.

Credits: IMITATOR logo: "tippender Affe" by KaterBegemot (CC-by-sa) // Miracle on the Hudson: Janis Krums (CC-by) // Deepwater Horizon Offshore Drilling Platform on Fire: ideum (CC-by-sa) AVS picture by Thales