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Introduction

Context: Model Checking Timed Systems

Input
A timed concurrent system
A good behavior expected for the system

Question: does the system always behave well?
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Introduction

An Example of Flip-Flop Circuit
An asynchronous circuit [Clarisó and Cortadella, 2007]
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Concurrent behavior
4 elements: G1, G2, G3, G4

2 input signals (D and CK), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate

Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the
fall of CK?

Timed model checking gives the answer: yes
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Introduction

Synthesis of Parameters

More difficult problem: find values of the timing delays for which
the system behaves well

Idea: reason with unknown constants or parameters

Interesting applications
Ensure the robustness of the system
Allow the designer to optimize timing delays
Allow to scale down large timing constants

Difficult problem
Both concurrent behavior and timed behavior
Undecidable in general
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Introduction

Flip-Flop Circuit: Timing Parameters

An asynchronous circuit
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Timing parameters
Traversal delays of the gates: one interval per gate
4 environment parameters: TLO, THI, TSetup and THold

Question: for which values of the parameters does the rise of Q
always occur before the fall of CK?

Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 5 / 63



Introduction

Flip-Flop Circuit: Timing Parameters

An asynchronous circuit

G02

D

CK

Q

G1

G2

G3

G4

[δ−1 ;δ+1 ]

[δ−2 ;δ+2 ]
[δ−3 ;δ+3 ]

[δ−4 ;δ+4 ]
D

CK

Q

TSetup THold

TLO THI

Timing parameters
Traversal delays of the gates: one interval per gate
4 environment parameters: TLO, THI, TSetup and THold

Question: for which values of the parameters does the rise of Q
always occur before the fall of CK?
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Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 5 / 63



Introduction

Related Work

Approaches based on bad state avoidance
Computation of all the reachable states, and intersection with the
bad states [Henzinger and Wong-Toi, 1996]
Use of parametric structures [Hune et al., 2002]
Use of approximations [Clarisó and Cortadella, 2007]
Refinement of the model based on CEGAR [Frehse et al., 2008]

We present here a good state-based method
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Introduction

Problems

The good parameters problem

“Given a bounded parameter domain V0, find a set of parameter
valuations of good behavior in V0”

V0

The inverse problem
“Given a reference parameter valuation π0, find other valuations
around π0 of same behavior”

·π0
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Outline

Outline

1 The Modeling Framework of Parametric Timed Automata

2 An Inverse Method for Parametric Timed Automata

3 Behavioral Cartography

4 Application to Probabilistic Systems

5 Conclusions and Future Work
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The Modeling Framework of Parametric Timed Automata Timed Automata

Timed Automaton (TA)

Finite state automaton (sets of locations)

and actions) augmented
with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition
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The Modeling Framework of Parametric Timed Automata Timed Automata

Semantics of Timed Automata
Concrete state of a TA: couple (q,w), where

q is a location,
w is a valuation of each clock

Concrete run: alternating sequence of concrete states and actions

Example

x6 3 x6 4

Possible concrete run for this TA

x= 0
y= 0
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The Modeling Framework of Parametric Timed Automata Parametric Timed Automata

Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

augmented with a set P of parameters [Alur et al., 1993]

Unknown constants used in guards and invariants
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The Modeling Framework of Parametric Timed Automata Parametric Timed Automata

Notation

A valuation π of all the parameters of P is called a point

Given a PTA A and a point π, we denote by A[π] the
(non-parametric) timed automaton where all parameters are
instantiated by π
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The Modeling Framework of Parametric Timed Automata Parametric Timed Automata

Semantics of Parametric Timed Automata

Symbolic state of a PTA: couple (q,C), where

q is a location,
C is a constraint (conjunction of inequalities) over X and P

Symbolic run: alternating sequence of symbolic states and actions

Example
x6p1 x6p3

Possible symbolic run for this PTA

x=y
x6p1
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The Modeling Framework of Parametric Timed Automata Traces

Good and Bad Traces

Trace over a PTA: time-abstract run
Finite alternating sequence of locations and actions

x=y
x6p1

x− y6p1
x− y>p2

x6p3

p1 >p2
y>x

y− x6p3

a b

A trace is said to be good if it verifies a given property
Example of good trace for the flip-flop (Q↑ occurs before CK↓)

D↑ g↓1 CK↑ g↓3 Q↑ D↓ CK↓

Example of bad trace for the flip-flop

D↑ g↓1 CK↑ g↓3 D↓ CK↓ Q↑
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The Modeling Framework of Parametric Timed Automata Traces

Trace Set

Trace set: set of all traces of a PTA

Graphical representation under the form of a tree

Does not give any information on the branching behavior though

Example of trace set for the flip-flop example

D↑ G↓1 CK↑ G↓3 D↓

Q↑

Q↑

D↓

CK↓

CK↓
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An Inverse Method for Parametric Timed Automata
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An Inverse Method for Parametric Timed Automata The Inverse Method

The Inverse Problem

Input
A PTA A

A reference valuation π0 of all the parameters of A

Output: tile K0
Convex constraint on the parameters such that

π0 |= K0

For all points π |= K0, A[π] and A[π0] have the same trace sets

·π0
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An Inverse Method for Parametric Timed Automata The Inverse Method

The Inverse Method: General Idea

Our idea [André et al., 2009a]
CEGAR-like approach
Instead of negating bad states, we remove π0-incompatible states

p1 6p2 p1 6p2
p1 6p3 + p4

p1 6p2
p1 6p3 + p4
p3 >p4

p1 6p2
p1 6p3 + p4
p3<p4

a b

c
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Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 19 / 63



An Inverse Method for Parametric Timed Automata The Inverse Method

The Inverse Method: Simplified Algorithm

Start with K0 = true

REPEAT

1 Compute a set S of reachable symbolic states under K0

2 Project the constraints onto the parameters

3 Refine K0 by removing a π0-incompatible state from S

Select a π0-incompatible state (q,C) within S (i.e., π0 6|= C)
Select a π0-incompatible inequality Jwithin C (i.e., π0 6|= J)
Add ¬J to K0

UNTIL no more π0-incompatible state in S
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An Inverse Method for Parametric Timed Automata Application to the Example

Application to the Flip-Flop Circuit
π0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 = true

TSetup >δ
+
1 ∧ δ+3 + δ+4 >THold

∧ THold >δ
+
3 ∧ δ+3 + δ+4 <THI

∧ TSetup 6 TLO ∧ δ−3 + δ−4 6THold
∧ δ−1 > 0

TSetup 6 TLO

∧TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .
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An Inverse Method for Parametric Timed Automata Properties

Correctness

Theorem (Correctness)
Suppose that IM(A,π0) terminates with output K0. We have:

1 π0 |= K0, and
2 for all π |= K0, A[π0] and A[π] have the same trace sets.

Idea of the proof

A[π]

A(K0)

(q0,w0)

(q0,C0)

(q1,w1)

(q1,C1)

· · ·

· · ·

(qn,wn)

(qn,Cn)

a0 a1 an−1

a0 a1 an−1
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Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 22 / 63



An Inverse Method for Parametric Timed Automata Properties

Termination

Termination is in general undecidable for PTAs
However, we give sufficient condition for the termination of IM

Proposition (Termination)
The algorithm terminates if the set of traces of A[π0] contains no cyclic trace
(trace passing twice by the same location).

Remarks
Many case studies fall into this class
The termination can be shown in more cases
In practice, the algorithm also terminates for most of our “cyclic”
case studies

Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 23 / 63



An Inverse Method for Parametric Timed Automata Implementation and Case Studies

Implementation

Imitator II [André, 2010]

Imitator: “Inverse Method for Inferring Time AbstracT BehaviOR”
8000 lines of code
6 man-months of work
Program written in OCaml
Makes use of the PPL library for handling polyhedra

Available on the Web

http://www.lsv.ens-cachan.fr/˜andre/IMITATOR2
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An Inverse Method for Parametric Timed Automata Implementation and Case Studies

Inverse Method: Case Studies

Case studies treated
Hardware circuits
Communication protocols

Bounded Retransmission Protocol
CSMA/CD Protocol
Root Contention Protocol

SIMOP (Farman project LSV – LURPA): manufacturing system with
sensors and controllers communicating through a network
SPSMALL (ANR VALMEM project): real memory circuit
(ST-Microelectronics)

Comparison of the constraints
Constraints synthesized almost always equal to or better than the
ones from the literature

Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 25 / 63



An Inverse Method for Parametric Timed Automata Discussion

Summary of the Inverse Method

Advantages
Useful to optimize timing delays of systems
Gives a criterion of robustness to the system
Independent of the property one wants to check
Terminates often in practice
Efficient: allows to handle dozens of parameters

Remarks
The constraint K0 synthesized is not maximal: there are points
π < K0 which give the same trace set as π0
For a given propertyϕ, there may be different trace sets satisfyingϕ
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Behavioral Cartography

Outline

1 The Modeling Framework of Parametric Timed Automata

2 An Inverse Method for Parametric Timed Automata

3 Behavioral Cartography

4 Application to Probabilistic Systems

5 Conclusions and Future Work
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Behavioral Cartography The Behavioral Cartography Algorithm

Beyond the Inverse Method

Goal: Find the maximal set of points corresponding to a good
behavior

Method: iterate the inverse method for all the integer points of a
given rectangle V0

Output: set of behavioral tiles for all the integer points of V0

{ behavioral cartography of the parameter space
[André et al., 2010]
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Behavioral Cartography The Behavioral Cartography Algorithm

The Behavioral Cartography Algorithm

Cartography
Algorithm

PTA A

Rectangle V0

Cover

1 repeat
2 select an integer point π ∈ V0;
3 if π < Cover then
4 Cover← Cover ∪ IM(A,π);

5 until Cover contains all the integer points of V0;
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Behavioral Cartography The Behavioral Cartography Algorithm

Application to the Flip-Flop Example

Goal

Find the maximal set of values for δ+3 and δ+4 such that the flip-flop
has a good behavior

Method

Perform the behavioral cartography of the flip-flop circuit
according to δ+3 and δ+4
The other parameters are instantiated
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Behavioral Cartography The Behavioral Cartography Algorithm

Behavioral Cartography of the Flip-Flop
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Behavioral Cartography The Behavioral Cartography Algorithm

Behavioral Cartography of the Flip-Flop
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Behavioral Cartography The Behavioral Cartography Algorithm

Behavioral Cartography of the Flip-Flop
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Behavioral Cartography The Behavioral Cartography Algorithm

Behavioral Cartography Algorithm: Full Coverage

Proposition
For acyclic PTAs, the full coverage of the whole parametric space is ensured
for a grid fine enough.

Grid: points (integers or rationals) on which the inverse method may
be called

Idea of the proof:
Based on the finiteness of the number of possible tiles
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Behavioral Cartography Partition into Good and Bad Tiles

Partition into Good and Bad Tiles

A tile is said to be a good tile if all its corresponding traces are
good traces

According to the nature of the trace sets, we can partition the tiles
into good and bad ones
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Behavioral Cartography Partition into Good and Bad Tiles

Example of Good and Bad Tiles for the Flip-flop
Good tile 3

D↑ G
↓
1 CK↑

D↓

G
↓
3

G
↓
3

D↓

Q↑

Q↑

Q↑

D↓

CK↓

CK↓

CK↓

Bad tile 7

D↑ G
↓
1 CK↑

D↓

G
↓
3

G
↓
3

CK↓

D↓

Q↑

CK↓

Q↑

CK↓

Q↑

D↓

Q↑

CK↓

Q↑

CK↓

CK↓
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Behavioral Cartography Partition into Good and Bad Tiles

Behavioral Cartography of the Flip-flop: Partition
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Behavioral Cartography Partition into Good and Bad Tiles

Behavioral Cartography of the Flip-flop: Remarks

Remarks on the cartography

For this example, all the real-valued part of the parametric space
within and outside V0 is covered

The set of good tiles (in blue) corresponds to the maximal set of
good values for δ+3 and δ+4

δ+3 + δ+4 6 24 ∧ δ+3 > 8 ∧ δ+4 > 3
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Behavioral Cartography Case Studies

Cartography Algorithm: Implementation

Implementation in Imitator II
Trace sets under a graphical form
Cartography under a graphical form (for 2 parameter dimensions)

Application to case studies
Hardware devices
Communication protocols
SPSMALL memory

Allows to solve the good parameters problem
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Behavioral Cartography Case Studies

The SPSMALL Memory: VALMEM Project

Memory circuit sold by ST-Microelectronics

Studied in the framework of the ANR VALMEM project
LIP 6, LSV, ST-Microelectronics

Goal: minimize timing parameters TDSetup and TWen
Setup

Reference valuation in the datasheet of the memory:
TDSetup = 108 and TWen

Setup = 48

CK

WEN

D

Q

TWen
Setup

TDSetup

Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 39 / 63



Behavioral Cartography Case Studies

The SPSMALL Memory: Methodology

Transistor netlist

Functional abstraction + Timing extraction

VHDL – RTL description Timings

Modeling

Parametric Timed Automata

Synthesis of constraints
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Behavioral Cartography Case Studies

The SPSMALL Memory: Cartography Algorithm
Cartography of the memory according to TDSetup and TWen

Setup

Reference rectangle V0:

TDSetup ∈ [89; 108] TWen
Setup ∈ [25; 48]

⇒ Full coverage of V0
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Behavioral Cartography Case Studies

The SPSMALL Memory: Minimization of Timings
Partition into good and bad tiles

Using the property of good behavior specified by the datasheet

TDSetup

TWen
Setup

84 86 88 90 92 94 96 98 100

24

26
28
30
32
34

Minimization of timing delays
TDSetup = 108
TWen

Setup = 48

Practical interest: allows to work in a faster environment
Optimization of the datasheet
Financial interest
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Behavioral Cartography Case Studies

Advantages of the Behavioral Cartography

Solves the good parameters problem

Under certain conditions, covers the whole real-valued parametric
space

Independent of the property one wants to check
Only the partition depends on the property
No need to compute a cartography for each property
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Application to Probabilistic Systems

Outline

1 The Modeling Framework of Parametric Timed Automata

2 An Inverse Method for Parametric Timed Automata

3 Behavioral Cartography

4 Application to Probabilistic Systems

5 Conclusions and Future Work
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Application to Probabilistic Systems A Motivating Example

The Root Contention Protocol

Root contention protocol of the IEEE 1394 (“FireWire”)
Election of a leader after a certain number of rounds
Protocol mixing time and probabilities
Timing delays: s min = 1590 ns and delay = 300 ns

Computation of minimum or maximum probabilities
Example: “Minimum probability that a leader is elected after
5 rounds or less”
Use of the Prism model checker [Hinton et al., 2006]

Problem
Prism is very sensitive to the size of the timing constants
For this valuation (s min = 1590 ns and delay = 300 ns), Prism does
not succeed to compute probabilities
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Application to Probabilistic Systems A Motivating Example

Goal

Goal
Compute constraints on the timing parameters such that the minimum and
maximum probabilities of reachability properties remain the same.

Application

By minimizing the timing delays within this constraint, Prism will
be able to compute probabilities more easily
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Application to Probabilistic Systems Probabilistic Timed Automata

Parametric

Probabilistic Timed Automaton

(PPTA)

Probabilistic Timed Automaton
[Gregersen and Jensen, 1995, Kwiatkowska et al., 2002a]

Timed automaton

with probabilities

Augmented with a set of parameters [André et al., 2009b]

TRANSMIT
x 6 808

INIT
true

DONE
true

COLLIDE
x = 0

WAIT1
x 6 52

WAIT2
x 6 104

send
x := 0

x = 808
end

cd
x := 0

x = 52
send
x := 0

x = 52
busy
x := 0

x = 104
send
x := 0

x = 104
busy
x := 0

wait

1
2

wait

1
2
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Application to Probabilistic Systems Probabilistic Timed Automata

Parametric Probabilistic Timed Automaton (PPTA)

Probabilistic Timed Automaton
[Gregersen and Jensen, 1995, Kwiatkowska et al., 2002a]

Timed automaton with probabilities

Augmented with a set of parameters [André et al., 2009b]

TRANSMIT
x 6 λ

INIT
true

DONE
true

COLLIDE
x = 0

WAIT1
x 6 slot

WAIT2
x 6 2× slot

send
x := 0

x = λ
end

cd
x := 0

x = slot
send
x := 0

x = slot
busy
x := 0

x = 2× slot
send
x := 0

x = 2× slot
busy
x := 0

wait
1
2

wait
1
2
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Application to Probabilistic Systems Probabilistic Timed Automata

Probabilistic Traces

Probabilistic trace
Finite alternating sequence of locations and actions

with probabilities

INIT TRANSMIT COLLIDE WAIT1 TRANSMIT . . .send cd wait send

Étienne ANDRÉ Synthesis of Timing Parameters 2nd December 2010 48 / 63



Application to Probabilistic Systems Probabilistic Timed Automata

Probabilistic Traces

Probabilistic trace
Finite alternating sequence of locations and actions
with probabilities

INIT TRANSMIT COLLIDE WAIT1 TRANSMIT . . .send cd wait send
1 1 1

2
1
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Application to Probabilistic Systems Probabilistic Timed Automata

Min / Max Probabilities of Reaching a State

A scheduler s associates to every state one output distribution

Given a scheduler, one can associate a probability to the state
space

In particular: probability of reaching a location

Minimum and maximum probabilities of reaching a given
location

Minimum and maximum for all possible schedulers
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Application to Probabilistic Systems Extension of the Inverse Method

The Inverse Problem for PPTAs

Inputs
A PPTA A

A reference valuation π0 of A

Output: tile K0
Convex constraint on the parameters such that

π0 |= K0

For all π |= K0, the sets of probabilistic traces of A[π] and A[π0] are
equal

·π0

As a consequence, the minimum and maximum probabilities for
reachability properties are the same in A[π] and A[π0]
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Application to Probabilistic Systems Extension of the Inverse Method

Derandomized PPTA

Derandomized form A∗ of a PPTA A: replace distributions by
non-determinism

A∗ becomes a PTA

Example:

TRANSMIT
x 6 λ

INIT
true

DONE
true

COLLIDE
x = 0

WAIT1
x 6 slot

WAIT2
x 6 2× slot

send
x := 0

x = λ
end

cd
x := 0

x = slot
send
x := 0

x = slot
busy
x := 0

x = 2× slot
send
x := 0

x = 2× slot
busy
x := 0
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Application to Probabilistic Systems Extension of the Inverse Method

Extension of the Inverse Method to PPTAs

1 Construct a derandomized version A∗ of A
2 Compute K0 = IM(A∗,π0)
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Application to Probabilistic Systems Extension of the Inverse Method

Equality of the Sets of Probabilistic Traces

Theorem (Correctness)
Let A be a PPTA, and π0 a valuation of the parameters. Let K0 = IM(A∗,π0).
Then, for all π |= K0, the sets of probabilistic traces of A[π] and A[π0] are
equal.

Consequence:

The minimum and maximum probabilities for reachability
properties are the same in A[π] and A[π0]
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Application to Probabilistic Systems Extension of the Inverse Method

Application to the Root Contention Protocol

·π0

delay

s min

0 100 200 300 400 500 600 700 800 900
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

Input: IEEE reference valuation
s min = 1590 ns delay = 300 ns

Output:
K0 : 2delay< 760

∧ 2delay + 850< s min

Prob5: Minimum probability that a
leader is elected after 5 rounds or less

Prism does not succeed in
computing Prob5 for π0

For a smaller valuation π1, Prism
computes that Prob5 = 0.94
By correctness of our method,
Prob5 = 0.94 also for π0
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Application to Probabilistic Systems Extension of the Cartography

Extension of the Cartography to PPTAs

1 Construct a derandomized (non-probabilistic) version A∗ of A
2 Apply the cartography algorithm to A∗ and V0
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Application to Probabilistic Systems Extension of the Cartography

The Root Contention Protocol: Cartography

delay

s min

0 100 200 300 400 500 600 700 800 900
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

We consider the following V0 :
s min ∈ [1400; 2000] and
delay ∈ [10; 500]

Remarks

Tiles 1 and 6 are infinite
towards one dimension
The cartography does not
cover the whole real-valued
space within V0

(holes in the lower right corner
of V0)
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Application to Probabilistic Systems Extension of the Cartography

The Root Contention Protocol: Partition

1
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Prob5: “Minimum probability
that a leader is elected after five
rounds or less”

Tile 1: Prob5 = 0.94
Tiles 2 and 3: Prob5 = 0.79
Tile 6: Prob5 = 0.66
Other tiles: Prob5 = 0.5

Find parameter valuations such
that Prob5 > 0.75

Good tiles: 1, 2 and 3
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Application to Probabilistic Systems Discussion

Advantages of the Probabilistic Cartography

Allows the rescaling of the timing constants
Guarantees the equality of minimum and maximum probabilities
of reachability properties for smaller constants within K0
Allows a much faster computation of probabilities in practice

Avoids the repeated computation of probabilities for many
different values of the parameters

Gives a quantitative refinement of the good parameters problem
Instead of a partition with a binary criterion (good / bad), we have a
partition according to various probabilities
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Conclusions and Future Work

Outline

1 The Modeling Framework of Parametric Timed Automata

2 An Inverse Method for Parametric Timed Automata

3 Behavioral Cartography

4 Application to Probabilistic Systems

5 Conclusions and Future Work
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Conclusions and Future Work

Summary (1/2)

Inverse Method: Algorithm IM
Original method for the synthesis of timing parameters.
Gives a criterion of robustness to the system
Implementation: Imitator II

Application to an industrial case study: optimization of timing delays
in the SPSMALL memory

Behavioral cartography: Algorithm BC
Solves the good parameters problem
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Conclusions and Future Work

Summary (2/2)

Extension to probabilistic systems

Synthesizes a set of tiles, with uniform min/max reachability
probabilities within each tile

Allows the rescaling of timing constants
Useful to compute probabilities (e.g., using Prism) for systems with
large constants

Application to several randomized protocols
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Conclusions and Future Work

Future Work: Short Term

Extend the behavioral cartography to hybrid automata
Allow to consider continuous variables driven by differential
equations

Improvement of Imitator II
Automatic partition using an external model-checker (Uppaal or
Prism)
Implementation of variants of IM: quicker termination and better
constraints for safety properties
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Conclusions and Future Work

Future Work: Long Term

Consider a weaker property than equality of trace sets
Reference trace with partial orders

D↑ G↓1 CK↑ G↓3

D↓

Q↑

Q↑

D↓

CK↓

Application to other formalisms
Priced / Weighted Timed Automata
Timed extensions of Petri Nets
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Preservation of LTL Formulae

Corollary of the correctness of IM

Proposition (LTL-preservation)
Let K0 = IM(A,π0), π |= K0 and ϕ an LTL formula verifiable on finite traces.
Then ϕ holds for A[π] iff ϕ holds for A[π0].
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Idea of the Proof of Correctness

Given π |= IM(A∗,π0):

A[π0] A∗[π0]

A[π] A∗[π]

Justification

Prop. 1: The set of derandomized traces of A[π0] is equal to the set
of (non-probabilistic) traces of A∗[π0] [André et al., 2009b]
Prop. 2: The sets of (non-probabilistic) traces of A∗[π0] and A∗[π]
are equal [André et al., 2009a]
Prop. 3: If the sets of derandomized traces of A[π] and A[π0] are
equal, then the sets of probabilistic traces of A[π] and A[π0] are
equal [Kwiatkowska et al., 2002b]
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Prop. 2: The sets of (non-probabilistic) traces of A∗[π0] and A∗[π]
are equal [André et al., 2009a]
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Summary of Experiments: IM

Computation times of various case studies
Experiments conducted on an Intel Core2 Duo 2.4 GHz with 2 Gb

Example PTAs loc./PTA |X| |P| iter. |K0| states trans. Time
SR-latch 3 [3, 8] 3 3 5 2 4 3 0.007
Flip-flop 5 [4, 16] 5 12 9 6 11 10 0.122
And–Or 3 [4, 8] 4 12 14 4 13 13 0.15

Latch circuit 7 [2, 5] 8 13 12 6 18 17 0.345
CSMA/CD 3 [3, 8] 3 3 19 2 219 342 1.01

RCP 5 [6, 11] 6 5 20 2 327 518 2.3
BRP 6 [2, 6] 7 6 30 7 429 474 34

SIMOP 5 [5, 16] 8 7 53 9 1108 1404 67
SPSMALL 28 [2, 11] 28 62 94 45 129 173 461
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Summary of Experiments: BC

Computation time for the cartography algorithm
Experiments conducted on an Intel Core2 Duo 2.4 GHz with 2 Gb

Example PTAs loc./PTA |X| |P| |V0| tiles states trans. Time (s)
SR-latch 3 [3, 8] 3 3 1331 6 5 4 0.3
Flip-flop 5 [4, 16] 5 2 644 8 15 14 3

Latch circuit 7 [2, 5] 8 4 73062 5 21 20 96.3
And–Or 3 [4, 8] 4 6 75600 4 64 72 118

CSMA/CD 3 [3, 8] 3 3 2000 140 349 545 269
RCP 5 [6, 11] 6 3 186050 19 5688 9312 7018

SPSMALL 28 [2, 11] 28 3 784 213 145 196 31641
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