

UNIVERSITÉ PARIS 13

ICECCS 2018

12 December 2018 Melbourne, Australia

Offline timed pattern matching under uncertainty

<u>Étienne André</u> 1,2,3 , Ichiro Hasuo 2,4 and Masaki Waga 2,4

¹ LIPN, Université Paris 13, CNRS, France
² National Institute of Informatics, Japan
³ JFLI, UMI CNRS, Tokyo, Japan
⁴ SOKENDAI (The Graduate University for Advanced Studies)

Supported by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603) and the ANR national research program PACS (ANR-14-CE28-0002).

Étienne André

Parametric timed pattern matching

Modern cars embed several processors and produce logs

Modern cars embed several processors and produce logs

- Log: sequences of events and timestamps
 - start 2.3
 - gear1 5.8
 - gear2 9.2
 - gear3 18.5
 - gear2 42.1

Modern cars embed several processors and produce logs

Log: sequences of events and timestamps

start 2		З
---------	--	---

- gear1 5.8
- gear2 9.2
- gear3 18.5
- gear2 42.1

How to ensure on-the-fly that some properties are satisfied on a log?

"It never happens that gear1 and gear3 are separated by less than 5 s"

Étienne André

Modern cars embed several processors and produce logs

Log: sequences of events and timestamps

start	2.3	З
start	2.3	

- gear1 5.8
- gear2 9.2
- gear3 18.5
- gear2 42.1

How to ensure on-the-fly that some properties are satisfied on a log?

- "It never happens that gear1 and gear3 are separated by less than 5 s"
- \Rightarrow Monitoring

Étienne André

Personal mobile devices collect large amounts of data

These data can also come in the form of a timed log start walking 2.3

These data can also come in the form of a timed log	
start walking	2.3
walk faster	6.3

These data can also come in the form of a timed log	5
start walking	2.3
walk faster	6.3
receive SMS	15.8

These data can also come in the form of a timed lo	g
start walking	2.3
walk faster	6.3
receive SMS	15.8
read SMS	19.2

These data can also come in the form of a timed log	5
start walking	2.3
walk faster	6.3
receive SMS	15.8
read SMS	19.2
sound of someone bumping into a lamp	22.5

Personal mobile devices collect large amounts of data

These data can also come in the form of a timed lo	g
start walking	2.3
walk faster	6.3
receive SMS	15.8
read SMS	19.2
sound of someone bumping into a lamp	22.5

Key challenge: manage these data

- Verify properties: "has the owner bumped into a street lamp"?
 - key applications (health, ...)
- Deduce information:
 - "what are the minimum/maximum intervals without visiting this shop"?
 - "is the user visiting this place more or less periodically?" (without knowing the actual period)

Outline

1 Pattern matching

2 Methodology

3 Experiments

4 Perspectives

Untimed pattern matching

Problem	log (target)	specification (pattern)	output
string matching	word	word $pat \in \Sigma^*$	$\{(i,j) \in (\mathbb{Z}_{>0})^2 \mid w(i,j) = pat\}$
pattern matching (PM)	word	NFA ${\cal A}$	$\{(i,j) \in (\mathbb{Z}_{>0})^2 \mid w(i,j) \in \mathcal{L}(\mathcal{A})\}$
timed PM	timed word	TA ${\cal A}$	$ \{(t,t') \in (\mathbb{R}_{>0})^2 \mid w _{(t,t')} \in \mathcal{L}(\mathcal{A})\}$
parametric timed PM	timed word	PTA ${\cal A}$	$\{(t,t',\boldsymbol{v}) \mid w _{(t,t')} \in \mathcal{L}(\boldsymbol{v}(\mathcal{A}))\}$

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$	
---	---	---	---	---	---	--------------------------	--

с	r	е	р	е	ន	$\in ?L(\{c i d\}^?r^*e)$
с						

С	r	е	р	е	ន	$\in ?L(\{c i d\}^?r^*e)$
с	r					

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				

crepes
$$\in ?Lig(\{c|i|d\}^?r^*eig)$$
cre $\sqrt{}$

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				\checkmark
	r					

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				\checkmark
	r	е				

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				\checkmark
	r	е				\checkmark

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				\checkmark
	r	е				\checkmark
		е				

С	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				\checkmark
	r	е				\checkmark
		е				

с	r	е	р	е	s	$\in ?L(\{c i d\}?r^*e)$
с	r	е				\checkmark
	r	е				\checkmark
		е				\checkmark
			р			

Timed pattern matching

Problem	log (target)	specification (pattern)	output
string matching	word	word $pat \in \Sigma^*$	$\{(i,j) \in (\mathbb{Z}_{>0})^2 \mid w(i,j) = pat\}$
pattern matching (PM)	word	NFA ${\cal A}$	$\{(i,j) \in (\mathbb{Z}_{>0})^2 \mid w(i,j) \in \mathcal{L}(\mathcal{A})\}$
timed PM	timed word	TA ${\cal A}$	$\{(t,t') \in (\mathbb{R}_{>0})^2 \mid w _{(t,t')} \in \mathcal{L}(\mathcal{A})\}$
parametric timed PM	timed word	PTA ${\cal A}$	$\{(t,t',\boldsymbol{v}) \mid w _{(t,t')} \in \mathcal{L}(\boldsymbol{v}(\mathcal{A}))\}$

Timed pattern matching: timed word

Timed word

=

[Alur and Dill, 1994]

sequence of actions and timestamps

Timed pattern matching: timed word

Timed word

=

[Alur and Dill, 1994]

sequence of actions and timestamps

Timed word segment

[Waga et al., 2016]

Timed pattern matching: timed automaton

How to express a (timed) property on a log?

Example

"At least 1 time unit after the start of the segment, a is observed. Then, within strictly less than 1 time unit, another a is observed. Then, within strictly less than 1 time unit, another a is observed."

Timed pattern matching: timed automaton

How to express a (timed) property on a log?

Example

"At least 1 time unit after the start of the segment, a is observed. Then, within strictly less than 1 time unit, another a is observed. Then, within strictly less than 1 time unit, another a is observed."

A solution: timed automata

[Alur and Dill, 1994]

- expressive
- well-studied
- supported by well-established model-checkers
Finite state automaton (sets of locations)

Finite state automaton (sets of locations and actions)

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [Alur and Dill, 1994]
 - Real-valued variables evolving linearly at the same rate

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [Alur and Dill, 1994]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants
- Features
 - Location invariant: property to be verified to stay at a location

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [Alur and Dill, 1994]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition

- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 [Alur and Dill, 1994]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition
 - Clock reset: some of the clocks can be set to 0 along transitions

Timed pattern matching: principle

Timed pattern matching

Inputs

A log

(timed word)

A property usually a specification of faults (timed automaton) [Alur and Dill, 1994] x > 1 x < 1 x = 0 x = 0 x < 1 true

Output

The set of time intervals where faults are detected \Rightarrow Set of matching intervals $\{(t, t') \mid w|_{(t,t')} \in \mathcal{L}(\mathcal{A})\}$

Timed pattern matching: example

Timed pattern matching: example

Timed pattern matching: example

Set of matching intervals:

$$\{(t,t') \mid w|_{(t,t')} \in \mathcal{L}(\mathcal{A})\} = \{(t,t') \mid t \in (3.7,3.9), t' \in [6.0,\infty)\}$$

Étienne André

Parametric timed pattern matching

Previous works

Timed pattern matching with signals

[Ulus et al., 2014, Ulus et al., 2016, Ulus, 2017]

logs are encoded by signals (i. e., values that vary over time)

- state-based view, while our timed words are event-based
- specification is encoded by timed regular expressions (TREs)

Timed pattern matching with timed words and timed automata

[Waga et al., 2016, Waga et al., 2017]

- [Waga et al., 2016]: brute-force and Boyer-Moore algorithm
- [Waga et al., 2017]: online algorithm that employs skip values from the Franek–Jennings–Smyth string matching algorithm [Franek et al., 2007]

Goal: Extend timed pattern matching for uncertainty

Challenges

- The property may not be known with full certainty:
 - Detect a periodic event but without knowing the period
 - "is the user visiting this place more or less periodically?" (without knowing the actual period)
- Optimization problems
 - Find minimal/maximal timings for which some property holds
 - "what are the minimum/maximum intervals without visiting this shop"?

Goal: Extend timed pattern matching for uncertainty

Challenges

- The property may not be known with full certainty:
 - Detect a periodic event but without knowing the period
 - " is the user visiting this place more or less periodically?" (without knowing the actual period)
- Optimization problems
 - Find minimal/maximal timings for which some property holds
 - "what are the minimum/maximum intervals without visiting this shop"?

Objective

Find intervals of time and values of parameters for which a property holds

Problem	log (target)	specification (pattern)	output
string matching	word	word $pat \in \Sigma^*$	$\{(i,j) \in (\mathbb{Z}_{>0})^2 \mid w(i,j) = pat\}$
pattern matching (PM)	word	NFA ${\cal A}$	$\left \{ (i,j) \in (\mathbb{Z}_{>0})^2 \mid w(i,j) \in \mathcal{L}(\mathcal{A}) \} \right $
timed PM	timed word	TA ${\cal A}$	$\{(t,t') \in (\mathbb{R}_{>0})^2 \mid w _{(t,t')} \in \mathcal{L}(\mathcal{A})\}$
parametric timed PM	timed word	pta ${\cal A}$	$\{(t, t', v) \mid w _{(t, t')} \in \mathcal{L}(v(\mathcal{A}))\}$

Étienne André

Outline

1 Pattern matching

2 Methodology

3 Experiments

4 Perspectives

Methodology

Main idea

Use	parametric	timed	model	checking
-----	------------	-------	-------	----------

	parametric	timed	automata
--	------------	-------	----------

- parameter synthesis
- IMITATOR

[Alur et al., 1993]

[André et al., 2012]

Methodology

Main idea

Use	parametric	: timed	model	checking

- parametric timed automata
- parameter synthesis
- IMITATOR

Methodology step by step

- Encode the property using a PTA
- $_{f 2}$ Add two parameters ${
 m t}$ and ${
 m t}'$
- Apply a (mild) transformation to the property PTA
- 4 Transform the timed word into a PTA
- 5 Perform the composition of both PTA
- 6 Apply reachability synthesis to the product

[Alur et al., 1993]

[André et al., 2012]

Methodology

Main idea

Use	parametric	: timed	model	checking

- parametric timed automata
- parameter synthesis
- IMITATOR

Methodology step by step

- Encode the property using a PTA
- ${f 2}\,$ Add two parameters ${f t}$ and ${f t}'$
- Apply a (mild) transformation to the property PTA
- 4 Transform the timed word into a PTA
- 5 Perform the composition of both PTA
- 6 Apply reachability synthesis to the product

Teaser

Our method is scalable!

Étienne André

[Alur et al., 1993]

[André et al., 2012]

Outline

1 Pattern matching

2 Methodology

Parametric timed automata

3 Experiments

4 Perspectives

timed model checking

A model of the system

Question: does the model of the system satisfy the property?

Parametric timed pattern matching

Parametric timed model checking

A model of the system

Question: for what values of the parameters does the model of the system satisfy the property?

Yes if...

 $\begin{array}{l} 2 \text{delay} > \text{period} \\ \wedge \text{period} < 20.46 \end{array}$

Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks) augmented with a set P of parameters
 [Alur et al., 1993]
 - Unknown constants compared to a clock in guards and invariants

Property: parametric timed automaton

Expressing a parametric timed property on a log

Example

"At least p_1 time units after the start of the segment, a is observed. Then, within strictly less than p_2 time units, another a is observed. Then, within strictly less than p_2 time units, another a is observed."

Property: parametric timed automaton

Expressing a parametric timed property on a log

Example

"At least p_1 time units after the start of the segment, a is observed. Then, within strictly less than p_2 time units, another a is observed. Then, within strictly less than p_2 time units, another a is observed."

Our solution: parametric timed automata

[Alur et al., 1993]

Add some start and end gadgets for completeness of the method

See manuscript for formal transformation and proofs

Étienne André

Parametric timed pattern matching

Add some start and end gadgets for completeness of the method

- Add an initial transition in o-time
 - Captures segments starting from o

See manuscript for formal transformation and proofs

Add some start and end gadgets for completeness of the method

- Add an initial transition in o-time
 - Captures segments starting from o
- 2 Add a new location with a self-loop
 - Captures segments not starting from the beginning of the word

See manuscript for formal transformation and proofs

Add some start and end gadgets for completeness of the method

- Add an initial transition in O-time
 - Captures segments starting from o
- 2 Add a new location with a self-loop
 - Captures segments not starting from the beginning of the word
- ${\scriptstyle 3}$ Add a new final transition in >0 time
 - To match the usual definition that the segment must end in > 0 time after the last action

See manuscript for formal transformation and proofs

Transforming a log into a (parametric) timed automaton

Essentially easy:

- Add one clock never reset (absolute time)
- 2 Convert pairs (action, time) into transitions

Transforming a log into a (parametric) timed automaton

Essentially easy:

- Add one clock never reset (absolute time)
- 2 Convert pairs (action, time) into transitions

Transforming a log into a (parametric) timed automaton

Essentially easy:

- Add one clock never reset (absolute time)
- 2 Convert pairs (action, time) into transitions

Parametric timed pattern matching

Product and reachability synthesis

Result

The set of parameter valuations $t, t', p_1, p_2...$ reaching the final location of the property is exactly the answer to the parametric pattern matching problem

Product and reachability synthesis

Result

The set of parameter valuations $t, t', p_1, p_2...$ reaching the final location of the property is exactly the answer to the parametric pattern matching problem

Remark

This problem is decidable... in contrast to most problems using PTAs!

[André, 2018]

See formal result in paper

Product and reachability synthesis: example

Our property:

Our log:

Product and reachability synthesis: example

Our property:

w

2.8

Set of matching intervals:

0.5 0.9 1.3 1.7

 $\begin{array}{l} 1.7 < t < 2.8 - p_1 \wedge 4.9 \leq t' < 5.3 \wedge p_2 > 1.2 \\ \lor \ 2.8 < t < 3.7 - p_1 \wedge 5.3 \leq t' < 6 \wedge p_2 > 1.2 \\ \lor \ 3.7 < t < 4.9 - p_1 \wedge t' \geq 6 \wedge p_2 > 0.7 \end{array}$

3.7

4.9 5.3

6.0

Étienne André

Parametric timed pattern matching

Product and reachability synthesis: example

Our property:

Set of matching intervals:

 $\begin{array}{l} 1.7 < t < 2.8 - p_1 \wedge 4.9 \leq t' < 5.3 \wedge p_2 > 1.2 \\ \lor \ 2.8 < t < 3.7 - p_1 \wedge 5.3 \leq t' < 6 \wedge p_2 > 1.2 \\ \lor \ 3.7 < t < 4.9 - p_1 \wedge t' \geq 6 \wedge p_2 > 0.7 \end{array}$

Étienne André

Parametric timed pattern matching
Product and reachability synthesis: example

Our property:

Set of matching intervals:

 $\begin{array}{l} 1.7 < t < 2.8 - p_1 \wedge 4.9 \leq t' < 5.3 \wedge p_2 > 1.2 \\ \lor \ 2.8 < t < 3.7 - p_1 \wedge 5.3 \leq t' < 6 \wedge p_2 > 1.2 \\ \lor \ 3.7 < t < 4.9 - p_1 \wedge t' \geq 6 \wedge p_2 > 0.7 \end{array}$

Étienne André

Product and reachability synthesis: example

Our property:

Set of matching intervals:

$$\begin{array}{l} 1.7 < t < 2.8 - p_1 \wedge 4.9 \leq t' < 5.3 \wedge p_2 > 1.2 \\ \lor \ 2.8 < t < 3.7 - p_1 \wedge 5.3 \leq t' < 6 \wedge p_2 > 1.2 \\ \lor \ 3.7 < t < 4.9 - p_1 \wedge t' \geq 6 \wedge p_2 > 0.7 \end{array}$$

Étienne André

Exemple: graphical representation

$$\begin{array}{l} 1.7 < t < 2.8 - p_1 \land 4.9 \leq t' < 5.3 \land p_2 > 1.2 \\ \lor \ 2.8 < t < 3.7 - p_1 \land 5.3 \leq t' < 6 \land p_2 > 1.2 \\ \lor \ 3.7 < t < 4.9 - p_1 \land t' \geq 6 \land p_2 > 0.7 \end{array}$$

Étienne André

Outline

- 1 Pattern matching
- 2 Methodology
- 3 Experiments
- 4 Perspectives

Outline

1 Pattern matching

2 Methodology

- ExperimentsIMITATOR in a nutshell
 - Benchmarks

4 Perspectives

IMITATOR

- A tool for modeling and verifying timed concurrent systems with unknown constants modeled with parametric timed automata
 - Communication through (strong) broadcast synchronization
 - Rational-valued shared discrete variables
 - Stopwatches, to model schedulability problems with preemption
- Synthesis algorithms
 - (non-Zeno) parametric model checking (using a subset of TCTL)
 - Language and trace preservation, and robustness analysis
 - Parametric deadlock-freeness checking

IMITATOR

Under continuous development since 2008

- A library of benchmarks
 - Communication protocols
 - Schedulability problems
 - Asynchronous circuits
 - …and more

[André et al., FM'12]

[André, FTSCS'18]

Free and open source software: Available under the GNU-GPL license

IMITATOR

Under continuous development since 2008

- A library of benchmarks
 - Communication protocols
 - Schedulability problems
 - Asynchronous circuits
 - …and more

[André et al., FM'12]

[André, FTSCS'18]

Free and open source software: Available under the GNU-GPL license

Try it!

www.imitator.fr

Outline

1 Pattern matching

2 Methodology

- 3 ExperimentsIMITATOR in a nutshe
 - Benchmarks

4 Perspectives

Experimental environment

Toolkit

- Simple Python script to transform timed words into IMITATOR PTAs
- Slightly modified version of IMITATOR
 - To handle PTAs with dozens of thousands of locations
 - To manage *n*-parameter constraints with dozens of thousands of disjuncts

Two algorithms:

- PTPM: parametric timed pattern matching
- PTPM_{opt}: parametric timed pattern matching with parameter optimization
 - e.g., "where in the log is the smallest value of the parameter p s.t. the property is satisfied/violated?"

Sources, binaries, models, logs can be found at www.imitator.fr/static/ICECCS18

Case study 1: GEAR (description)

Monitoring the gear change of an automatic transmission system

- Obtained by simulation of the Simulink model of an automatic transmission system [Hoxha et al., 2014]
- S-TaLiRo [Annpureddy et al., 2011] used to generate an input to this model (generates a gear change signal that is fed to the model)
- Gear chosen from $\{g_1, g_2, g_3, g_4\}$
- Generated gear change recorded in a timed word

Property

"If the gear is changed to 1, it should not be changed to 2 within p seconds."

This condition is related to the requirement ϕ_5^{AT} proposed in [HOXha et al., 2014] (the nominal value for p in [HOXha et al., 2014]

is 2).

Case study 1: GEAR (experiments)

Property: "If the gear is changed to 1, it should not be changed to 2 within p seconds."

Experiments data:

Model		PTPM				PTPMopt		
Length	Time frame	States	Matches	Parsing (s)	Comp. (s)	States	Comp. (s)	t(s)
1,467	1,000	4,453	379	0.02	1.60	3,322	0.94	
2,837	2,000	8,633	739	0.33	2.14	6,422	1.70	
4,595	3,000	14,181	1,247	0.77	3.63	10,448	2.85	9
5,839	4,000	17,865	1,546	1.23	4.68	13,233	3.74	7
7,301	5,000	22,501	1,974	1.94	5.88	16,585	4.79	6 5
8,995	6,000	27,609	2,404	2.96	7.28	20,413	5.76	4
10,316	7,000	31,753	2,780	4.00	8.38	23,419	6.86	
11,831	8,000	36,301	3,159	5.39	9.75	26,832	7.87	$ \overset{1}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{$
13,183	9,000	40,025	3,414	6.86	10.89	29,791	8.61	0 2 4 6 8 10 12 14 16
14,657	10,000	44,581	3,816	8.70	12.15	33,141	9.89	

PTPM_{opt}: alternative procedure to find the minimum/maximum value of a parameter along the log

Étienne André

Case study 2: ACCEL (description)

Monitoring the acceleration of an automated transmission system

- Also obtained by simulation from the Simulink model of [Hoxha et al., 2014]
- (discretized) value of three state variables recorded in the log:
 - engine RPM (discretized to "high" and "low" with a certain threshold)
 - velocity (discretized to "high" and "low" with a certain threshold)
 - 4 gear positions

Property

"If a gear changes from 1 to 2, 3, and 4 in this order in p seconds and engine RPM becomes large during this gear change, then the velocity of the car must be sufficiently large in one second."

This condition models the requirement ϕ_8^{AT} proposed in [HOXha et al., 2014] (the nominal value for p in [HOXha et al., 2014] is 10).

Étienne André

Case study 2: ACCEL (experiments)

Property: "If a gear changes from 1 to 2, 3, and 4 in this order in p seconds and engine RPM becomes large during this gear change, then the velocity of the car must be sufficiently large in one second."

Experiments data:

Ν	Aodel		P	PTPMopt			
Length	Time frame	States	Matches	Parsing (s)	Comp. (s)	States	Comp. (s)
2,559	1,000	6,504	2	0.27	1.60	6,502	1.85
4,894	2,000	12,429	2	0.86	3.04	12,426	3.57
7,799	3,000	19,922	7	2.21	4.98	19,908	6.06
10,045	4,000	25,520	3	3.74	6.51	25,514	7.55
12,531	5,000	31,951	9	6.01	8.19	31,926	9.91
15,375	6,000	39,152	7	9.68	10.14	39,129	12.39
17,688	7,000	45,065	9	13.40	11.61	45,039	14.06
20,299	8,000	51,660	10	18.45	13.52	51,629	16.23
22,691	9,000	57,534	11	24.33	15.33	57,506	18.21
25,137	10,000	63,773	13	31.35	16.90	63,739	20.61

Étienne André

Case study 3: BLOWUP

Property made on purpose to test our scalability

Experiments data:

Ν	Aodel		P	PTPMopt			
Length	Time frame	States	Matches	Parsing (s)	Comp. (s)	States	Comp. (s)
200	101	20,602	5,050	0.01	15.31	515	0.24
400	202	81,202	20,100	0.02	82.19	1,015	0.49
600	301	181,802	45,150	0.03	236.80	1,515	0.71
800	405	322,402	80,200	0.05	514.57	2,015	1.05
1,000	503	503,002	125,250	0.06	940.74	2,515	1.24

Outline

- 1 Pattern matching
- 2 Methodology
- 3 Experiments
- 4 Perspectives

Summary

- New original method to monitor logs of real-time systems
- Methodology: parametric timed model checking
- Applications: automotive industry
 - Linear in the size of the log
 - Able to handle logs of dozens of thousands of events ⇒ scalable

Summary

- New original method to monitor logs of real-time systems
- Methodology: parametric timed model checking
- Applications: automotive industry
 - Linear in the size of the log
 - Able to handle logs of dozens of thousands of events ⇒ scalable
- An offline online algorithm
 - We believe our algorithm is in fact essentially online
 - No need for the whole log to start the analysis
 - The word could be fed to IMITATOR in an incremental manner
 - But the speed may need to be improved further

Perspectives

Extensions

- Improve the efficiency with skipping
- Exploit the polarity of parameters
- Use and extend the MONAA library

[Waga et al., 2017] [Asarin et al., 2011] [Waga et al., 2018]

- Graphical representation and interpretation
 - How to interpret dozens of thousands of matches?

Perspectives

Extensions

- Improve the efficiency with skipping
- Exploit the polarity of parameters
- Use and extend the MONAA library

[Waga et al., 2017] [Asarin et al., 2011] [Waga et al., 2018]

- Graphical representation and interpretation
 - How to interpret dozens of thousands of matches?

Bibliography

References I

Alur, R. and Dill, D. L. (1994).

A theory of timed automata.

Theoretical Computer Science, 126(2):183–235.

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993).

Parametric real-time reasoning.

In Kosaraju, S. R., Johnson, D. S., and Aggarwal, A., editors, STOC, pages 592–601, New York, NY, USA. ACM.

André, É. (2018).

A benchmarks library for parametric timed model checking.

In Artho, C. and Ölveczky, P. C., editors, FTSCS, Lecture Notes in Computer Science. Springer. To appear.

André, É. (2018).

What's decidable about parametric timed automata? International Journal on Software Tools for Technology Transfer

To appear

André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012). IMITATOR 2.5: A tool for analyzing robustness in scheduling problems. In Giannakopoulou, D. and Méry, D., editors, FM, volume 7436 of LNCS, pages 33–36. Springer.

Annpureddy, Y., Liu, C., Fainekos, G. E., and Sankaranarayanan, S. (2011). S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In Abdulla, P. A. and Leino, K. R. M., editors, *TACAS*, volume 6605 of *LNCS*, pages 254–257. Springer.

References II

Asarin, E., Donzé, A., Maler, O., and Nickovic, D. (2011). Parametric identification of temporal properties. In *RV*, volume 7186 of *LNCS*, pages 147–160. Springer.

Franek, F., Jennings, C. G., and Smyth, W. F. (2007). A simple fast hybrid pattern-matching algorithm. *Journal of Discrete Algorithms*, 5(4):682–695.

Hoxha, B., Abbas, H., and Fainekos, G. E. (2014). Benchmarks for temporal logic requirements for automotive systems. In Frehse, G. and Althoff, M., editors, *ARCH@CPSWeek*, volume 34 of *EPiC Series in Computing*, pages 25–30. EasyChair.

Hune, T., Romijn, J., Stoelinga, M., and Vaandrager, F. W. (2002). Linear parametric model checking of timed automata. Journal of Logic and Algebraic Programming, 52-53:183-220.

Ulus, D. (2017).

Montre: A tool for monitoring timed regular expressions.

In Majumdar, R. and Kuncak, V., editors, CAV, Part I, volume 10426 of LNCS, pages 329-335. Springer.

Ulus, D., Ferrère, T., Asarin, E., and Maler, O. (2014).

Timed pattern matching.

In Legay, A. and Bozga, M., editors, FORMATS, volume 8711 of LNCS, pages 222–236. Springer.

References III

Ulus, D., Ferrère, T., Asarin, E., and Maler, O. (2016).

Online timed pattern matching using derivatives. In Chechik, M. and Raskin, J., editors, *TACAS*, volume 9636 of *LNCS*, pages 736–751. Springer.

Waga, M., Akazaki, T., and Hasuo, I. (2016).

A Boyer-Moore type algorithm for timed pattern matching.

In Fränzle, M. and Markey, N., editors, FORMATS, volume 9884 of LNCS, pages 121-139. Springer.

Waga, M., Hasuo, I., and Suenaga, K. (2017).

Efficient online timed pattern matching by automata-based skipping. In Abate, A. and Geeraerts, G., editors, FORMATS, volume 10419 of LNCS, pages 224–243. Springer.

Waga, M., Hasuo, I., and Suenaga, K. (2018).

MONAA: A tool for timed pattern matching with automata-based acceleration.

In MT@CPSWeek, pages 14-15. IEEE.

Additional explanation

Example of concrete run for the coffee machine

 $\begin{array}{c} x = 0 \\ y = 0 \end{array}$

Example of concrete run for the coffee machine

Example of concrete run for the coffee machine

Example of concrete run for the coffee machine

idle

adding sugar

delivering coffee

idle adding sugar delivering coffee

Example of concrete run for the coffee machine

Example of concrete run for the coffee machine

idle adding sugar delivering coffee

idle adding sugar delivering coffee

Example of concrete run for the coffee machine

Example of concrete run for the coffee machine

Example of concrete run for the coffee machine

Example of concrete run for the coffee machine

Concrete semantics of timed automata

Concrete state of a TA: pair (l, w), where

l is a location,
w is a valuation of each clock

Example: $\left(\bigcirc, \begin{pmatrix} x=1.2\\ y=3.7 \end{pmatrix} \right)$

Concrete run: alternating sequence of concrete states and actions or time elapse

- *l* is a location,
- C is a convex polyhedron over X and P with a special form, called parametric zone [Hune et al., 2002]

- *l* is a location,
- C is a convex polyhedron over X and P with a special form, called parametric zone [Hune et al., 2002]
- Symbolic run: alternating sequence of symbolic states and actions

- *l* is a location,
- C is a convex polyhedron over X and P with a special form, called parametric zone [Hune et al., 2002]
- Symbolic run: alternating sequence of symbolic states and actions

Symbolic state of a PTA: pair (l, C), where

- *l* is a location,
- C is a convex polyhedron over X and P with a special form, called parametric zone [Hune et al., 2002]
- Symbolic run: alternating sequence of symbolic states and actions

Étienne André

- *l* is a location,
- C is a convex polyhedron over X and P with a special form, called parametric zone [Hune et al., 2002]
- Symbolic run: alternating sequence of symbolic states and actions

Licensing

Source of the graphics used I

Title: 1960 Citroen DS19 Author: Joc281 Source: https://en.wikipedia.org/wiki/File:800px_1973_377_Citroen_DS19_automatically_guided_motor License: CC by-sa 3.0

Title: A Cartoon Businessman Reading A Text Message Author: Vector Toons Source: https://en.wikipedia.org/wiki/File:800px_1973_377_Citroen_DS19_automatically_guided_motor License: CC by-sa 4.0

Title: Smiley green alien big eyes (aaah) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien big eyes (cry) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons **Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)** (ETLX source available on demand)

Author: Étienne André

https://creativecommons.org/licenses/by-sa/4.0/