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LIPN, CNRS, Villetaneuse, France

Abstract—Parameter synthesis for timed systems aims at
deriving parameter valuations satisfying a given property. In
this paper we target concurrent systems; it is well known that
concurrency is a source of state-space explosion, and partial order
techniques were defined to cope with this problem. Here we use
partial order semantics for parametric time Petri nets as a way to
significantly enhance the result of an existing synthesis algorithm.
Given a reference parameter valuation, our approach synthesizes
other valuations preserving, up to interleaving, the behavior of
the reference parameter valuation. We show the applicability of
our approach using acyclic asynchronous circuits.

I. INTRODUCTION

Parametric verification of timed systems allows designers
to model a system incompletely specified, or subject to future
changes, by allowing the use of parameters, i.e., unknown
constants. The parameter synthesis problem aims at deriving a
set of parameter valuations which preserve some property (e.g.,
expressed in some temporal logics). Popular formalisms to
model and verify parametric concurrent timed systems include
parametric timed automata (PTA) [AHV93] and parametric
time Petri nets (PTPNs) [TLR09]. Parameter synthesis for PTA
or PTPNs was tackled with respect to safety or unavoidability
of some states [AHV93], [AS11], [JLR15], or the satisfiability
of temporal logic formulas (e.g., [BR07]). All these problems
are undecidable in general, with only one non-trivial exception:
the emptiness of the set of parameter valuations for which
a state is reachable, or for which there exists an infinite
accepting run, is decidable for a subclass of PTA called
L/U-PTA [BL09]. The same holds for L/U-PTPNs [TLR09].
Applications include the verification of asynchronous circuits
with parametric propagation delays using octahedra [CC05]
and PTA [CEFX09].

In [ACEF09], [APP13], we proposed the inverse
method IM: given a PTPN and a reference parameter valu-
ation v0, IM synthesizes other parameter valuations around v0
in the form of a linear parameter constraint K such that, for any
valuation satisfying K, the time-abstract behavior of the sys-
tem is identical to the one of v0. Among several applications,
this constraint helps to quantify the system robustness w.r.t.
infinitesimal variations of the timing constants. The inverse
method was also used to improve the latency in circuit design
(e.g., [CEFX09], [AS11]).
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Figure 1: An asynchronous circuit

In this paper we focus on systems featuring both concurrent
behaviors and real-time constraints. Applying formal methods
to these systems is a notoriously difficult problem. A high
degree of concurrency between the various components of
the system often leads to the state-space explosion problem,
thus hindering exhaustive verification. A way to alleviate this
problem is to consider partial order semantics, as opposed
to a sequential view to the executions of the system. But in
the context of real-time distributed systems, one cannot rely
on a smooth concurrency theory like in the untimed, asyn-
chronous case. In particular, the nice independency relations
used in Mazurkiewicz traces do not work: actions performed
on distinct machines may not commute freely because they
are ordered by their occurrence time. This explains that little
literature exists on partial-order reduction techniques for time
Petri nets [PP01], [VP99], [YS97] and for networks of timed
automata [BJLY98], [Min99], [LNZ05], [NQ06]. Concerning
partial order semantics and unfoldings, we can cite [AL00],
[CJ06], [TGJ+10] for time Petri nets and [CCJ06], [BHR06]
for networks of timed automata.

Here we use partial order semantics to enhance the quality
of the output of the inverse method IM, so that the algorithm
outputs a larger set of parameter valuations. Consider the
asynchronous circuit of Fig. 1, where the propagation times
of every logic gate are the parameters of the system. Observe
that the gates N1 and N2 are structurally concurrent. The
circuit is studied in a precise scenario where signal I1 falls
and signal I2 rises, which causes N1 to rise (N↗1 ) and N2

to fall (N↘2 ). Depending on the timing delays of the circuit,
Q may rise. Assume now a reference parameter valuation v0
for which Q never rises, while forcing the following ordering:
N↗1 then N↘2 . IM will output a constraint on the parameters
which preserves the sequential behavior of the circuit, i.e. N↗1
then N↘2 . But, since gates N1 and N2 operate concurrently,
the ordering of their propagation delays is irrelevant for the
overall behavior of the circuit, seen as a partial order execution.
In other words, IM preserves here the temporal ordering fixed
by v0, while preserving the partial order behavior would have
been enough to prevent Q from rising.
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Figure 2: A safe time Petri net.

Contribution: In this paper, we propose an approach called
IMPO that, given a PTPN and a reference parameter valuation,
synthesizes further parameter valuations for which the partial
order runs are the same as for the reference valuation. We show
that IMPO significantly enhances the result of IM, by relaxing
the resulting constraint. This is of high interest when dealing
with the parametric verification of asynchronous circuits, since
a relaxed constraint will improve the allowed latencies in
circuit design without leading to global timing violations. Our
approach so far only deals with acyclic systems (or, in a variant
of our approach, with a limited dose of cyclicity): we do
not consider it as a significant drawback when dealing with
circuit design, since many circuits are acyclic, and circuits in a
cyclic environment are often verified using scenarios involving
a limited number of clock cycles (see, e.g., [CEFX09]).

Outline: In Section II, we define time Petri nets and their
parametric extension; we then recall the inverse method in
Section III. In Section IV, we introduce our partial order
semantics for TPN. Then, we present our parameter synthesis
method IMPO for preserving partial order runs in Section V;
we also present a variant IMPO’ of the method that addresses
limited cyclic systems. We illustrate our method in Section VI
by applying it to a scenario of the asynchronous circuit of
Fig. 1, and we apply IMPO’ to a circuit with a loop. We
conclude in Section VII.

II. PARAMETRIC TIME PETRI NETS

In this section, we first define (non-parametric) time Petri
nets and their semantics (Section II-A); then we give notations
for parametric models (Section II-B).

A. Time Petri Nets

We consider only safe time Petri nets (TPNs), i.e. TPNs
where there is never more than one token in a place.

Definition 1 (Time Petri Net (TPN) [MF76]). A time Petri net
is a tuple (P, T, pre, post , efd , lfd ,M0) where P and T are
finite sets of places and transitions respectively; pre and post
map each transition t ∈ T to its (nonempty) preset denoted
•t

def
= pre(t) ⊆ P and its (possibly empty) postset denoted

t•
def
= post(t) ⊆ P ; efd : T → Q+ and lfd : T → Q+ ∪ {∞}

associate the earliest firing delay efd(t) and latest firing delay
lfd(t) with each transition t; M0 ⊆ P is the initial marking.

A time Petri net is represented as a graph with two types of
nodes: places (circles) and transitions (rectangles). The interval
[efd(t), lfd(t)] is written near each transition (see Fig. 2).

State: A state of a safe time Petri net is a triple (M, dob, θ),
where M ⊆ P is the marking, θ ∈ R+ is the current time and
dob : M → R+ associates a date of birth dob(p) ∈ R+

with each token (marked place) p ∈ M . The initial state is
(M0, dob0, 0) and initially, all the tokens carry the date 0 as
date of birth: for all p ∈M0, dob0(p)

def
= 0.

A transition t ∈ T is enabled in a marking M if •t ⊆M .
The set of transitions enabled in M is denoted En(M). Given
a state (M, dob, θ) and a transition t enabled in M , we define
the date of enabling of t as the date of birth of the youngest
token in its input places: doe(t)

def
= maxp∈•t dob(p).

Again, we consider only safe time Petri nets, that is we
assume that if a transition t ∈ T is enabled in a marking
M , then (M \ •t) ∩ t• = ∅. Moreover, we require that even
the untimed support is safe, i.e., the TPN remains safe if one
replaces all the earliest firing delays by 0 and all the latest
firing delays by ∞.

Time delay: The TPN can wait until time θ′ ≥ θ provided
no enabled transition overtakes its maximum delay:

∀t ∈ En(M) θ′ ≤ doe(t) + lfd(t) .

The reached state is (M, dob, θ′).

Discrete action: Transition t can fire from state (M, dob, θ)
if t is enabled (t ∈ En(M)) and t has reached its minimum
firing delay (θ ≥ doe(t)+efd(t)). Firing transition t from state
(M, dob, θ) leads to state (M ′, dob′, θ), with M ′ def

= (M \ •t)∪
t• and dob′(p)

def
= dob(p) if p ∈ M \ •t and dob′(p)

def
= θ′ if

p ∈ t• (by assumption the two cases are exclusive).

Timed words: When representing an execution, we often
forget the information about the intermediate states and delays,
and remember only the sequence ((t1, θ1), . . . , (tn, θn)) of
transitions with their firing dates. This representation is called
a timed word. The empty timed word is denoted by ε. Given a
timed word ((t1, θ1), . . . , (tn, θn)), its associated sequence is
the time-abstract word (t1, . . . , tn). Given a TPN N , we denote
by Sequences(N) the set of maximal1 sequences associated
with all timed words of N . In the following, we will refer to
Sequences(N) as the set of sequences of N .

B. Parametric Time Petri Nets

Given a finite set Λ = {λ1, . . . , λj} of parameters (i.e.,
unknown constants), for some j ∈ N, a parameter valuation
v is a function v : Λ → R+ assigning with each parameter a
value in R+. For technical convenience, we extend the function
v to linear terms over Q+ ∪ Λ ∪ {∞}.

A constraint over Λ is a Boolean combination (disjunctions
and conjunctions) of linear inequalities over Λ ∪ Q+ with
integer coefficients.

A parameter valuation v satisfies a constraint K over the
parameters, denoted by v |= K, if the expression obtained
by replacing each parameter λ in K with v(λ) evaluates to
true. We consider true as a constraint over the parameters Λ,
corresponding to the set of all possible values for Λ.

Parametric time Petri nets (PTPNs) are a parametric exten-
sion of TPNs, where the temporal bounds of the transitions can
either be rational numbers or parameters [TLR09], [APP13].2

1A sequence is maximal if it is not the prefix on any other sequence.
2In fact, we could be more permissive by allowing, for each bound, a

(convex) linear term over Λ ∪ Q+. We stick to Q+ ∪ Λ ∪ {∞} for sake
of simplicity, but all our results naturally extend to the case of linear terms.
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Figure 3: An example of a PTPN

Definition 2 (PTPN). A parametric time Petri net (PTPN) is a
tuple N def

= (P, T,Λ, pre, post , pefd , plfd ,M0,K0) where i) P
and T are non-empty, disjoint sets of places and transitions
respectively, ii) Λ

def
= {λ1, . . . , λj} is a finite set of parameters,

iii) pre and post map each transition t ∈ T to its (nonempty)
preset denoted •t def

= pre(t) ⊆ P and its (possibly empty)
postset denoted t•

def
= post(t) ⊆ P ; iv) functions pefd : T →

Q+ ∪ Λ and plfd : T → Q+ ∪ Λ ∪ {∞} and associate the
earliest firing delay pefd(t) and latest firing delay plfd(t) with
each transition t, v) M0 ⊆ P is the initial marking, and vi) K0

is the initial constraint over Λ.

K0 is a constraint over Λ giving the initial domain of the
parameters, and must at least specify that the minimum bounds
of the firing intervals are lower than or equal to the maximum
bounds. Additional linear constraints may of course be given.
Fig. 3 shows a PTPN, where the bounds of all firing intervals
happen to be parametric. The initial constraint K0 would be
of the form (a0 ≤ b0)∧(a1 ≤ b1)∧(a2 ≤ b2)∧(a3 ≤ b3)∧K,
for some constraint K.

Definition 3 (JN Kv). Given a PTPN N def
= (P, T,Λ, pre, post ,

pefd , plfd ,M0,K0) and a valuation v : Λ → R+, we denote
by JN Kv the (non-parametric) TPN where each occurrence of
a parameter has been replaced by its constant value as in v.
Formally, JN Kv is the TPN (P, T, pre, post , efd , lfd ,M0) with
efd(t)

def
= v(pefd(t)) and lfd(t)

def
= v(plfd(t)) for every t ∈ T .

III. PRESERVING TIME-ABSTRACT RUNS USING IM

In [ACEF09], we proposed the inverse method IM, that
considers a system modeled using a network of PTA, and
synthesizes a constraint by taking advantage of a reference
parameter valuation. IM was then extended to PTPNs [APP13]:
Given a PTPN N and a reference parameter valuation v0,
IM generalizes v0 by computing a constraint K over Λ such
that, for any v satisfying K, the set of maximal sequences of
JN Kv is included in the one of JN Kv0 . This result has several
applications. First, it allows designers to replace some system
components while keeping the system correctness: changing
a parameter valuation with another one that satisfies K will
preserve (some of) the admissible behaviors of JN Kv0 , and
will prevent any behavior not allowed in JN Kv0 . Second, the
inverse method gives a measure of the system robustness (see,
e.g., [Mar11]), i.e., it quantifies the admissible variability of
the timing delays in the model that will still preserve the

system correctness: the constraint K gives a precise measure
of the variations of the parameters with respect to one an-
other [APP13].

Theorem 1 ([APP13]). Let N be a PTPN and v0 be a
parameter valuation. Assume IM terminates with result K.
Then i) v0 |= K, and ii) for all v |= K, Sequences(JN Kv) ⊆
Sequences(JN Kv0).

IM explores a set of symbolic states of the input PTPN.
This parametric semantics (not given here for sake of concise-
ness, but available in [TLR09], [APP13]) considers symbolic
states made of a marking and a constraint over parameters
and parametric firing times, i.e., variables similar to clocks
in PTA [AHV93], with the exception that they decrease with
time whereas PTA clocks increase. IM maintains a parametric
constraint K (initially set to true), and performs a breadth-
first exploration of this symbolic state space. Then, whenever
a v0-incompatible state is met (i.e., the constraint associated
to which is not satisfied by v0), IM projects this constraint
onto Λ (i.e., eliminates the parametric firing times), selects one
v0-incompatible inequality, and adds its negation to K. When
a fixpoint is reached (i.e., no new states can be explored), the
algorithm returns K. Additional details on IM can be found
in [APP13].

Remark 1. In fact, the method we refer to as IM in this paper
is not exactly the method presented in [ACEF09], [APP13],
but rather a variant called “IMK” introduced in [AS11].
The original IM [ACEF09], [APP13] does not return K but
the intersection of the projection onto Λ of the constraints
associated with all symbolic states. This latter operation is
needed to ensure that i) deadlocks not possible in JN Kv0
cannot occur for any v |= K, and ii) the sets of maximal
sequences of JN Kv0 and JN Kv are the same. Different from TA,
in time Petri nets there is no need to return the intersection of
all states to avoid deadlocks: a deadlock for v implies that no
transition is enabled at the end of the sequence, and then this
deadlock exists also for v0. Here, we focus on IMK rather than
the original IM for two reasons. First, preventing deadlock
absent from JN Kv0 is ensured using IMK only (which is not
the case in TA). Second, proving that the constraint returned by
our approach (in Section V) is strictly better than the inverse
method is easier to show using IMK rather than IM. Note that,
since the result of IMK is always weaker (i.e., corresponding
to a larger set of parameter valuations) than IM, showing that
the constraint returned by our approach is weaker than the
one output by IMK also implies that it outperforms IM. In the
following, we refer to IMK as IM.

Example 1. Consider the PTPN N depicted in Fig. 3. Con-
sider v0 such that a0 = 0, b0 = 3, a1 = 0, b1 = 1, a2 = 2,
b2 = 3, a3 = 1, b3 = 2. In JN Kv0 , transition t0 can never fire,
because t1 must fire before 1 time unit, whereas transition t2
can only fire after at least 2 time units. More precisely, the
only sequence of transitions allowed in JN Kv0 is t1, then t2
and then t3, after which the system cannot evolve.

Applying IM to N and v0 gives (besides ai ≤ bi for 0 ≤
i ≤ 3) the constraint b1 < a2. Intuitively, this requires t1 to
fire strictly before t2.
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IV. PARTIAL ORDER SEMANTICS

The inverse method allows only valuations v such that all
the sequences of JN Kv are also sequences of JN Kv0 . This
can be seen as too rigid. Consider again the PTPN of Fig. 3.
Because the initial parameter valuation v0 is such that b1 < a2,
the constraint output by IM forces this ordering and allows only
valuations for which the only sequence (t1, t2, t3) is possible,
like in JN Kv0 .

With other parameter valuations (recall that we assume
ai ≤ bi for i ∈ {1, 2, 3}, to avoid further deadlocks), three
other maximal sequences appear, viz., (t2, t1, t3), (t2, t3, t1)
and (t2, t3, t0). It is reasonable that a parameter synthesis
method prevents valuations of the parameters which allow the
last sequence, because it fires t0 which differs qualitatively
from the reference behavior. But the other sequences do not fire
any undesired transition; they just reorder the firing of t1, t2
and t3. Observing carefully the model, one even remarks that
t1 is actually concurrent to t2 and t3, and that the sequences
(t2, t1, t3) and (t2, t3, t1) are simply obtained by changing
the index where t1 is inserted in the sequence (t2, t3). For
many applications, this change can be considered very minor
and does not affect the correct behavior of the system. In
the case of the asynchronous circuit of Fig. 1, a designer
may want to replace a hardware gate with another one that
has a different latency, provided the new system respects the
correctness condition that the output signal Q never rises.

In this section, we formalize this intuition using partial
order semantics for TPNs. In Section V, we will propose an
alternative to IM which relaxes the inverse method to output
a weaker constraint, i.e., a set of parameter valuations larger
than in the original IM. The new method does not guarantee the
preservation of the sequential behavior (sequences) but only of
the partial order behavior of the system.

A. Partial Order Representation of Runs: Processes

Processes are a way to represent an execution of a (time)
Petri net so that the actions (called events) are not totally
ordered like in timed words: in the context of untimed Petri
nets, only causality orders the events. For time Petri nets, the
firing time of each event can still be represented together with
the event, but the partial order causality indicates the structural
dependencies between events due to creation and consumption
of tokens.

An execution of a TPN N is represented as a labeled
acyclic Petri net where every transition (called event and
labeled by a transition t of N and a firing date) stands for
an occurrence of t, and every place (called condition and
labeled by a place p of N ) refers to a token produced by
an event in place p or to a token of the initial marking. The
arcs represent the creation and consumption of tokens. Because
fresh conditions are created for the tokens created by each
event, every condition has either no input arc (if it is an initial
condition) or a single input arc, coming from the event that
created the token. Symmetrically, each place has no more than
one output arc since a token can be consumed by only one
event in an execution.

Processes of a safe time Petri net will be defined as
the image of a mapping Π from its timed words to their

p1 p2

p3 p4

p1 p2

p3

e1 a(3) e2 c(3)

e3 b(5)

e4 a(9)

Figure 4: A representation of a process of the TPN of Fig. 2.
The dates of the events are in brackets. Technically, the
initial condition labeled p1 is coded as (⊥, p1), the event e1
(labeled a) is coded as ({(⊥, p1)}, a), its output condition
is coded as (e1, p3), event e2 as ({(⊥, p2)}, c), and e3 as
({(e1, p3), (e2, p4)}, b).

partial order representation as processes. These processes are
those described in [AL00]. Fig. 4 shows a process of the
TPN of Fig. 2, which is the image by Π of the timed word
((a, 3), (c, 3), (b, 5), (a, 9)).

1) Coding of Events and Conditions: We use a canonical
coding like in [Eng91]. This coding is illustrated in Fig. 4.
Each process will be a set E of pairs (e, θ(e)), where e is
an event and θ(e) ∈ R+ is its firing date. We denote EE (or
simply E) the set of events in E . Each event e is itself a pair
(•e, τ(e)) that codes an occurrence of the transition τ(e) in
the process. The preset •e is a set of pairs b def

= (•b, π(b)).
Such a pair is called condition and refers to the token that
has been created by the event •b in the place π(b). We say
that the event e def

= (•e, τ(e)) consumes the conditions in •e.
Symmetrically the set {(e, p) | p ∈ τ(e)

•} of conditions that
are created by e is denoted e•. A virtual initial event ⊥ is used
as preset for initial conditions. By convention ⊥• def

= {⊥}×M0

and θ(⊥)
def
= 0.

We summarize the coding of events by defining the event
domain DN of a TPN N . The set DN overapproximates the
set of all events generated by the behavior of N .

Definition 4 (DN ). We define DN as the smallest set such that
for every B ⊆

⋃
e∈DN∪{⊥} e

• and every t ∈ T , if π(B) =
•t, then the event (B, t) ∈ DN . Notice that this inductive
definition is initialized by the fact that the initial conditions
are in

⋃
e∈DN∪{⊥} e

•.

For every set E ⊆ DN of events, we denote by ↑(E) the set⋃
e∈E∪{⊥} e

• \
⋃
e∈E

•e of conditions that have been created
by an event of E, and not consumed by any of them. For a
process E , ↑(EE) represents the set of conditions that remain
at the end of the process.

Definition 5. The function Π which assigns to each timed
word ((t1, θ1), . . . , (tn, θn)) of a safe TPN N its partial-order
representation, is defined as follows:

• Π(ε)
def
= ∅

• Π
((

(t1, θ1), . . . , (tn+1, θn+1)
)) def

= E ∪ {(e, θn+1)},

4
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where E def

= Π
((

(t1, θ1), . . . , (tn, θn)
))

and

the event e def
= ({b ∈ ↑(EE) | π(b) ∈ •tn+1}, tn+1)

represents the last firing of the sequence.

A set E ⊆ DN ×R+ of dated events is a process of a TPN N
iff it is the image by Π of a timed word of N .

For every condition b ∈ ↑(E), the date of birth of the token
in place p = π(b) after a process E is dobE(p)

def
= θ(•b). This

allows us to define the state that is reached after a process E
of N as: RS (E)

def
= (π(↑(E)), dobE ,maxe∈E∪{⊥} θ(e)).

Finally, we define the relation → on the events as:
e→ e′ ⇐⇒ e• ∩ •e′ 6= ∅. The reflexive transitive closure
→∗ of → is called the causality relation. Two events of a
process that are not causally related are called concurrent. For
all event e, we denote dee def

= {f ∈ DN | f →∗ e}, and for all
set E of events, dEe def

=
⋃
e∈Edee.

B. Characterization of Processes

Since timed processes are defined as sets of dated events
(the events being taken from the set DN defined above), a
natural problem is to decide whether a set of dated events
E ⊆ DN ×R+ is a process. The answer is nontrivial and was
treated in [AL00]. We give a summary here.

The following lemma concerns only the structural relations
between the events in E .

Lemma 1. Let N be a safe extended TPN. For every process E
of N , the set E of events in E is a subset of DN and satisfies:

• dEe = E (i.e., E is causally closed) and

• @e, e′ ∈ E e 6= e′ ∧ •e ∩ •e′ 6= ∅ (E is said conflict
free).

Proof: When a new event e is added to the set E of events
of a process (see Definition 5), all the conditions in •e are final
conditions of E. This implies that the causal predecessors of
e are in E and that e is not in conflict with any event of E.
We conclude by induction on the size of the process: if E is
causally closed and conflict free, then E ∪ {e} also is.

Definition 6 (Abstract process, Processes(N)). In the follow-
ing, a causally closed, conflict free set E of events is called an
abstract process. Notice that the time constraints of the TPN
do not play any role here. Therefore we speak of the abstract
processes of a PTPN N as well.

An abstract process E is feasible for an instantiated TPN
N if there exists a process E of N such that E = EE .
We denote by Processes(N) the set of maximal (w.r.t. set
inclusion) abstract processes which are feasible for N .

The following lemma characterizes the possible firing dates
for the events of an abstract process under the time constraints
of a TPN N .

Lemma 2 (Possible dates for an abstract process). Let N be a
safe extended TPN. Let E ⊆ DN×R+ be a set of dated events
such that the set E of events in E is an abstract process. Then
E is a process of N iff:

• Firing delays are met: ∀e ∈ E
efd(τ(e)) ≤ θ(e)− doe(e) ≤ lfd(τ(e))

where doe(e)
def
= maxb∈•e θ(

•b) is the date when the event
e was enabled;

• Denote EnabledEvents(E) the set of events e ∈ DN \E
that were eventually enabled during the process (•e ⊆⋃
f∈E∪{⊥} f

•) but did not fire because they were disabled
by an event f ∈ E such that •e ∩ •f 6= ∅. It is required
that these events did not overtake their latest firing delay
(notice that this concerns events which are not in E):
∀e ∈ EnabledEvents(E) dod(e) ≤ doe(e) + lfd(τ(e))

where dod(e)
def
= min{θ(f) | f ∈ E ∧ •f∩•e 6= ∅} is the

date when e was disabled (because an event f consumed
one condition in •e);

• Events enabled at the end of the process did not overtake
their latest firing delay:
∀e ∈ DN

•e ⊆ ↑(E) =⇒ θend ≤ doe(e) + lfd(τ(e))

where θend
def
= maxf∈E∪{⊥} θ(f) is the date that is

reached at the end of the process.

The proof can be found in [AL00].

Let E = {e1, . . . , en} ⊆ DN be a causally closed, conflict
free set of events of a TPN N . The conditions in Lemma 2 can
be summarized in the following constraint Kθ

E on the variables
θ(e1), . . . , θ(en). The result is that a valuation that assigns
values θ1, . . . , θn ∈ R+ to the variables θ(ei), satisfies Kθ

E iff
{(e1, θ1), . . . , (en, θn)} is a process of N .

Definition 7 (Kθ
E). We denote Kθ

E the constraint on the θ(e),
e ∈ E, defined as the conjunction of the following:

•
∧
e∈E efd

(
τ(e)

)
≤ θ(e)− doe(e) ≤ lfd

(
τ(e)

)
•
∧
e∈EnabledEvents(E) dod(e) ≤ doe(e) + lfd

(
τ(e)

)
•
∧
e∈DN ,•e⊆↑(E) θend ≤ doe(e) + lfd

(
τ(e)

)
Notice that the notations doe(e), dod(e) and θend hide

terms of the form max{. . . } and min{. . . }. Inequalities
containing such terms can be expanded to Boolean combi-
nations (disjunctions and conjunctions) of linear inequalities
over Λ ∪ Q+ with integer coefficients. For instance the in-
equality θend ≤ doe(e) + lfd

(
τ(e)

)
becomes∨

b∈•e

∨
f∈E

θ(f) ≤ θ(•b) + lfd
(
τ(e)

)
.

Furthermore, in the definition of θend, it is sufficient to consider
only the set maxEventsE of events which are maximal in E
w.r.t. →. We get∨

b∈•e

∨
f∈maxEventsE

θ(f) ≤ θ(•b) + lfd
(
τ(e)

)
.

Example 2. Consider the process of Fig. 4 and replace the
firing dates by variables θ(e1), θ(e2), θ(e3), θ(e4). The values
of the variables that correspond to processes accepted by the
TPN of Fig. 2 are those satisfying the following constraint,
given by earliest and latest firing delays of the events (notice
that only one event in the process is maximal w.r.t. →, hence

5
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θend = θ(e4)):

0 ≤ θ(e1) ≤ ∞ (firing delay of e1)
3 ≤ θ(e2) ≤ 4 (firing delay of e2)
0 ≤ θ(e3)−max{θ(e1), θ(e2)} ≤ 5 (firing delay of e3)
0 ≤ θ(e4)− θ(e3) ≤ ∞ (firing delay of e4)
θ(e3) ≤ θ(e1) + 4

(occurrence of d enabled after e1 and disabled by e3)
θ(e4) ≤ θ(e3) + 4

(occurrence of c enabled at the end of the process)
θ(e4) ≤ θ(e4) + 4

(occurrence of d enabled at the end of the process)
One sees clearly on this example that the constraints on the
firing delays of the events of E do not suffice: for instance, the
constraint θ(e3) ≤ θ(e1)+4 (occurrence of d enabled after e1
and disabled by e3) restricts the range of possible firing times
for event e3.

V. PRESERVING PARTIAL ORDER RUNS

A. Constraint on Parameters for an Abstract Process

We can now come back to our parameter synthesis prob-
lem. For this we consider a parametric TPN N . The first step
is, given an abstract process E of N , to find a constraint K on
the parameters such that for every valuation v of the parameters
it holds that E ∈ Processes(JN Kv) iff v |= K.

We first generalize the constraint Kθ
E and replace the

instantiated values of the efd(t) and lfd(t) by the parame-
ters given by the PTPN. We get a constraint over both the
parameters of the model and the θ(e), e ∈ E.

Definition 8. For an abstract process E, we define Kθλ
E as:

•
∧
e∈E pefd

(
τ(e)

)
≤ θ(e)− doe(e) ≤ plfd

(
τ(e)

)
(1)

•
∧
e∈EnabledEvents(E) dod(e) ≤ doe(e) + plfd

(
τ(e)

)
(2)

•
∧
e∈DN ,•e⊆↑(E) θend ≤ doe(e) + plfd

(
τ(e)

)
(3)

For instance, the PTPN of Fig. 3 has two maximal abstract
processes: one where transitions t1, t2 and t3 fire (giving rise
to, resp., events e1, e2, e3), the second with t2, t3 and t0
(giving rise to, resp., events e2, e3 and e0). With the reference
valuation of the parameters v0 where a0 = 0, b0 = 3, a1 = 0,
b1 = 1, a2 = 2, b2 = 3, a3 = 1 and b3 = 2, only the first
abstract process {e1, e2, e3} can be executed.

The constraints for these abstract processes are
Kθλ
{e1,e2,e3}

def
=

a1 ≤ θ(e1) ≤ b1 (firing delay of e1)
a2 ≤ θ(e2) ≤ b2 (firing delay of e2)
a3 ≤ θ(e3)− θ(e2) ≤ b3 (firing delay of e3)
θ(e1) ≤ θ(e3) + b0

(occurrence of t0 enabled by e3 disabled by e1)

and Kθλ
{e2,e3,e0}

def
=

a2 ≤ θ(e2) ≤ b2 (firing delay of e2)
a3 ≤ θ(e3)− θ(e2) ≤ b3 (firing delay of e3)
a0 ≤ θ(e0)− θ(e3) ≤ b0 (firing delay of e0)
θ(e0) ≤ b1 (occurrence of t1 disabled by e0)

We can check that, with v0, there exists a valuation for
the dates θ(e1), θ(e2), θ(e3) which satisfies the constraint

Kθλ
{e1,e2,e3} (take for instance θ(e1) = 0, θ(e2) = 2 and

θ(e3) = 3) but there exists no valuation of the dates
θ(e2), θ(e3), θ(e0) satisfying Kθλ

{e2,e3,e0} (the constraint im-
plies a2+a3+a0 ≤ θ(e0) ≤ b1). This confirms that {e1, e2, e3}
is the only maximal abstract process feasible in JN Kv0 .

What matters for our parameter synthesis problem is not
the values of the firing dates of the events of a process, but
rather the condition on the parameters under which an abstract
process is feasible for some firing dates. Using variable elimi-
nation techniques (e.g., Fourier-Motzkin), we can compute for
an abstract process E = {e1, . . . , en}, a constraint equivalent
to ∃θ(e1) . . . ∃θ(en) Kθλ

E .

Definition 9. Let E = {e1, . . . , en} ⊆ DN be an abstract
process of a PTPN N . We define the constraint Kλ

E on the
parameters of N as the result of eliminating the variables
θ(e1), . . . , θ(en) in the constraint Kθλ

E .

The constraint Kλ
E characterizes the values of the param-

eters for which the instantiated model JN Kv can execute the
abstract process E.

Coming back to the example of Fig. 3, we get, for the
abstract process {e1, e2, e3}, the constraint

Kλ
{e1,e2,e3}

def
=

{
a1 ≤ b2 + b3 + b0

∧ a1 ≤ b1 ∧ a2 ≤ b2 ∧ a3 ≤ b3
The first line means that t1 is able to fire before t0 reaches
its latest firing delay. The second line simply means that the
firing intervals of the transitions are nonempty.

For the abstract process {e2, e3, e0}, the constraint
Kλ
{e2,e3,e0} is a2+a3+a0 ≤ b1 (omitting the conditions about

the firing intervals). Notice that Kλ
{e2,e3,e0} and Kλ

{e1,e2,e3} do
not exclude each other, which means that there are parameter
valuations v for which the instantiated TPN JN Kv can execute
both abstract processes.

B. Parameter Synthesis Preserving Partial Order Semantics

We now have all the necessary bricks to define our
procedure IMPO (standing for “inverse method based on
partial orders”) for synthesizing parameters in a PTPN N
that guarantee the preservation of its partial order semantics.
More precisely, we are looking for a constraint on the pa-
rameters Λ of N guaranteeing that all maximal processes of
the instantiated models are already maximal processes of the
model instantiated with the reference valuation v0. Notice
that this requirement concerns only maximal processes: asking
for preservation of all processes would limit the freedom in
the interleavings of concurrent transitions. For the PTPN of
Fig. 3, the only sequence feasible with the initial valuation
v0 is (t1, t2, t3). Consider another valuation v that would
force (t2, t1, t3) (which we consider correct). A (non-maximal)
timed word with only t2 yields a (non-maximal) abstract
process which is not feasible under v0. On the other hand, the
maximal abstract processes are the same for both valuations.

The first version of our IMPO procedure terminates for
PTPNs where all the abstract processes are finite. It relies on
the computation of the unfolding of the untimed support of
the PTPN: the unfolding is a compact representation of all
the processes of an (untimed) Petri net, which corresponds
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to the superimposition of all feasible processes (see Fig. 6).
Efficient tools exist for computing unfoldings [Kho], [Sch].
The procedure IMPO(N , v0) is the following:

1) Compute the unfolding of the untimed support of N
(i.e., the Petri net obtained from N by removing all
the temporal constraints efd and lfd ). The unfolding has
finite depth when the length of the abstract processes is
bounded; hence it can be computed entirely.

2) Extract the set MP of maximal processes3; they are the
abstract processes of our PTPN N .

3) For every E ∈ MP , construct the constraint Kλ
E on the

parameters of N under which the process is feasible.
4) Output the conjunction of the initial constraint K0 (com-

ing fromN ) with the negation of all constraints associated
to processes which are not feasible under v0:

K0 ∧
∧

E∈MP , with v0 6|=Kλ
E

¬Kλ
E .

Theorem 2. Let N be a PTPN, let v0 be a parameter
valuation. Assume IMPO(N , v0) terminates with result K.
Then for all valuation v of the parameters satisfying the initial
constraint K0 of the model,

v |= K ⇐⇒ Processes(JN Kv) ⊆ Processes(JN Kv0) .

In particular v0 |= K.

Proof: Let v be a parameter valuation such that
Processes(JN Kv) ⊆ Processes(JN Kv0). For every maximal
process E = {e1, . . . , en} ∈ MP , v0 6|= Kλ

E implies that
there exists no valuation θ1, . . . , θn ∈ R+ of the variables
θ(e1), . . . , θ(en) such that {(e1, θ1), . . . , (en, θn)} is a process
of JN Kv0 . Then E 6∈ Processes(JN Kv0). We deduce that E is
not a maximal abstract process of JN Kv; actually it cannot be a
non maximal process either: this would mean that a transition
t is enabled at the end, and this transition would also make E
non maximal for JN Kv0 since no valuation of the parameters
can prevent the system from firing transitions when transitions
are enabled, except valuations which make the firing intervals
empty, which is excluded by assumption. Hence v 6|= Kλ

E ,
i.e., v |= ¬Kλ

E . As a result v |=
∧
E∈MP, v0 6|=Kλ

E
¬Kλ

E , and
because v satisfies K0, it satisfies K.

Now, let v be a parameter valuation such that
Processes(JN Kv) 6⊆ Processes(JN Kv0). Let E be an abstract
process in Processes(JN Kv) \ Processes(JN Kv0). Then v0 6|=
Kλ
E (which implies that ¬Kλ

E appears in the conjunction K)
and, on the other hand v |= Kλ

E , Hence v 6|= K.

Example 3. For the PTPN of Fig. 3, we have explained
that there are two maximal abstract processes {e1, e2, e3}
and {e2, e3, e0}. Only the first one is feasible in JN Kv0 , i.e.,
v0 6|= Kλ

{e2,e3,e0}. Then our procedure IMPO outputs the
constraint

K0 ∧ a2 + a3 + a0 > b1 ,

which is the negation of Kλ
{e2,e3,e0}. Remember that K0

is assumed to specify at least that the firing intervals are
nonempty. Notice that this constraint is much more permissive
than the constraint a2 > b1 output by IM. While IM requires

3The maximal processes can be extracted for instance by a SAT solver using
an appropriate SAT encoding.

t1 to fire strictly before t2, IMPO only requires that it fires
before being disabled by t0.

Let us now show that the output of IMPO is always more
(or equally) permissive than the output of IM.

Theorem 3. Let N be a PTPN with only finite executions,
and let v0 be a parameter valuation. Denote KIM the constraint
output by IM and KIMPO the constraint output by IMPO. Then

{v0} ⊆ {v | v |= KIM} ⊆ {v | v |= KIMPO} .

Proof: By Theorem 1, {v0} ⊆ {v | v |= KIM}. Now,
let v be a parameter valuation satisfying KIM. Again by The-
orem 1, Sequences(JN Kv) ⊆ Sequences(JN Kv0). We show
that Processes(JN Kv) ⊆ Processes(JN Kv0): indeed, every
maximal abstract process E feasible for JN Kv is the image
by Π of a maximal timed word ((t1, θ1), . . . , (tn, θn)) feasible
for JN Kv , whose corresponding time-abstract word (t1, . . . , tn)
is in Sequences(JN Kv). Because Sequences(JN Kv) ⊆
Sequences(JN Kv0), we have that (t1, . . . , tn) is also in
Sequences(JN Kv0), i.e., there exist dates θ′1, . . . , θ

′
n (notice

that they are not necessarily the same as the θi) such that
((t1, θ

′
1), . . . , (tn, θ

′
n)) is feasible for JN Kv0 . The image by

Π of this timed word is a process of JN Kv0 whose set of
events (determined only by the time-abstract word) is E. Then
E ∈ Processes(JN Kv0).

To conclude, Processes(JN Kv) ⊆ Processes(JN Kv0), and
by Theorem 2, v |= KIMPO.

C. An Alternative Method for Restricted Cyclic Models

Our method IMPO first constructs all maximal processes,
and then infers parameter valuations to preserve partial orders.
For cyclic systems, this method will not terminate. We leave
the cyclic case as future works (see Section VII); however, we
would like to at least address here the case of systems that
may be cyclic for some parameter valuations (i.e., the Petri
net is not structurally acyclic), but are acyclic for the reference
valuation v0.

We propose now an alternative method IMPO’(N , v0), that
avoids computing the entire unfoldings of the untimed Petri
net, but explores only the processes that exist in JN Kv0 :

1) Compute the (finite) set Processes(JN Kv0) of maximal
abstract processes feasible for JN Kv0 ; one way to do this
is to compute the finite set Sequences(JN Kv0), and then
represent every sequence as a process, as explained in
Definition 5.

2) For every E ∈ Processes(JN Kv0), for every causally
closed subset E′ of E (called a prefix of E), and for
every event e ∈ DN which extends E′ (i.e., •e ⊆ ↑(E′))
such that the abstract process E′ ∪ {e} is not the prefix
of any abstract process of JN Kv0 , compute the constraint
Kλ
E′∪{e}.

3) Return the conjunction of K0 with the negation of all the
constraints Kλ

E′∪{e}.

Notice that not all prefixes E′ of maximal abstract pro-
cesses feasible for JN Kv0 are feasible abstract processes for
JN Kv0 : for the PTPN of Fig. 3, the abstract process containing
only the occurrence of t2 and the occurrence of t3 is not
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feasible for JN Kv0 because t1 fires earlier than t2. Still E′ must
be considered in order to prevent its extension by t0 which is
not a prefix of any feasible abstract process of JN Kv0 .

This alternative approach IMPO’ returns the negation of
the parametric constraints associated to the extension by one
event of any prefix of a process of JN Kv0 . As a consequence,
it avoids the full exploration of the part of the state space that
does not correspond to admissible behaviors in JN Kv0 . In fact,
this alternative approach is closer to the spirit of the original
inverse method, that also proceeds with a limited exploration
of the state space.

Theorem 4. Let N be a PTPN, and let v0 be a parameter
valuation for which JN Kv0 has only finite executions. Let
K = IMPO’(N , v0). Then for all valuation v of the parame-
ters satisfying the initial constraint K0 of the model,

v |= K ⇐⇒ Processes(JN Kv) ⊆ Processes(JN Kv0) .

In particular v0 |= K.

Proof: Let v be a parameter valuation such that
Processes(JN Kv) ⊆ Processes(JN Kv0). Let E′ be a prefix of
an abstract process E ∈ Processes(JN Kv0) and e a possible
extension of E′ such that E′ ∪ {e} is not the prefix of
any abstract process of JN Kv0 . Because Processes(JN Kv) ⊆
Processes(JN Kv0), E′ ∪ {e} is not the prefix of any abstract
process of JN Kv either. Then v |= ¬Kλ

E′∪{e}.

Now, let v be a parameter valuation such that
Processes(JN Kv) 6⊆ Processes(JN Kv0). Let E be an abstract
process in Processes(JN Kv) \ Processes(JN Kv0). Compute a
prefix E′ of E by removing events one by one (starting by
those that are maximal w.r.t. → so that E′ remains causally
closed) until E′ becomes a prefix of an abstract process
feasible for JN Kv0 . (If needed, remove all the events: E′ = ∅
is suitable.) Then extend E′ with the last event e that was
removed. We have v0 6|= Kλ

E′∪{e} and v |= Kλ
E′∪{e}, Hence

v 6|= K.

As a consequence, when IMPO can be applied, IMPO and
IMPO’ return equivalent constraints.

VI. APPLICATION TO ASYNCHRONOUS CIRCUITS

A. Improving Latencies in Asynchronous Circuit Design

In this section we apply IMPO to the asynchronous cir-
cuit mentioned in the introduction (in Fig. 1). Asynchronous
circuits are an important application of parameter synthesis
techniques: whereas engineers may be able to find one correct
valuation of the gate traversal and environment delays using
empirical methods, changing these values usually requires
the design to restart from zero. Generalizing one correct
valuation using synthesis techniques helps designers to find
dense sets of parameter valuations preserving the system
behavior [CEFX09].

The PTPN N modeling the circuit in Fig. 1 is shown
in Fig. 5. Every signal (e.g., I2) is encoded by two places
representing a low (I02 ) and high (I12 ) state of the signal.
Every gate (e.g., N1) is encoded by a number of transitions
simulating the raising (t4) and falling (t3) edges that the gate
triggers in its output (N0

1 , N
1
1 ). The output signal of each gate

takes the name of the gate itself. All transitions encoding one

I01 I11 I02 I12

N0
1 N1

1 N0
2 N1

2

Q0 Q1

t1

[0, 1]

t2

[0, 1]

t3

[N−
1 , N+

1 ]

t4

[N−
1 , N+

1 ]

t5

[N−
2 , N+

2 ]

t6

[N−
2 , N+

2 ]

t7[A−, A+] t8[A−, A+] t9 [A−, A+]

Figure 5: A PTPN model for the circuit of Fig. 1

gate (e.g., N1) have the same time interval (e.g., [N−1 , N
+
1 ],

where N−1 and N+
1 are parameters representing the lower and

upper propagation delay of the gate).

Transitions t1 and t2 simulate the environment. They
excite the circuit from its initial state 〈I1, I2, N1, N2, Q〉

def
=

〈1, 0, 0, 1, 0〉 with a falling edge of signal I1 and a rising edge
of signal I2 at any moment between 0 and 1 time unit.

We consider a reference parameter valuation v0 assigning
propagation delays to the gates in such a way that signal Q
never rises under the environment attached to N :
N−1 = 6 N+

1 = 7 N−2 = A− = 1 N+
2 = A+ = 2

Under v0, the propagation delay of N1 is so slow that N2

always falls before N1 rises. Specifically, t4 always fires in
the absolute time interval [6, 8], while t5 is forced to do it in
[1, 3]. As a result, t8 (the only transition that raises signal Q) is
not firable in JN Kv0 . Indeed, initially t8 is disabled. In order to
enable it, we need to put a token in N1

1 before the token in N1
2

is consumed, which can only be done by firing t4 before t5. So,
although there is no structural synchronization between the Not
gates, N behaves under v0 as if such synchronization existed.
As a result, the original IM produces a constraint disallowing
to fire t5 before t4. We will see that this is not the case for
the constraint produced by IMPO.

Let us now apply IMPO to N and v0. First, IMPO
initializes K to

∧
g∈{N1,N2,A} g

− ≤ g+. Next, it enumerates
the maximal processes of the untimed Petri net underlying N .
There are two maximal untimed processes (see Fig. 6):

E1
def
= {e1, e2, e4, e5} and E2

def
= {e1, e2, e4, e8, e′5, e9}.

For each of them, our method IMPO generates an associ-
ated Kθλ-constraint, composed of three sub-constraints asking
that (1) firing dates are met, (2) events enabled and later
disabled by the process did not overtake their latest firing delay,
and (3) events enabled at the end of the process have enough
time to fire. Observe that E1 and E2 are maximal processes,
so there is no event enabled at the end and (3) simplifies to
true. For every event ei ∈ E1 ∪E2, with i ∈ {1, . . . , 9}, we
denote by θi

def
= θ(ei) the rational variable associated to ei.
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rN1
1

I11 N0
1

N1
1

(e4) t4

Q0

Q1

Q0

(e9) t9

I02

t2 (e2)

I12

I12

I12

N0
2

N1
2

(e5) t5

N0
2

N0
2

N1
2

(e1) t1

I01

I01

t8 (e8)

(e′5) t5

Figure 6: Untimed unfolding of Fig. 5

Consider process E1. The firing constraints due to (1)
for e1, e2, and e4 are the following:

0 ≤ θ1 ≤ 1 0 ≤ θ2 ≤ 1 N−1 ≤ θ4 − θ1 ≤ N
+
1 (4)

For event e5, the firing constraint is
N−2 ≤ θ5 − θ2 ≤ N

+
2 (5)

The disabling constraints due to (2) apply to a single event,
e8, enabled after firing e4 and disabled by e5. So we have
doe(e8) = θ4 and dod(e8) = θ5. Then constraint (2) for E1

becomes
θ5 ≤ θ4 +A+ (6)

Putting all together, the constraint Kθλ
E1

associated to E1 is the
conjunction of (4), (5), and (6).

Analogously, for process E2, the firing constraints for
e1, e2, e4 are the same as for E1. For e8, e′5 and e9 we get
A− ≤ θ8 − θ4 ≤ A+ N−2 ≤ θ′5 −max {θ8, θ2} ≤ N+

2

A− ≤ θ9 − θ′5 ≤ A+ (7)
As for the disabling constraint, we only need to consider e5,
with doe(e5) = θ2 and dod(e5) = θ8, so we get

θ8 ≤ θ2 +N+
2 (8)

and the final constraint Kθλ
E2

associated with E2 is the con-
junction of (4), (7), and (8).

After building Kθλ
E1

and Kθλ
E2

, IMPO eliminates all vari-
ables θi from each constraint, resulting in constraints Kλ

E1
and

Kλ
E2

over Λ, and checks which of them are satisfied by v0.

We have v0 |= Kλ
E1

, as clearly ((t1, 0), (t2, 0), (t5, 1),
(t4, 6)) is a timed word of JN Kv0 and E1 is the set of events
of the corresponding process. As for Kλ

E2
, observe that it fires

e8, labeled by t8. We argued earlier that t8 is not firable in
JN Kv0 . So v0 6|= Kλ

E2
, and IMPO adds the negation of Kλ

E2

to K. In the end, IMPO returns the constraint

K
def
=
(∧

g∈{N1,N2,A} g
− ≤ g+

)
∧
(
N−1 +A− > N+

2 + 1
)
.

First remark that v0 is indeed a model of K. The first part was
expected. The inequality N−1 + A− > N+

2 + 1 indicates how
to generalize the parameters around v0 while ensuring that t8

N1 N3

N2

And

I

Q

Figure 7: An asynchronous circuit (looping variant)

never fires. Indeed, its earliest possible firing time, N−1 +A−,
is required to be larger than the latest possible time when the
latest firing delay of t5 expires: N+

2 + 1.

Now, observe that this constraint allows for a sequential
execution where t4 fires before t5, which the original IM would
have forbidden. Indeed any valuation setting the lower and
upper propagation delays for N1, and N2 to 0 and A− to a
high enough value, would be a model of K, allowing to fire
t1, t2, t4, t5 at time 0, but preventing the firing of t8.

B. Application to a Circuit with a Loop

Let us now consider a variant of this circuit, given in Fig. 7.
Initially, we have 〈I,N1, N2, N3, Q〉

def
= 〈1, 1, 0, 0, 1〉. Observe

that this is an unstable configuration for two reasons: the output
of the And gate is 1, although its two inputs are 0; and both
the input and the output of N1 are 1. The input signal I will
eventually fall within a parametric delay [I−, I+] (in contrast
to the circuit in Fig. 1 where the interval was constant). Again,
all gates have a bounded traversal delay (e.g., [N−1 , N

+
1 ] for

N1, and similarly for the other gates). Now, depending on the
falling delay of I and on the traversal delays of the gates, two
situations may occur: either the system will eventually reach
a stable configuration, or signals will rise and fall forever in a
cyclic manner through gates N1, N3, and And .

Consider the following reference parameter valuation v0:

N−1 = 8 N+
1 = 10 N−2 = 4 N+

2 = 5 I−= 1
N−3 = 2 N+

3 = 8 A− = 3 A+ = 4 I+ = 2

For v0, the only possible sequence of signals is I↘, Q↘,
N↗2 . Since Q falls before N1 rises, there is no risk of having
both N2 and N3 equal to 1, and hence Q will not rise again,
preventing an infinite loop.

The PTPN N of this variant is not given for sake of
conciseness; it is similar to the one in Fig. 3 with additional
places to model N3, and specific arcs to model the loop
outgoing from the And gate towards the input of N1.

Applying IM to N and v0 gives the following result:
A− > I+ ∧ I− +N−2 > A+ ∧ N−1 > A+

As expected, this constraint requires the same sequence as for
JN Kv0 , i.e., I↘, Q↘, N↗2 . Intuitively, the first inequality
requires I to fall before Q falls; the second inequality requires
that Q falls before N2 rises; the third inequality prevents N1

from falling before Q falls, which hence prevents N1 from
falling at all, since by then N1 becomes stable.

The application of IMPO to N does not terminate: indeed,
IMPO requires to compute all maximal (parametric) processes,
and at least one of these is infinite (the one that encodes the
infinite loop through the N1, N2, and And gates).
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However, IMPO’ does terminate and outputs the constraint:

I− +N−2 > A+ ∧ N−1 > A+

In contrast to IM, IMPO’ does not impose any order between
I↘ and Q↘, hence the constraint A− > I+ does not appear.
The constraint I− + N−2 > A+ (constraining the order
between Q↘ and N↗2 ) is preserved because the corresponding
transitions in the model share the input place N0

2 , which forces
to sequentialize them. The second constraint N−1 > A+ again
prevents the rise of N1 (as in IM).

VII. FINAL REMARKS

In this paper, we proposed a parametric analysis of con-
current timed systems based on a partial order semantics. Our
approach looks for parameters that preserve only the partial
order semantics of the system. Hence, the constraint output
by our method enhances (i.e., weakens) the constraint output
when looking for other parameter valuations with a similar
set of sequences. We showed the interest of our approach on
acyclic, or restricted cyclic asynchronous circuits.

The constraints manipulated and output by IMPO (and
its variant IMPO’) do not fall in general in the nice class
of convex constraints. We have to deal in general with non-
convex constraints, which can be represented as disjunctions
of convex constraints or as unions of polyhedra. We argue that
this is not a serious limitation of the method: First, the method
usually generates very few disjunctions on typical examples.
For the examples presented in this paper, the disjunctions
appear under the form of max and min in the inequalities of
the Kθλ

E , but then completely disappear in the final result of
the method. Second, the method outputs the weakest constraint
that guarantees preservation of the partial order semantics.
This constraint is in general non-convex. But it is also pos-
sible to output only a convex constraint (or a union of few
convex constraints) which is not the most permissive but is
satisfied by v0 and guarantees preservation of partial order
semantics. This is actually what the current implementation
IMITATOR of IM does (for the preservation of sequential
semantics). Finally, several mature verification tools (such
as UPPAAL [LPY97] or ROMÉO [LRST09]) deal with such
non-convex constraints; they use efficient representations and
achieve very satisfactory performances in practice. The Parma
polyhedra library [BHZ08] (used in ROMÉO and IMITATOR)
also offers such a representation.

As future work, we would like to generalize our technique
to cyclic models, but there are several difficulties. First, the
classical way to deal with partial-order techniques for cyclic
models is to define cut-off events; but no efficient cut-off
criterion exists for timed models. Second, we have explained
in Section V-B that our method focuses on maximal abstract
processes in order to output the most permissive constraint.
For cyclic nets, of course, some maximal abstract processes
are infinite, which makes IMPO inapplicable. A pragmatic
approach that we would like to investigate in the future is
to consider partial orders by blocks. That is, we could explore
the symbolic tree by steps of n transitions (e.g., n = 10), and
derive constraints allowing the interleaving within each block.
The constraint output would be weaker than IM (equivalent for
n = 1) but most probably stricter than IMPO; however, the
method could terminate also for cyclic models.

We aim at implementing our approach in a near future; The
implementation IMITATOR of the inverse method IM, together
with a prototype that computes the constraints Kθ, will be
good candidates for our implementation. An implementation
will especially be useful to experimentally compare the re-
spective efficiency of IMPO and IMPO’; whereas the latter
has better termination, it may explore more states, since it
explores all prefixes of maximal processes.
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