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Context: Verifying complex timed systems
Real-time systems are everywhere

Hard timing constraints and concurrency
Criticality: risk for huge damages in case of unexpected behavior (bug)
Bugs discovered when final testing: expensive

; Need for a thorough specification and verification phase
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Model checking timed concurrent systems

Use formal methods [Baier and Katoen, 2008]

y = delay

x := 0

x < period

A model of the system

?

|=

is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes No

Counterexample

Turing award (2007) to Edmund M. Clarke, Allen Emerson and Joseph Sifakis
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Timed automaton (TA)
Finite state automaton (sets of locations)

and actions) augmented with a
setX of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 along transitions

idle

adding sugar

delivering coffee
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The most critical system: The coffee machine

y ≤ 5
y ≤ 8

press?
x := 0
y := 0

y = 5
cup!

x ≥ 1
press?
x := 0

y = 8
coffee!

idle

adding sugar

delivering coffee

Example of concrete run for the coffee machine

Coffee with 2 doses of sugar

0
0

x =
y =
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Concrete semantics of timed automata

Concrete state of a TA: pair (l, w), where

l is a location,
w is a valuation of each clock

Example:
(

,
(
x=1.2
y=3.7

))
Concrete run: alternating sequence of concrete states and actions or time
elapse
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Timed automata: A success story

An expressive formalism
Dense time
Concurrency

A tractable verification in theory
Reachability is PSPACE-complete [Alur and Dill, 1994]

A very efficient verification in practice
Symbolic verification: relatively insensitive to constants
Several model checkers, notably Uppaal [Larsen et al., 1997]
Long list of successful case studies
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Beyond timed model checking: parameter synthesis

Verification for one set of constants does not usually guarantee the
correctness for other values

Challenges
Numerous verifications: is the system correct for any value within [40; 60]?
Optimization: until what value can we increase 10?
Robustness [Markey, 2011]: What happens if 50 is implemented with 49.99?
System incompletely specified: Can I verify my system even if I don’t know the
period value with full certainty?

Parameter synthesis
Consider that timing constants are unknown constants (parameters)
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Parametric

timed model checking

y = delay

x := 0

x < period

A model of the system

?

|= is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes

if. . .

No

Counterexample
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Parametric timed model checking

y = delay

x := 0

x < period

A model of the system

?

|= is unreachable

A property to be satisfied

Question: for what values of the parameters does the model of the system
satisfy the property?

Yes if. . .

No

2delay > period
∧ period < 20.46
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Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

augmented with a
set P of parameters [Alur et al., 1993b]

Unknown constants compared to a clock in guards and invariants

y ≤ 5
y ≤ 8

press?
x := 0
y := 0

y=5
cup!

x ≥ 1
press?
x :=0

y=8
coffee!
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Notation: Valuation of a PTA

Given a PTAA and a parameter valuation v, we denote by v(A) the
(non-parametric) timed automaton where each parameter p is valuated
by v(p)

v

 y ≤ p2
y ≤ 8

press?
x := 0
y := 0

y=p2
cup!x ≥ p1

press?
x :=0

y=p3
coffee!

 =
y ≤ 5

y ≤ 8
press?
x := 0
y := 0

y = 5
cup!x ≥ 1

press?
x := 0

y = 8
coffee!

with v :


p1 → 1
p2 → 5
p3 → 8
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Symbolic semantics of parametric timed automata

Symbolic state of a PTA: pair (l, C), where

l is a location,
C is a convex polyhedron overX and P with a special form, called
parametric zone [Hune et al., 2002]

Symbolic run: alternating sequence of symbolic states and actions

Example

x≤p1 x≤p3

Possible symbolic run for this PTA

x=y
x≤p1
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Example

x≤p1 x≤p3

x ≥ p2

a
y :=0

b
x :=0

y≥p4

c
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x=y
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Example

x≤p1 x≤p3

x ≥ p2

a
y :=0

b
x :=0

y≥p4

c
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x=y
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x≤p1 x≤p3

x ≥ p2

a
y :=0

b
x :=0

y≥p4

c
Possible symbolic run for this PTA

x=y
x≤p1

x− y≤p1

x− y≥p2

x≤p3

p1≥p2

y≥x
y − x≤p3

a b
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Symbolic semantics of PTA: Illustration

C ′ = [(C ∩ g)]R ∩ I(l′))↗ ∩ I(l′))

C
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Symbolic exploration: Coffee machine

y ≤ p2

y ≤ 8
press?
x := 0
y := 0

y=p2

cup!
x ≥ p1

press?
x :=0

y=p3

coffee!

x=y
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y ≤ 8
press?
x := 0
y := 0

y=p2

cup!
x ≥ p1
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x :=0
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x=y x = y
0 ≤ y ≤ p2

press?
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Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations
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Decision and computation problems for PTA

EF-Emptiness “Is the set of parameter valuations for which a given location l
is reachable empty?”
Example: “Does there exist at least one parameter valuation for which I can get a coffee with

2 sugars?”

√
, e. g., p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a coffee?”

×, e. g.,
p1 = 1, p2 = 5, p3 = 2

AF-Emptiness “Is the set of parameter valuations for which a given
location l is always eventually reachable empty?”
Example: “Does there exist at least one parameter valuation for which I can always

eventually get a coffee?”

√
, e. g., p1 = 1, p2 = 5, p3 = 8
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Undecidability

The symbolic state space is infinite in general

No finite abstraction exists (unlike timed automata)

Bad news
All interesting problems are undecidable for (general) parametric timed
automata.

[ÉA, STTT 2017]

É. André (Université Paris 13) PTA and real-time systems 8th September 2018 22 / 58



Undecidability

The symbolic state space is infinite in general

No finite abstraction exists (unlike timed automata)

Bad news
All interesting problems are undecidable for (general) parametric timed
automata.

[ÉA, STTT 2017]

É. André (Université Paris 13) PTA and real-time systems 8th September 2018 22 / 58



Outline

1 Parametric timed automata

2 Modeling and verifying real-time systems with parameters

3 A case study: Verifying a real-time system under uncertainty

4 Conclusion and perspectives
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Context: Hard real-time embedded systems

Modern hard real-time embedded systems are distributed in nature

Many of them have critical timing requirements:

automotive systems (modern cars have 10-20 embedded boards connected
by one or more CAN bus)
avionics systems (several distributed control boards connected by one or
more dedicated networks)

It is very important to check that all tasks meet their deadlines
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Schedulability analysis

Real-time system:

Set of tasks (with a period, a WCET and a deadline)

One processor (uniprocessor) or more (multiprocessor)

Scheduling policies: fixed priority (FPS), earliest deadline first (EDF). . .

Definition (Schedulability analysis)

Given a real-time system and a scheduling policy, certify that no deadline miss
will ever occur

In general, schedulability analysis is hard
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Real-time pipelines

Many real-time applications can be modeled as pipelines (also called
transactions) of tasks

Executed on a distributed (or multicore) system

Activated cyclically (periodic or sporadic)
Using preemption

Lower-priority tasks can be temporarily interrupted by a higher-priority task
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Model

A set of pipelines {P(1), . . . ,P(p)} distributed overm nodes

Each pipeline P(i) is a chain of ni tasks {τi,1, . . . , τi,ni}
Pipeline P(i) has an end-to-end (E2E) deadlineDi and period Ti

τ1,1

τ2,1

τ3,1

Node P1

τ1,2

τ1,4

τ2,2

Node P2

τ1,3

τ1,5

τ3,3

Node P3

τ1,6

τ3,4

τ3,2

Node P4

Scheduling Problem: Guarantee that all pipelines complete before their E2E
deadlines
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Activations, jitter, deadline

An example

Task Per. E2E Comp. Resp. Jitter prio
τ1,1 15 3 3 0 HI
τ1,2 - 3 8 0-2 LO
τ1,3 - 15 2 13 3 LO
τ2,1 12 5 6 0 HI
τ2,2 - 12 6 ? 0-1 ME
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Enriching the model with parameters

A task is identified by three parameters:
Ci is the worst-case computation time (or worst-case transmission time, in
case it models a message)

Ri is the task worst-case response time, i. e., the worst case finishing time of
any task instance relative to the activation of its pipeline.

Ji is the task worst-case activation jitter, i. e., the greatest time since its
activation that a task must wait for all preceding tasks to complete their
execution

A parameter of major interest is the computation time
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Modeling a task / pipeline

τ1 waiting
urgent

τ1 released

τ2 waiting
urgent

τ2 releasedP1 complete
xP1 ≤ T1

τ1 release

τ1 completed

τ2 release

τ2 completed

xP1 = T1

P1 restart
xP1 := 0
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Modeling the fixed priority scheduler (preemptive)

Idle
xτ1 ,xτ4 stopped

τ1 running
xτ4 stopped

τ4 running
xτ1 stopped

τ1 running
τ4 released
xτ4 stopped

Deadline missed

τ1 release

τ4 release

xτ1 = C1
τ1 completed
xτ1 := 0

τ4 release

xP1 > D1
e2e

Deadline miss

xτ4 = C4
τ4 completed
xτ4 := 0

τ1 release

xP2 > D2
e2e

Deadline miss

xτ1 = C1
τ1 completed
xτ1 := 0

xP1 > D1
e2e

or xP2 > D2
e2e

Deadline miss

Actually a PTA extended with stopwatches [Sun et al., 2013]

an extension of stopwatch automata [Adbeddaïm and Maler, 2002]
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Schedulability analysis with parametric model checking
Goal: parametric schedulability analysis

Given a real-time system and a scheduling policy, synthesize valuations
(deadlines, periods. . . ) such that the system is schedulable.

Modeling a real-time system with PTAs

Each task or chain of task: one PTA

Each scheduler: one PTA

Use stopwatches to model preemption

Comparison with analytical methods [Sun, Soulat, Lipari, André, Fribourg, FTSCS’13]

Slower but much better in terms of completeness

And can evaluate robustness
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A unified formalism: Parametric task automata
Extension of task automata [Norström et al., 1999, Fersman et al., 2007] with parameters

[André, FMICS’17]
l0
t0

l1
t1

l2
t2

l3
t3

x > 10
x := 0

x = 40
x := 0

x := 0

x = 20
x := 0

Priorities
t0 > t2 > t1 > t3

Task B W D

t0 0 1 2

t1 4 4 20

t2 0 1 4

t3 2 2 10

Parametric task automata can model

Preemption

Periodic tasks, sporadic tasks, pseudo-periodic tasks. . .

Dependencies between tasks

Offset, jitter

Uncertainty

Uniprocessor only
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Parametric task automata: theory and practice

Schedulability-emptiness (“is the set of valuations for which the system is
schedulable empty?”)

Undecidable in general

Decidable under some assumptions [André, FMICS’17]

Implementation in IMITATOR

Translation into a network of parametric stopwatch automata

Schedulability analysis

Parametric and/or robust schedulability analysis

É. André (Université Paris 13) PTA and real-time systems 8th September 2018 37 / 58
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Parametric verification of real-time systems

Many problems can be reduced to parametric reachability (EFsynth): find
parameter valuations for which a given state is (un)reachable

/ This problem is undecidable for PTAs and many subclasses
[ÉA, STTT 2017]

, But we can still compute part (and often all) of the solution

Interesting problems:

Find parameter valuations for which no deadline violation occurs (i. e., for
which the system is schedulable)

Compute the worst-case computation time

Find the parametric WCET when the jitter is unknown
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Parametric model checking applied to schedulability analysis

Advantages: Very expressive (in fact Turing-complete)

, Periodic tasks, sporadic tasks. . .

, Task dependencies

, Data transmission

, Jitters, offsets

, Uncertainty

, All possible schedulers

Drawback: slow (intractable for very large systems)

/ limited to small or medium-sized systems
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Outline

1 Parametric timed automata

2 Modeling and verifying real-time systems with parameters
Real-time systems
Modeling real-time systems under uncertainty
Parametric task automata
Verification
IMITATOR in a nutshell

3 A case study: Verifying a real-time system under uncertainty

4 Conclusion and perspectives
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IMITATOR

A tool for modeling and verifying timed concurrent systems with unknown
constants modeled with parametric timed automata

Communication through (strong) broadcast synchronization
Rational-valued shared discrete variables
Stopwatches, to model schedulability problems with preemption

Synthesis algorithms
(non-Zeno) parametric model checking (using a subset of TCTL)
Language and trace preservation, and robustness analysis
Parametric deadlock-freeness checking
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IMITATOR
Under continuous development since 2008 [André et al., FM’12]

A library of benchmarks

Communication protocols

Schedulability problems

Asynchronous circuits

. . . and more

Free and open source software: Available under the GNU-GPL license

Try it!

www.imitator.fr
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Some success stories

Modeled and verified an asynchronous memory circuit by
ST-Microelectronics

Parametric schedulability analysis of a prospective architecture for the
flight control system of the next generation of spacecrafts designed at
ASTRIUM Space Transportation [Fribourg et al., 2012]

Verification of software product lines [Luthmann et al., 2017]

Offline monitoring [ÉA, Hasuo, Waga @ ICECCS’18]

Formal timing analysis of music scores [Fanchon and Jacquemard, 2013]

Solution to a challenge related to a distributed video processing system by
Thales
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Outline

1 Parametric timed automata

2 Modeling and verifying real-time systems with parameters

3 A case study: Verifying a real-time system under uncertainty

4 Conclusion and perspectives
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The FMTV 2015 Challenge (1/2)

Challenge by Thales proposed during the WATERS 2014 workshop
Solutions presented at WATERS 2015

System: an unmanned aerial video system with uncertain periods

Period constant but with a small uncertainty (typically 0.01%)

Not a jitter!
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The FMTV 2015 Challenge (2/2)

Goal
Compute the end-to-end BCET and WCET times for a buffer size of n = 1 and
n = 3

/ Not a typical parameter synthesis problem?
No parameters in the specification

, A typical parameter synthesis problem
The end-to-end time can be set as a parameter. . . to be synthesized
The uncertain period is typically a parameter (with some constraint, e. g.,
P1 ∈ [40− 0.004, 40 + 0.004])
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Methodology

1 Propose a PTA model with parameters for uncertain periods and the
end-to-end time

2 Add a specific location corresponding to the correct transmission of the
frame

3 Run the reachability synthesis algorithm EFsynth (implemented in IMITATOR)
w.r.t. that location

4 Gather all constraints (in as many dimensions as uncertain periods + the
end-to-end time)

5 Eliminate all parameters but the end-to-end time

6 Exhibit the minimum and the maximum

Note: not eliminating parameters allows one to know for which values of the periods the best / worst case
execution times are obtained.
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To build the PTA model

Uncertainties in the system:

P1 ∈ [40− 0.004, 40 + 0.004]
P3 ∈ [ 403 −

1
150 ,

40
3 + 1

150 ]
P4 ∈ [40− 0.004, 40 + 0.004]

Parameters:
P1_uncertain
P3_uncertain
P4_uncertain

The end-to-end latency (another parameter): E2E

Others:
the register between task 2 and task 3: discrete variable reg2,3
the buffer between task 3 and task 4: n = 1 or n = 3
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Simplification

T1 and T2 are synchronised; T1, T3 and T4 are asynchronised
(exact modeling of the system behaviour is too heavy)

We choose a single arbitrary frame, called the target one

We assume the system is initially in an arbitrary status
This is our only uncertain assumption (in other words, can the periods
deviate from each other so as to yield any arbitrary deviation?)
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The initialization automaton

camera0

ckT1T2 = WCET1

camera1 ckT1T2 = WCET1

buffer3,4 := 0
highest3,4 := 0

buffer3,4 := 1
highest3,4 := 1

camera2 ckT1T2 = WCET1

frame_in_3 := 0 frame_in_3 := 2

camera3 ckT1T2 = WCET1

reg2,3 := 0 reg2,3 := 3

T1T2 WCET1 + WCL2 ≥ ckT1T2

start

T1T2done

ckT1T2 ≥WCET1 + BCL2
T2done

reg2,3 := target
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Task T3

T3preinit

T3process WCET3 ≥ ckT3

WCET3 ≥ ckT3
start

T3wait
P3_uncertain ≥ ckT3

start
P3_uncertain

=
ckT3

T3_start
ckT3 := 0
frame_in_3
:= reg2,3

WCET3
=

ckT3
∧buffer3,4 = 0
∧frame_in_3 >

highest3,4
T3_done

write_by_T3()

WCET3
=

ckT3
∧

buffer3,4
> 0

T3_done

WCET3
=

ckT3
∧

buffer3,4 = 0
∧

highest3,4
≥

frame_in_3
T3_done
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Task T4

T4wait

P4_uncertain ≥ ckT4

T4process_nonempty

10 ≥ ckT4

P4_uncertain = ckT4
∧ buffer3,4 > 0

ckT4 := 0
read_by_T4()

P4_uncertain = ckT4
∧ buffer3,4 = 0

ckT4 := 0

10 = ckT4
∧

frame_in_4 6= target

T4end_ok

ckT4 = 0

10 = ckT4
∧

frame_in_4 = target
∧

ckT1T2 = E2E
ckT4 := 0
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Results

E2E latency results for n = 1 and n = 3

n = 1 n = 3

min E2E 63 ms 63 ms
max E2E 145.008 ms 225.016 ms

Results obtained using IMITATOR in a few seconds

[ÉA, Lipari, Sun @ WATERS’15]
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Outline

1 Parametric timed automata

2 Modeling and verifying real-time systems with parameters

3 A case study: Verifying a real-time system under uncertainty

4 Conclusion and perspectives
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Summary

Finite-state automata
, Mostly decidable results
, Efficient model checking algorithms
/ Miss the quantitative aspects
, Many powerful tools

Timed automata
, Finite abstract semantics
, Some decidable results
/ Some undecidable results
, Several powerful tools

Parametric timed automata
, Very expressive
/ No finite abstract semantics
/ Almost only undecidability results
, Some powerful tools
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Perspectives

Address harder problems
Thales challenge: what is the minimum time between two lost frames? (due
to the uncertain periods)

Requires to model check thousands of frame processings

Improve the efficiency of parameter synthesis techniques
Distributed parameter synthesis

Distribution over a cluster [ÉA, Coti, Nguyen @ ICFEM 2015]
Multi-core synthesis [Laarman et al., 2013]
Distributed synthesis based on locations [Zhang et al., 2016]

Machine learning [Li et al., 2017]
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Beyond (parametric) timed automata

Beyond time. . .
Cost, temperature, energy

Hybrid automata [Alur et al., 1993a, Alur et al., 1995]
Very expressive, but often undecidable
Some interesting software (including SpaceEx [Frehse et al., 2011])

Probabilities
Useful when a property cannot be proved with full certainty

Communication protocols, failures. . .

Another way to model systems known with limited precision

Security
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Additional explanation
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Explanation for the 4 pictures in the beginning

Allusion to the Northeast blackout (USA, 2003)
Computer bug
Consequences: 11 fatalities, huge cost
(Picture actually from the Sandy Hurricane, 2012)

Error screen on the earliest versions of Macintosh

Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
No fatalities
Computer bug: inaccurate finite element analysis modeling
(Picture actually from the Deepwater Horizon Offshore Drilling Platform)

Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)
28 fatalities, hundreds of injured
Computer bug: software error (clock drift)
(Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)
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Source of the graphics used I

Title: Hurricane Sandy Blackout New York Skyline
Author: David Shankbone
Source: https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG
License: CC BY 3.0

Title: Sad mac
Author: Przemub
Source: https://commons.wikimedia.org/wiki/File:Sad_mac.png
License: Public domain

Title: Deepwater Horizon Offshore Drilling Platform on Fire
Author: ideum
Source: https://secure.flickr.com/photos/ideum/4711481781/
License: CC BY-SA 2.0

Title: DA-SC-88-01663
Author: imcomkorea
Source: https://secure.flickr.com/photos/imcomkorea/3017886760/
License: CC BY-NC-ND 2.0
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Source of the graphics used II

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Renault Twizy
Author: Citron
Source: https://commons.wikimedia.org/wiki/File:Renault_Twizy.jpg
License: CC BY-SA 3.0

Title: Airbus A380
Author: Axwel
Source: https://commons.wikimedia.org/wiki/File:Airbus_A380_blue_sky.jpg
License: CC BY 2.0
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License of this document

This presentation can be published, reused and modified under the terms of the
license Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)

(LATEX source available on demand)

Author: Étienne André
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