ESSS 2014

May 13th, 2014 Singapore

Translating UML State Machines to Coloured Petri Nets Using Acceleo: A Report

Étienne André, Mohamed Mahdi Benmoussa, Christine Choppy

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, France

1 / 24

Context: Complex Systems Safety (1/2)

- Need for early bug detection
 - Bugs discovered when final testing: expensive
 - \rightsquigarrow Need for a thorough modelling phase

Étienne André et al. (Paris 13) Formalizing UML State Machines

Context: Complex Systems Safety (2/2)

- Critical and complex systems that need verification
- Specification with UML state machines (SMDs) [OMG, 2011]
- Informal description of UML semantics
- Solution: Model translation to another formalism

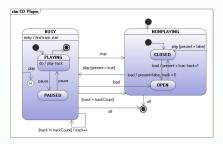
Outline

- 2 Towards Model Transformation
- Translation Using Acceleo
- 4 Conclusion and Perspectives

3

Outline

- 2 Towards Model Transformation
- 3 Translation Using Acceleo
- 4 Conclusion and Perspectives

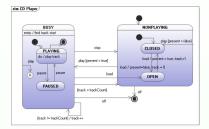

4 - □
 4 - □

э

UML Behavioural State Machines

- Transition systems used to express the behaviour of dynamic systems
- Specified in [OMG, 2011]
- Widely used in the industry
- Semantics not formally expressed
 - Informal specification in [OMG, 2011]
 - Not directly suitable for formal methods

Example of a CD Player [Zhang and Liu, 2010]

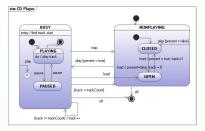


Features

- A hierarchy of simple and composite states
- Transitions (including inter-level) with events
- Entry (find track start) and do (play track) behaviours
- Global variables (present and track)
- History pseudostate (H)

Example of a CD Player (cont.)

- This example is simple
 - Few states, few events, few variables
 - No concurrency
 - No exit behaviour

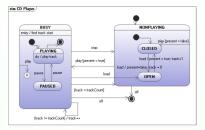


< 口 > < 同 >

3

Example of a CD Player (cont.)

- This example is simple
 - Few states, few events, few variables
 - No concurrency
 - No exit behaviour



- And still...Can we ensure the following?
 - "When in **PLAYING**, there is a CD in the player"
 - "When in **PLAYING**, the track number is always between 1 and trackCount"

・ 同 ト・ イ ヨ ト・ イ ヨ ト

Example of a CD Player (cont.)

- This example is simple
 - Few states, few events, few variables
 - No concurrency
 - No exit behaviour

- And still...Can we ensure the following?
 - "When in **PLAYING**, there is a CD in the player"
 - "When in **PLAYING**, the track number is always between 1 and trackCount"
- Not easy to guarantee! (So what about larger case studies...)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Main Goal

- We choose here to use the translation of UML state machines to coloured Petri nets (CPNs) [A., Choppy, Klai, 2012]
- Set of considered constructs
 - Hierarchy of composite states
 - Inter-level transitions
 - Entry, do, exit behaviours with global variables
 - History pseudostates
 - No concurrency (no fork, join, synchronization)

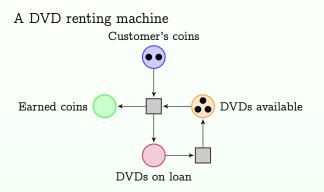
9 / 24

Main Goal

- We choose here to use the translation of UML state machines to coloured Petri nets (CPNs) [A., Choppy, Klai, 2012]
- Set of considered constructs
 - Hierarchy of composite states
 - Inter-level transitions
 - Entry, do, exit behaviours with global variables
 - History pseudostates
 - No concurrency (no fork, join, synchronization)

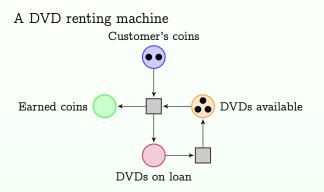
Goal

"Implement the translation of [A., Choppy, Klai, 2012]."

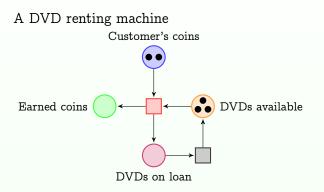

9 / 24

- 4 同 1 4 日 1 4 日 1 日 日

Petri Nets [Petri, 1962]

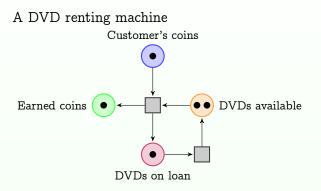

- A kind of automaton
 - Bipartite graph with places and transitions
 - Tokens can be added to places
 - Represent data or control
 - A state (configuration) of the Petri net: a marking
 - Number of tokens in each place
 - Evolves when firing transitions
 - Initial state: initial marking
- Advantages of Petri nets
 - Detailed view of the process with an expressive graphical representation
 - A formal semantics
 - Powerful tools to simulate and verify the model w.r.t. various properties (reachability, boundedness, invariants, deadlock-freeness, etc.)

Petri Nets: An Example


SQA

Petri Nets: An Example

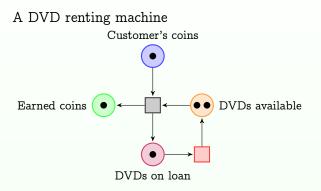
SQA


Petri Nets: An Example

< A >

SQA

Petri Nets: An Example

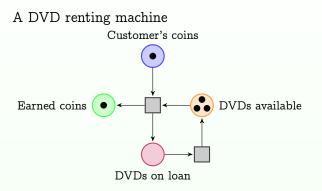

< A >

SQA

э

< ∃ >

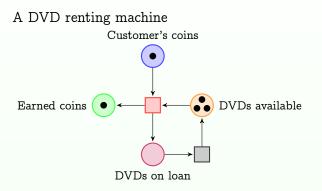
Petri Nets: An Example


< A >

SQA

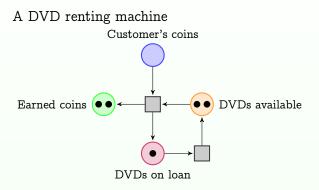
э

< ∃ >


Petri Nets: An Example

< A >

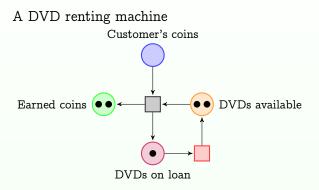
SQA


Petri Nets: An Example

< A >

SQA

Petri Nets: An Example

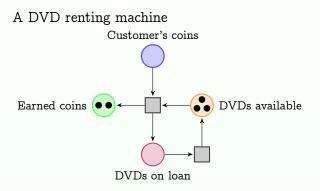

< ∃⇒

< A >

SQA

э

Petri Nets: An Example


< ∃⇒

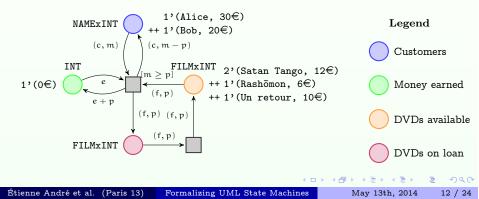
< A >

SQA

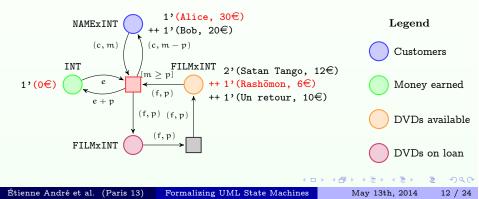
э

Petri Nets: An Example

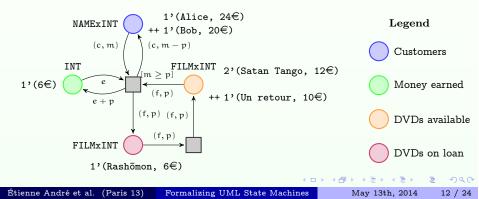
< A >

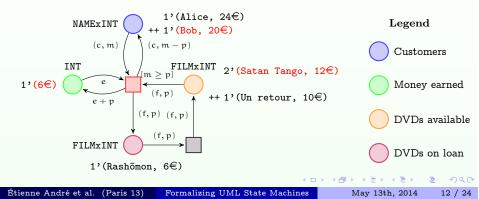

SQA

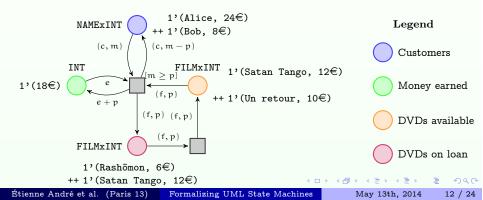
э

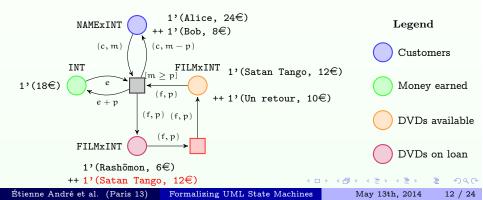

< ∃ >

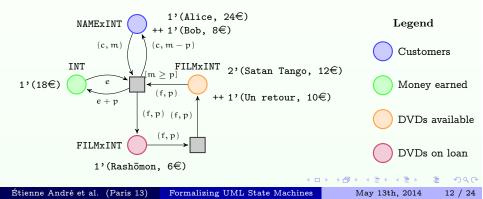
- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard


- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine

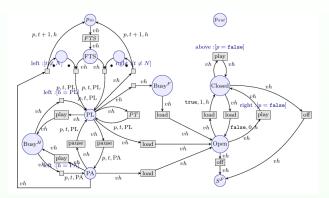

- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine


- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine


- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine


- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine

- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine



- Extension of Petri nets with colours
 - Tokens and places have a type ("colour set")
 - Arcs are labelled with expressions
 - Transitions can have a guard
- Example: A more complex version of the DVD renting machine

An Example of a CPN

(Partial) translation of the CD player according to [A., Choppy, Klai, 2012]

Sac

Outline

2 Towards Model Transformation

- 3 Translation Using Acceleo
- 4 Conclusion and Perspectives

э

SQA

→ ∃ → → ∃ →

< A >

Model transformation techniques

• Easy transformation : model-to-model techniques

- Requires metamodels
- Metamodel for SMDs: OK [OMG, 2011]
- But absence of coloured Petri nets metamodel

Model transformation techniques

- Easy transformation : model-to-model techniques
 - Requires metamodels
 - Metamodel for SMDs: OK [OMG, 2011]
 - But absence of coloured Petri nets metamodel
- Use of model-to-text techniques
 - Requires only the source metamodel (UML)
 - Implementation with Acceleo¹

¹http://www.eclipse.org/acceleo/

Étienne André et al. (Paris 13) Formalizing UML State Machines

Acceleo

- Tool based on model-to-text techniques
- Takes as input the source metamodel, and a model compliant with that metamodel
 - Defined using EMF
- User-friendly: Eclipse plugin
- Generated text mixed with Acceleo syntax

Outline

2 Towards Model Transformation

Translation Using Acceleo

4 Conclusion and Perspectives

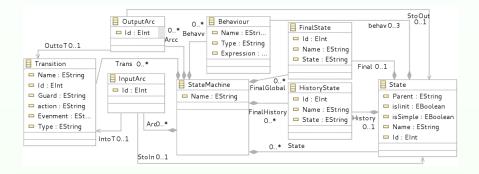
Étienne André et al. (Paris 13) Formalizing UML State Machines M

< 47 ▶

э.

Structure of the translation

Translation based on [A., Choppy, Klai, 2012]


Based on three algorithms:

- Translation of states
- Translation of transitions
- Translation of history pseudostates

Generation of an input model for CPN Tools [Westergaard, 2013]

Principle of the implementation: Metamodel

Acceleo needs a metamodel of the source formalism Simplification (and small adaptation) of the OMG model

< 日 > < 同 > < 回 > < 回 > < 回 > <

Sac

19 / 24

э

Advantages of Acceleo

- User-friendly: Eclipse plugin
- No need for a coloured Petri nets metamodel
- The mixed text/code allows us to directly generate a CPN tools input model

```
[template public SupEn1(s : State, pere :
State, as : StateMachine)]
[if (s.Entry().contains('true'))]
[if (pere.Entry().contains('true'))]
<arc id="ArcNRootSENS[s.Name/][s.Id/]"
orientation="PtoT"
order="1">
<posattr x="0.000000"
y="0.000000"/>
...
[/template]
```

4 - □
 4 - □

Limitations of Acceleo

- Absence of variable declarations and data structures
- Absence of functions: problem for defining recursivity

```
[template public substates(s : State, as :
    StateMachine)]
[if (s.isSimple = true)]
[s.Name/]
[else]
[for (x : State | as.State)]
[if (x.Parent = s.Name)]
[substates(x, as)/]
[/if]
[/for]
[/if]
[/template]
```

21 / 24

Outline

- 2 Towards Model Transformation
- **3** Translation Using Acceleo
- 4 Conclusion and Perspectives

э

SQA

프 () (프)

< 47 ▶

Conclusion

- Elaboration of tool UML2CPN for an automatic translation
 - Current state: functional but third algorithm missing
 - Relatively efficient... surprisingly!
- Resolution of Acceleo limitations using tips (or "hacks")
- Acceleo not perfect for this kind of translation
 - Problem of maturity?

Perspectives

- Create a new home-made tool adapted to the translation
- Simplification of the resulting coloured Petri net (including the functions)
- Comparison of our translation with existing semantics for CPNs and SMDs [Liu et al., 2013]
- Integration of timed events

Bibliography

Étienne André et al. (Paris 13) Formalizing UML State Machines

프 문 문 프 문

< □ > < / → >

æ

References I

André, É., Choppy, C., and Klai, K. (2012). Formalizing non-concurrent UML state machines using colored Petri nets. ACM SIGSOFT Software Engineering Notes, 37(4):1-8. UML&FM 2012.

Jensen, K. and Kristensen, L. M. (2009). Coloured Petri Nets – Modelling and Validation of Concurrent Systems. Springer.

Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., and Dong, J. S. (2013). A formal semantics for the complete syntax of UML state machines with communications.

In *iFM*, volume 7940 of Lecture Notes in Computer Science, pages 331-346. Springer.

OMG (2011).

OMG unified modeling language (OMG UML) superstructure. version 2.4.1, 2011-08-06.

Petri, C. A. (1962).

Kommunikation mit Automaten.

PhD thesis, Darmstadt University of Technology, Germany.

< ロ > < 同 > < 回 > < 回 > < 回 > <

References II

Westergaard, M. (2013).

CPN Tools 4: Multi-formalism and extensibility.

In Petri Nets, volume 7927 of Lecture Notes in Computer Science, pages 400–409. Springer.

Zhang, S. and Liu, Y. (2010).

An automatic approach to model checking UML state machines.

In SSIRI (Companion), pages 1-6. IEEE Computer Society.

27 / 24

< A >

Additional explanation

Étienne André et al. (Paris 13) Formalizing UML State Machines M

< 17 ▶

▶ < ⊒ >

ъ

Explanation for the 4 pictures in the beginning

Allusion to the Northeast blackout (USA, 2003) Computer bug Consequences: 11 fatalities, huge cost (Picture actually from the Sandy Hurricane, 2012)

Allusion to any plane crash (Picture actually from the happy-ending US Airways Flight 1549, 2009)

Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991) No fatalities Computer bug: inaccurate finite element analysis modeling (Picture actually from the Deepwater Horizon Offshore Drilling Platform)

Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991) 28 fatalities, hundreds of injured Computer bug: software error (clock drift) (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

Licensing

Étienne André et al. (Paris 13) Formalizing UML State Machines M

프 문 문 프 문

< □ > < / → >

æ

Source of the graphics used

Title: Hurricane Sandy Blackout New York Skyline Author: David Shankbone Source: https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG License: CC BY 3.0

Title: Miracle on the Hudson Author: Janis Krums (cropped by Étienne André) Source: https://secure.flickr.com/photos/davidwatts1978/3199405401/ License: CC BY 2.0

Title: Deepwater Horizon Offshore Drilling Platform on Fire Author: ideum Source: https://secure.flickr.com/photos/ideum/4711481781/ License: CC BY-SA 2.0

Title: DA-SC-88-01663 Author: imcomkorea Source: https://secure.flickr.com/photos/imcomkorea/3017886760/ License: CC BY-NC-ND 2.0

License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

(LATEX source available on demand)

Authors: Étienne André and Mohamed Mahdi Benmoussa

https://creativecommons.org/licenses/by-sa/3.0/