May, 16th, 2017 CA, USA

Parametric model checking timed automata under non-Zenoness assumption

Hoang Gia NGUYEN Joint work with: Laure Petrucci, Étienne André and Jun Sun

LIPN, Université Paris 13, Sorbonne Paris Cité, CNRS, France

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking

Outline

1 Context

- Parametric Verification of Real-Time Systems
- Parametric Timed Automata (PTA)

2 Zenoness

- Zenoness Introduction
- Zenoness in Parametric Timed Model Checking

3 CUB-PTA

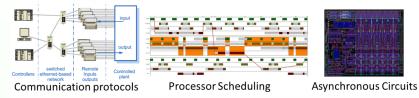
- CUB-TA Introduction
- CUB-PTA Introduction
- CUB-PTA Detection
- CUB-PTA Transformation
- Non-Zenoness Parametric Model Checking
- 4 Implementation and Experiments
- 5 Conclusions

Outline

1 Context

- Parametric Verification of Real-Time Systems
- Parametric Timed Automata (PTA)

2 Zenoness


- Zenoness Introduction
- Zenoness in Parametric Timed Model Checking

3 CUB-PTA

- CUB-TA Introduction
- CUB-PTA Introduction
- CUB-PTA Detection
- CUB-PTA Transformation
- Non-Zenoness Parametric Model Checking
- 4 Implementation and Experiments
- 5 Conclusions

Parametric Verification of Real-Time Systems

Verification techniques used for critical systems, timed systems where changes of time value is vital! such as:

- Systems incompletely specified, some timing delays may not be known yet, or may change
- 2 Verifying system for numerous values of constants requires a very long time, or even infinite

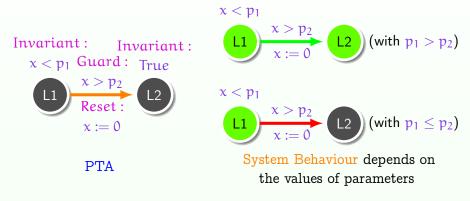
 \Rightarrow Use parameterised techniques, by using parameters instead of constants, then one can check many values at the same time, but also infer good valuations of these timing constants

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking

Parametric Timed Automata (PTA)

PTA are a formalism to model and verify concurrent real-time systems [Alur et al., 1993]


x: Clock

p: Parameters allow to represent unknown values

 K_0 : Initial parameter contraint (e.g. $p_1 \le p_2$ or $p_2 > p_1$)

Parametric Timed Automata (PTA)

PTA are a formalism to model and verify concurrent real-time systems [Alur et al., 1993]

Outline

1 Context

- Parametric Verification of Real-Time Systems
- Parametric Timed Automata (PTA)

2 Zenoness

- Zenoness Introduction
- Zenoness in Parametric Timed Model Checking

3 CUB-PTA


- CUB-TA Introduction
- CUB-PTA Introduction
- CUB-PTA Detection
- CUB-PTA Transformation
- Non-Zenoness Parametric Model Checking
- 4 Implementation and Experiments
- 5 Conclusions

Zenoness in parametric timed model checking

Zeno Run Definition

A Zeno run is a run with an infinite number of actions within a finite time.

1 Run has a clock such that time cannot elapse

Outline

1 Context

- Parametric Verification of Real-Time Systems
- Parametric Timed Automata (PTA)

2 Zenoness

- Zenoness Introduction
- Zenoness in Parametric Timed Model Checking

3 CUB-PTA

- CUB-TA Introduction
- CUB-PTA Introduction
- CUB-PTA Detection
- CUB-PTA Transformation
- Non-Zenoness Parametric Model Checking

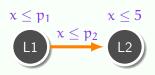
4 Implementation and Experiments

5 Conclusions

CUB-TA Introduction

CUB Introduction

CUB stands for "Clock Upper Bound", an approach derived from the paper [Wang et al., 2015] for solving the non-Zenoness problem on Timed Safety Automata (TA)


- Zeno loops can be checked directly on CUB-TA's Zone Graph
- 2 More efficient than other current existing approaches
- 3 No need to introduce any new clock to the model

 \Rightarrow We define a CUB approach for PTA

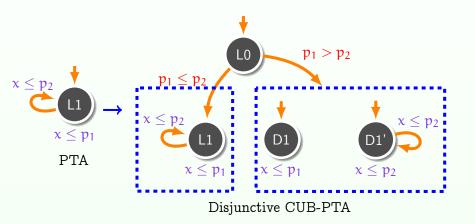
CUB-PTA Introduction

CUB-PTA Definition

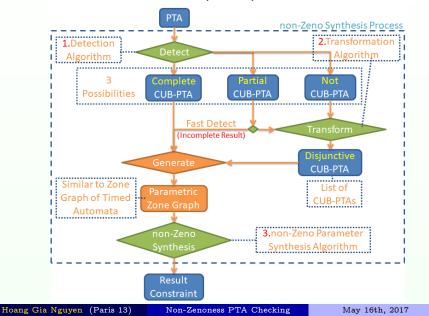
A PTA \mathcal{A} is a *CUB-PTA*, iff there exists a constraint $\mathcal{A}.K_0$ on parameters that guarantees every clock has a non-decreasing upper bound along any path before it is reset, for all parameter valuations satisfying the initial constraint $\mathcal{A}.K_0$

 $\begin{array}{l} \mathcal{A}.\mathsf{K}_0 = p_1 \leq p_2 \wedge p_1 \leq 5: \text{ non-decreasing} \\ \text{upper bound path!} \quad \Rightarrow \text{CUB-PTA} \\ \mathcal{A}.\mathsf{K}_0 = p_1 > p_2 \vee p_1 > 5: \text{ decreasing} \\ \text{upper bound path!} \quad \Rightarrow \text{ not CUB-PTA} \end{array}$

 \Rightarrow No transformation exists such that a CUB-PTA can cover all cases! But a list of CUB-PTAs can


Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking


CUB-PTA Introduction (cont.)

Disjunctive CUB-PTA Definition

A disjunctive CUB-PTA is a list of CUB-PTAs

CUB-PTA Introduction (cont.)

CUB-PTA detection aims at non-Zenoness synthesis of a partial or even complete result without modification on the given model.

 $\mathcal{A}.K_0 =$

Main idea

Given PTA \mathcal{A} , for each clock x on each edge with guard g from location l to l' we enforce a constraint with upper bound l_x less than or equal to g_x and l'_x (if x is not reset). If a conjunction of all constraints $\mathcal{A}.K_0$ contains some valuations then the given PTA is *CUB-PTA*

CUB-PTA detection aims at non-Zenoness synthesis of a partial or even complete result without modification on the given model.

 $\mathcal{A}.K_0 = p1 \leq p2$

Main idea

Given PTA \mathcal{A} , for each clock x on each edge with guard g from location l to l' we enforce a constraint with upper bound l_x less than or equal to g_x and l'_x (if x is not reset). If a conjunction of all constraints $\mathcal{A}.K_0$ contains some valuations then the given PTA is *CUB-PTA*

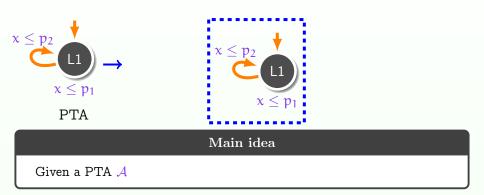
CUB-PTA detection aims at non-Zenoness synthesis of a partial or even complete result without modification on the given model.

$$\mathcal{A}.K_0 = p\mathbf{1} \le p\mathbf{2} \land \ p\mathbf{1} \le p\mathbf{1}$$

Main idea

Given PTA \mathcal{A} , for each clock x on each edge with guard g from location l to l' we enforce a constraint with upper bound l_x less than or equal to g_x and l'_x (if x is not reset). If a conjunction of all constraints $\mathcal{A}.K_0$ contains some valuations then the given PTA is *CUB-PTA*

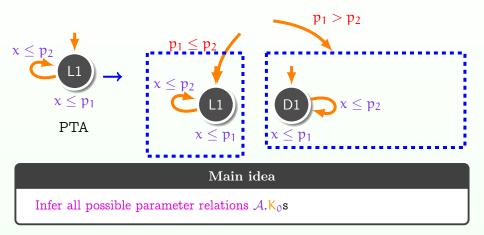
CUB-PTA detection aims at non-Zenoness synthesis of a partial or even complete result without modification on the given model.


 $\begin{array}{l} \mathcal{A}.\mathsf{K}_0 = p1 \leq p2 \land \ p1 \leq p1 \Leftrightarrow \text{CUB-PTA with } \mathcal{A}.\mathsf{K}_0 = p1 \leq p2 \\ \text{Unchecked parameter valuations: } \mathcal{A}.\mathsf{K}_0 = p1 > p2 \Rightarrow \text{Partial CUB-PTA!} \end{array}$

Main idea

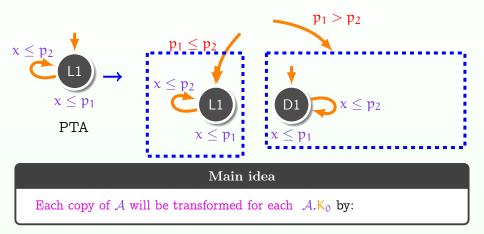
Given PTA \mathcal{A} , for each clock x on each edge with guard g from location l to l' we enforce a constraint with upper bound l_x less than or equal to g_x and l'_x (if x is not reset). If a conjunction of all constraints $\mathcal{A}.K_0$ contains some valuations then the given PTA is *CUB-PTA*

Hoang Gia Nguyen (Paris 13)


Non-Zenoness PTA Checking

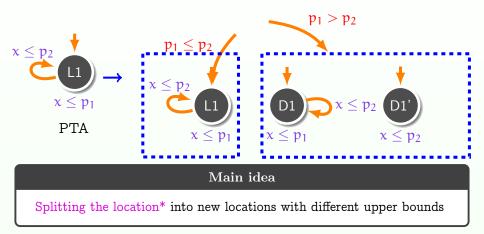
Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking


May 16th, 2017

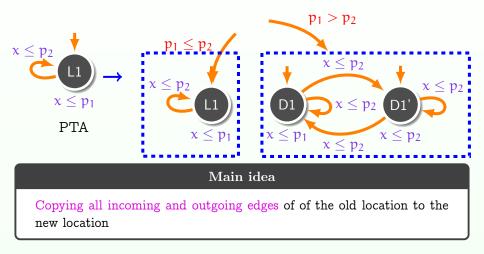
Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking


May 16th, 2017

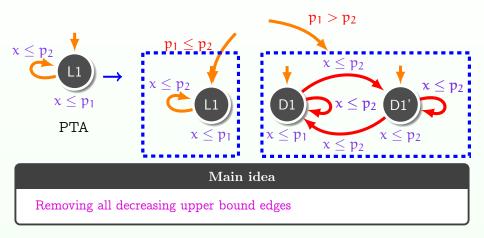
Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking


May 16th, 2017

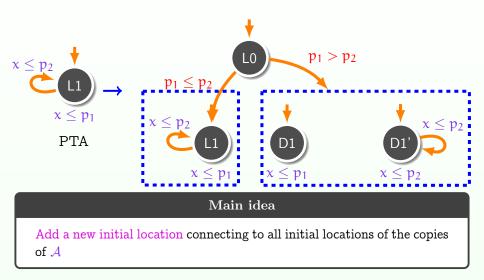
location*: a location containing an outgoing edge implies a decreasing upper bound

Hoang Gia Nguyen (Paris 13)

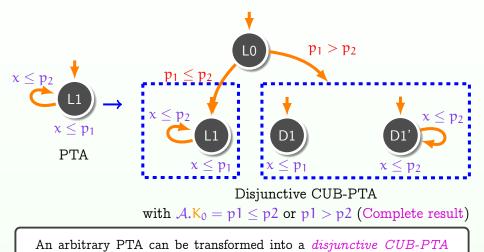

Non-Zenoness PTA Checking

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking


May 16th, 2017 14 / 23

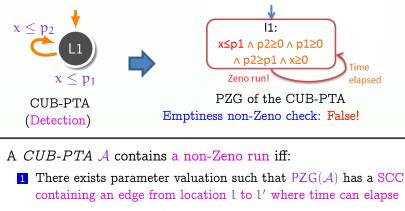
Hoang Gia Nguyen (Paris 13)


Non-Zenoness PTA Checking

May 16th, 2017

Hoang Gia Nguyen (Paris 13)

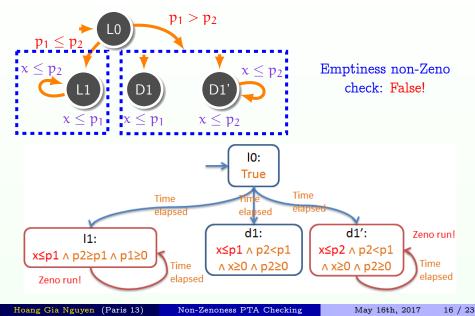
Non-Zenoness PTA Checking

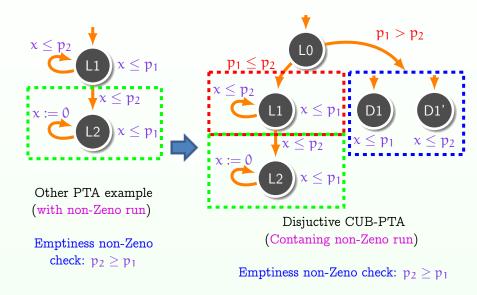


(with a new initial location), while preserving the symbolic runs

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking


Non-Zenoness Parametric Model Checking


2 For every clock x in A, if x is bounded by a constant or a parameter for some location in the SCC, there exists an edge in the SCC where x is reset

SCC: Strongly Connected Component

Non-Zenoness Parametric Model-Checking

Non-Zenoness Parametric Model Checking

Hoang Gia Nguyen (Paris 13) Non-Zenoness PTA Checking

Outline

1 Context

3 CUB-PTA

4 Implementation and Experiments

5 Conclusions

Hoang Gia Nguyen (Paris 13)

Implementation

Implementation in IMITATOR [André, Fribourg, Kühne, Soulat, 2012]¹

- About 3,000 lines of new OCaml code for our non-Zenoness parameter synthesis algorithm
- Thank to the Parma Polyhedra Library (PPL) library for solving linear inequality systems

Hoang Gia Nguyen (Paris 13)

¹http://www.imitator.fr/

Experiments

Mo	odel			synt	hCycle	CUBdetect			CUBtransform		
Name	# X	# P	# L	Result	Appr.	CUB for	Result	Appr.	#L CUB	Result	Appr.
CSMA/CD	3	3	28		p_invalid	L.	-	-	74		exact
Fischer	2	4	13		p_invalid	1	-	-	20		exact
RCP	6	5	48	Some	p_invalid	1	-	-	71		under
WFAS	4	2	10	Some 102%	p_invalid	Т	-	-	40	Some 100%	exact
AndOr	4	4	27	Some 166%	p_invalid	Т	-	-	34	Some 100%	under
Flip-flop	5	2	52		exact	Т		exact	58		exact
Sched5	21	2	153		exact	L.	-	-	180		under
simop	8	2	46		p_invalid	L.	-	-	81		under
train-gate	5	9	11		p_invalid	Some		under	23		under
coffee	2	3	4	Some 100%	$p_invalid$	Some	Some 100%	under	10	Some 100%	under
CUBPTA1	1	3	2	208%	over	Some	Some 69%	under	6	Some 100%	exact
JLR13	2	2	2	1	p_invalid	Т	<u>_</u>	under	3	1	under

- synthCycle (without non-Zenoness assumption): Synthesizes all parameter valuations of loops
- CUBdetect: Detects a given PTA is CUB-PTA then synthesizes parameter valuations of non-Zeno runs
- **CUBtrans:** Transforms a given PTA into CUB-PTA then synthesizes parameter valuations of non-Zeno runs

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking

Experiments

Mo	odel			synt	hCycle	CUBdetect				CUBtransform			
Name	# X	# P	# L	Time (s)	Result	Detec time (s)	Total time (s)	CUB for	Result	Trans time (s)	Total time (s)	#L CUB	Result
CSMA/CD	3	3	28	TO		0.013	0.013	1	-	0.300	TO	74	Т
Fischer	2	4	13	TO		0.003	0.003		-	0.012	TO	20	T
RCP	6	5	48	TO	Some	0.013	0.013	1	-	0.348	TO	71	
WFAS	4	2	10	то	Some 102%	0.009	0.009	T	-	0.246	1848	40	Some 100%
AndOr	4	4	27	ТО	Some 166%	0.012	0.012	Т	-	0.059	то	34	Some 100%
Flip-flop	5	2	52	0.058	L I	0.002	0.086	Т	1	0.010	0.972	58	L I
Sched5	21	2	153	190		0.051	0.051	1	-	1.180	TO	180	
simop	8	2	46	TO		0.012	0.012		-	0.219	TO	81	
train-gate	5	9	11	TO		0.000	TO	Some		0.059	TO	23	
coffee	2	3	4	то	Some 100%	0.000	то	Some	Some 100%	0.012	то	10	Some 100%
CUBPTA1	1	3	2	0.006	T 208%	0.000	0.015	Some	Some 69%	0.006	0.073	6	Some 100%
JLR13	2	2	2	TO		0.000	TO	Т		0.000	TO	3	

- synthCycle: almost never terminates, and its result (under-approx of an over-approx) cannot be kept
- **CUBdetect**: is not very interesting
- CUBtrans: sometimes gives an exact result, sometimes an under-approx result, sometimes nothing

Hoang Gia Nguyen (Paris 13)

Outline

3 CUB-PTA

4 Implementation and Experiments

5 Conclusions

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking

May 16th, 2017

Conclusions

Contributions:

- Proposed and implemented new Zeno-free parametric model synthesizing approaches in IMITATOR tool
- Gave an overall view of our algorithms' performance, a set of case studies for non-Zenoness parametric model checking study

Future work:

- Implement other techniques such as yet to be defined parametric extensions of:
 - Strongly non-Zeno TAs [Tripakis et al., 2005]
 - Guessing zone graph [Herbreteau et al., 2012]

They could turn to be more efficient and should be investigated

Bibliography

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking

May 16th, 2017

References I

Ξ	l	

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC, pages 592-601. ACM. André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012). IMITATOR 2.5: A tool for analyzing robustness in scheduling problems. In FM, volume 7436 of Lecture Notes in Computer Science, pages 33-36. Springer. Herbreteau, F., Srivathsan, B., and Walukiewicz, I. (2012). Efficient emptiness check for timed Büchi automata. Formal Methods in System Design, 40(2):122–146. Tripakis, S., Yovine, S., and Bouajjani, A. (2005). Checking timed Büchi automata emptiness efficiently. Formal Methods in System Design, 26(3):267–292.

Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J. S., Yang, X., and Li, X. (2015). A systematic study on explicit-state non-zenoness checking for timed automata. *IEEE Transactions on Software Engineering*, 41(1):3–18.

Licensing

Hoang Gia Nguyen (Paris 13)

Non-Zenoness PTA Checking

May 16th, 2017

Source of the graphics used I

Title: Ocaml logo Author: Amir Chaudhry Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: CC BY-SA 4.0

Title: IMITATOR logo (Typing Monkey) Author: Kater Begemot Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: CC BY-SA 3.0

Title: PPL logo Author: Unknown Source: http://bugseng.com/files/ext/images/site/ppl_mm_8.png License: GCC