Verification of an industrial asynchronous
leader election algorithm using abstractions
and parametric model checking

E. André, L. Fribourg, R. Soulat and J.-M. Mota

CNRS, THALES, U. Paris 13, ENS Paris-Saclay

January 14, 2019 VMCAI'19 Cascai — Portugal

1.

3.

4.

5.

PLAN

Motivation

Bully algorithm in the a/synchronous context

Adaptation of the Bully algorithm

Proofs

direct automated proof for a small number p of
processes

proof with abstractions for <= 5000 processes

Conclusion

. Motivation

Basic facts about leader election algorithms

Many distributed algorithms needs one process to act as a leader or coordinator
Does not matter which process does the job, just need to pick one
Election algorithm technique to pick a unique coordinator

Assumption: each process has a unique ID
Goal: find the non-crashed process with highest ID

Problem (Leader election): each node eventually decides whether it is leader or not,
subject to the constraint that there is a unique leader

Nodes are in one of the three states: leader, follower, candidate

When leaving the candidate mode, a node goes into a final state
(either leader or follower)

Bully algorithm in the a/synchronous context

Bully algorithm in the a/synchronous setting

* Topology (here): complete graph
e Synchronous case:

* All the process clocks are synchronized; processes update their state
simultaneously

* Bully algorithm [Garcia-Molina 1982]: classical synchronous leader
election

* Asynchronous case:

e every process is activated periodically, but period not (exactly) the same
for each process (each period takes here its value in [49,51]).

* besides, the value of each period may slowly evolves (jitter).

* |nitially, the values clocks are different (setoff).

Short history of asynchronous versions
of Bully algorithm

 [GM 1982] claims that the asynchronous version works
(with correctness proof similar to the synchronous case) .

* [Stoller 1997] gives a counterexample!

* [Svensson 2008] gives a corrected version, but:

— the algorithm requires an important modification

— hundreds of invariants (generated by hand) are
needed for the semi-automated proof.

I1l. A variant of Bully algorithm

General assumptions

All the IDs of the nodes are different

Each node has the ability to send messages to all the nodes,
and can store messages received from other nodes

Nodes are either in mode On or mode Off (failure)

A node in mode On is in one of the states
* Follower (the node is not competing to become leader)
* Candidate (the mode is competing to become leader)
* [eader (the mode has declared itself to be leader)

Each transmitted message is of the form: (SenderlID, state)
where state is the state On/Off of the sending node

Updating algorithm (synchronous setting)

At each clock tick, every On process sends to all the other processes its ID number
Each process compares the received ID numbers to its own ID number and updates it
foreach message € allM essages do
if message.SenderlD) > node;.id then

state,,..¢ + Follower
\\ higherl Dreceived + true

if = higherl Dreceived then

if node;.state = Follower then
statener¢ +— Candidate

else if node;.state = Candidate then
state,,..; + Leader

else if node;.state = Leader then
statene-¢ + Leader

node;.state + state,,..;

Property P _to be proven:
After a certain number of clean rounds (rounds with no crash and no recovery),

e the process On with the higher ID is Leader , and

* all the other On processes are Follower (no On process is Candidate)

Complications (asynchronous setting)

If clock ticks are not synchronized, the messages are not
emitted (and received) simultaneously

11

Complications due to asynchronous clocks

Table 2: Jitter values for Example 1
jitterl jitte‘r2 jitter3
Node 1 0.5 —0.5 0.5
Node 2 0] 0.1 0
Node 3 0.1 0.3 0.5

~
w
(
(
o~
w

oo

t:

node2

=~

—t
~~

-0

|
nodeq

B

110 120 130 140 150

e b—
=)
=
-1
o
oo
o
=
[
o
=)

|

|

!
T] : T
0 10 20 30 40
Fig. 1: Activation of three nodes with uncertain periods and jitters

®* nb of activations for nodes 1 and 3 always the same up to a difference of 1
(due to the jitters) because they have same periods.

* But nb of activations for node 2 becomes smaller than that of nodes 1 and 3
by an increasing difference, since node 2 is slower (period: 51 instead of 49).

* This phenomenon does not occur when periods are equal for all nodes, and
makes this setting more challenging. 12

A simple solution

 To overcome this difficulty, each /D proceeds to the update not
at each period end, but every two (or more) periods

e Basicinsight:

Lemma 1. Assume a node i and activation times t! and t2*%. Then in between
these two activations, node i received at least one message from all nodes.

13

Basic assumptions

* |nstantiated model with uncertainty

— Periods and jitters are known to belong to given
intervals

Table 1: Constants (in ms)

Constant Value
periodmin 49
periodmax 51
jittermin —-0.5
jittermax 0.5

— the number p of processes is given
— The algorithm should work for p as large as possible

14

Extended Bully algorithm

Algorithm 1: Update Node(i)

N O C A 8N~

10
11
12
13
14

15

16
17
18

if node;. EvenActivation then

allM essages + ReadMailbox()

higherl Dreceived + false

foreach message € allM essages do

if message.SenderlD > node;.id then
state,,..s + Follower

L higherl Dreceived + true

if = higherl Dreceived then
if node;.state = Follower then
| statenc:: + Candidate
else if node;.state = Candidate then
state,, . ¢ + Leader
else if node;.state = Leader then
|_ statenert + Leader

node;.state + state,,..;

node; FvenActivation + —node; . FvenActivation
message = {node;.id; node;.state}

Send T o_All_Network(message)

15

Objective

* Definition 1 (round). A round is a time period during which all the
nodes that are On have sent at least one message.

* Definition 2 (cleanness). A round is said to be c/ean if during its
time period no node have been switched from On to Off or from Off

to On.

The correctness property P that we want to prove automatically is:

« After 4 clean nodes, the node with the highest ID is recognized as
the leader by all the On nodes of the network. »

16

V. PROOFS

17

V.1 Direct proof of P using SMT solving

* Using a model M of the algorithm, we get automatically a
proof of P using SMT solver SafeProver [EJ17] when p is small

(p <= 5).

* This leads us to consider a method using abstractions
to prove P for large values of p.

18

IV.2 Proof with abstractions

e we consider two abstractions of V/

— 1%t abstraction M* consists in considering one of the p processes
(arbitrarily), and consider the set of other processes under the
form of a single big automaton (no timing information)

— In the 2" abstraction T, one considers two generic processes
under the form of timed automaton with one parameter (the
fixed value of the period lying in [49,51])

 we also decompose property P into several properties
P1-P2-P3-P4 .

19

Scheme of the proof

For a given number p of processes, prove:

* PI1-P2on M* with SMT solver (SafeProver)

* P3on T with parametric timed model checker (IMITATOR)
[NB: exact statement of P3 depends on values of periods and jitters]

e P4 on M* with SMT solver using P1-P2-P3 as lemmas

Method works for p = 5000!

20

Automated proof of P1-P2 for M*
using SMT solver SafeProver

All the other nodes
N\ {node;}

Messages

@ state

Scheme of model M* with node i under study interacting with other nodes

— P1: (Activation(j) = 2 A node;.id # maxld) = node;.state = Follower
— P2: (Activation(j) = 2 A node;.id = mazxld)
= node;.state € {Candidate, Leader}

21

Automated proof of P3 for T
using parametric timed model checker IMITATOR

Activation(i) :=0
0 < ¢; < per; 4+ jitterpa
Ci 2 ['v I's +Ji..’_5‘r'm"

< Activation(i) := Activation(i) + 1

Fig. 3: Component 1 of timed model T

For nodes node; and node;, the property that we want to specify corresponds
in the direct model M (without abstraction) of Section 3 to:

— (Activation(i) < 13 A Activation(j) < 13)
= | Activation(i) — Activation(j) | < 2.

In our timed abstract model T', such a property becomes:

— (P3):Vie {1,...,p} Activation(j) < 13 =
—2 < Activation(j) — Activation(i) < 1.

where Activation(i) denotes the number of activations of node i since the last
clean round.

22

Automated proof of P4 for M*
using SMT solver with P1-P2-P3 as assumptions

P4 : (Activation(i) > 4 A node;.id = maxld) = node;.state = Leader

23

Conclusion and final remarks

We considered an asynchronous leader election algorithm

We proved automatically its correctness property P using SMT solving for a
small number p of nodes

Using two abstractions and a decomposition of P, we verify the algorithm
using SMT and parametric timed model checking for p up to 5000.

The algorithm considered here is actually a variant of the original algorithm
designed by THALES (not available for confidentiality reasons).

The same kind of proof has been done for the original algorithm

We are now considering to prove formally the correctness of the two
abstractions

24

THANKS!

