FORMATS 2013

31st August 2013 Buenos Aires, Argentina

Precise Robustness Analysis of Time Petri Nets with Inhibitor Arcs

<u>Étienne André</u>, Giuseppe Pellegrino, Laure Petrucci Laboratoire d'Informatique de Paris Nord Université Paris 13, Sorbonne Paris Cité, France

Context: Verifying Complex Timed Systems

- Need for early bug detection
 - Bugs discovered when final testing: expensive
 - Need for a thorough modeling and verification phase

Motivation: Robustness Analysis

- Timed systems are characterized by a set of timing constants
 - "The packet transmission lasts for 50 ms"
 - "The sensor reads the value every 10 s"
- Challenge: Robustness [Markey, 2011]
 - What happens if 50 is implemented with 49.99?
 - In which neighbourhood of 50 does the system behave well?

Motivation: Robustness Analysis

- Timed systems are characterized by a set of timing constants
 - "The packet transmission lasts for 50 ms"
 - "The sensor reads the value every 10 s"
- Challenge: Robustness [Markey, 2011]
 - What happens if 50 is implemented with 49.99?
 - In which neighbourhood of 50 does the system behave well?
- Parametric analysis
 - Consider that timing constants are parameters
 - Find good values for the parameters, such that the system still behaves well

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Time Petri Nets With Inhibitor Arcs (ITPNs)

- Powerful formalism for verifying real-time systems [Merlin, 1974]
- Transition t₁ can fire from 5 to 6 units of time after being enabled
- An enabled transition must fire before (or at) its upper bound
- An inhibitor arc enables its transition (t₂) when its source place
 (A) is empty

Some possible runs

Trace set

Trace: time-abstract behaviour

Robustness (1/2)

- What happens if $t_2[0;2]$ is implemented with $t_2[0.01;2]$?
 - Trace AB t₁ CB t₂ CD cannot happen anymore

Robustness (1/2)

- What happens if $t_2[0;2]$ is implemented with $t_2[0.01;2]$?
 - Trace $AB \xrightarrow{t_1} CB \xrightarrow{t_2} CD$ cannot happen anymore
- What happens if $t_3[1;5]$ is implemented with $t_3[1;4.99]$?
 - Trace $AB \xrightarrow{t_1} CB \xrightarrow{t_3} CE$ cannot happen anymore

Robustness (1/2)

- What happens if $t_2[0;2]$ is implemented with $t_2[0.01;2]$?
 - Trace $AB \xrightarrow{t_1} CB \xrightarrow{t_2} CD$ cannot happen anymore
- What happens if $t_3[1;5]$ is implemented with $t_3[1;4.99]$?
 - Trace $AB \xrightarrow{t_1} CB \xrightarrow{t_3} CE$ cannot happen anymore
- This system is not robust, in the sense that infinitesimal variations of the bounds lead to a different discrete behaviour (trace set).

Robustness (2/2)

Definition (LT-robustness)

An ITPN N is LT-robust if there exists $\gamma > 0$ such that N_{γ} and N have the same trace sets.

(where N_{γ} is any ITPN similar to N where each timing bound c can be replaced with any value within $[c - \gamma, c + \gamma]$)

Challenges:

- Is an ITPN robust?
- If not, why is it non-robust?
- Is it possible to render robust a non-robust ITPN? If so, how?

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Parametric Time Petri Nets

Idea: Reason parametrically (using unknown constants)

Parametric Time Petri Nets with Inhibitor Arcs (PITPNs)

Constants in firing intervals replaced with parameters
 [Traonouez et al., 2009]

Parametric Time Petri Nets

Idea: Reason parametrically (using unknown constants)

Parametric Time Petri Nets with Inhibitor Arcs (PITPNs)

Constants in firing intervals replaced with parameters
 [Traonouez et al., 2009]

Parametric Time Petri Nets

Idea: Reason parametrically (using unknown constants)

Parametric Time Petri Nets with Inhibitor Arcs (PITPNs)

Constants in firing intervals replaced with parameters
 [Traonouez et al., 2009]

■ Notation: given a PITPN $\mathcal N$ and a valuation π of the parameters, we denote by $\llbracket \mathcal N \rrbracket_{\pi}$ the ITPN obtained from $\mathcal N$ by replacing all parameters with their valuation in π

The Inverse Method (IM)

- Input
 - A PITPN N
 - A reference valuation π_0 of all the parameters of \mathcal{N}

The Inverse Method (IM)

- Input
 - A PITPN N
 - A reference valuation π_0 of all the parameters of \mathcal{N}
- Output: K_r
 - Convex constraint on the parameters such that
 - \blacksquare $\pi_0 \models K_r$
 - For all points $\pi \models K_r$, $\llbracket \mathcal{N} \rrbracket_{\pi}$ and $\llbracket \mathcal{N} \rrbracket_{\pi_0}$ have the same trace sets

The Inverse Method: General Idea

- Initially defined for timed automata [A., Chatain, Encrenaz, Fribourg, 2009]
- Extended to PITPNs [A., Pellegrino, Petrucci, 2013]
- The idea
 - Exploration of the parametric state space
 - Instead of negating bad states (as in "CEGAR" approaches), remove π_0 -incompatible states
 - Return the intersection of all constraints on the parameters

$$\pi_0$$
 $\alpha = 5$
 $b = 6$
 $c = 0$
 $d = 2$
 $e = 1$
 $f = 5$
 $g = 6$
 $h = 7$

Forward analysis

$$\pi_0$$
 $a = 5$
 $b = 6$
 $c = 0$
 $d = 2$
 $e = 1$
 $f = 5$
 $g = 6$
 $h = 7$

Forward analysis

K :

true

$$AB$$

$$a \le b \quad c \le d$$

$$e \le f \quad g \le h$$

$$\pi_0$$
 $a = 5$
 $b = 6$
 $c = 0$
 $d = 2$
 $e = 1$
 $f = 5$
 $g = 6$
 $h = 7$

Forward analysis

K :

true

$$\pi_0$$
 $a = 5$
 $b = 6$
 $c = 0$
 $d = 2$
 $e = 1$
 $f = 5$
 $g = 6$
 $h = 7$

Forward analysis

. .

true

$$\pi_0$$
 $a = 5$ $b = 6$
 $c = 0$ $d = 2$
 $e = 1$ $f = 5$
 $q = 6$ $h = 7$

Forward analysis

q > f

Application to an Example

Application to an Example

Properties

- Correctness
 - $\pi_0 \models K_r$ and
 - $\forall \pi \models K_r, [\![\mathcal{N}]\!]_{\pi}$ and $[\![\mathcal{N}]\!]_{\pi_0}$ have the same trace set.
- *IM* is non-confluent
 - Several executions with the same input may lead to different outputs
- *IM* is non-complete
 - K_r may not be the maximum set of parameter valuations with the same trace set as $[\mathcal{N}]_{\pi_0}$
- Termination of *IM* is not guaranteed in general
 - Parameter synthesis for PITPNs undecidable [Traonouez et al., 2009]

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Robustness Using the Inverse Method

Let N be an ITPN.

General idea

- Construct the parametric version \mathcal{N} of \mathbb{N} , and π_0 the reference valuation such that $\|\mathcal{N}\|_{\pi_0} = \mathbb{N}$
- 2 Call $IM(\mathcal{N}, \pi_0)$ and assume K_r is the resulting constraint
- 3 Measure the system robustness
- 4 If the system is non-robust, render it robust (if possible)

Metrics for Measuring Local Robustness

- Ranging interval of a parameter RI(p)
 - Minimum and maximum admissible values within K_r

Metrics for Measuring Local Robustness

- Ranging interval of a parameter RI(p)
 - Minimum and maximum admissible values within K_r
- Local lower/upper variability of a parameter
 - Distance between $\pi_0(p)$ and and the lower/upper bound of RI(p)
 - Given RI(p) = (a, b), then $LLV(p) = \pi_0(p) a$ and $LUV(p) = b \pi_0(p)$

Metrics for Measuring Local Robustness

- Ranging interval of a parameter RI(p)
 - Minimum and maximum admissible values within K_r
- Local lower/upper variability of a parameter
 - Distance between $\pi_0(p)$ and and the lower/upper bound of RI(p)
 - Given RI(p) = (a, b), then $LLV(p) = \pi_0(p) a$ and $LUV(p) = b \pi_0(p)$
- Local robustness: distance between $\pi_0(p)$ and the closest border within K_r
 - $LR(p) = \min(LLV(p), LUV(p))$

Critical Timing Bounds

Critical timing bounds are those with a null local robustness

Remark

If any of the timing bounds is critical, classical (" Δ -based") approaches will just classify the system as non-robust.

Relaxing Timing Bounds

Definition (Potential robustness)

An ITPN N is potentially robust if, for all timing bounds p_i , $LLV(p_i) > 0$ or $LUV(p_i) > 0$.

Intuitively: A system is potentially robust if each parameter can vary within K_r .

Relaxing Timing Bounds

Definition (Potential robustness)

An ITPN N is potentially robust if, for all timing bounds p_i , $LLV(p_i) > 0$ or $LUV(p_i) > 0$.

Intuitively: A system is potentially robust if each parameter can vary within K_r .

Theorem (Rendering a system robust)

If N is potentially robust, then there exists π_R such that $[\![\mathcal{N}]\!]_{\pi_R}$ is LT-robust, and has the same trace set as N.

Construction: choose $\frac{LLV(p)+LUV(p)}{2}$ for each parameter p.

Relaxing Timing Bounds: Remarks

The potential robustness is a non-necessary condition to render a system robust

I The potential robustness is based on the local robustness, that comes from K_r , that may be non-complete

Relaxing Timing Bounds: Remarks

The potential robustness is a non-necessary condition to render a system robust

- I The potential robustness is based on the local robustness, that comes from K_r , that may be non-complete
- 2 The potential robustness considers the variability of each timing bound in an independent manner

■ In that case, the system is not potentially robust (since $LLV(p_2) = LUV(p_2) = 0$), but could still be made robust (by choosing a point in the middle of K_r)

Comparison with Related Work (1/2)

- Robustness studied for timed automata and time Petri nets (see [Markey, 2011] for a survey)
- "∆-based" approaches
 - Robustness studied with respect to a single enlargement Δ for all bounds
 - or to a single shrinking Δ for all bounds
 - Extension to a (constant) vector
 - Extension to independent variations Δ for each parameter, but for shrinking only [Sankur, 2013]

Comparison with Related Work (2/2)

- Recent approaches
 - Parameterized robust reachability in timed automata is decidable [Bouyer et al., 2012]
 - $lue{}$ Computing the greatest acceptable variation Δ is decidable for flat timed automata with progressive clocks [Jaubert and Reynier, 2011]
 - CEGAR-based approach using parametric techniques to evaluate the greatest acceptable variation Δ for parametric timed automata (not decidable in general) [Traonouez, 2012]

Comparison with Related Work (2/2)

- Recent approaches
 - Parameterized robust reachability in timed automata is decidable [Bouyer et al., 2012]
 - $lue{}$ Computing the greatest acceptable variation Δ is decidable for flat timed automata with progressive clocks [Jaubert and Reynier, 2011]
 - CEGAR-based approach using parametric techniques to evaluate the greatest acceptable variation Δ for parametric timed automata (not decidable in general) [Traonouez, 2012]
- In contrast to most approaches, we consider a local robustness measure for each delay
 - © For linear-time properties
 - [©] More flexible: Bounds can be both enlarged and shrinked
 - [©] More precise: Exhibits the critical timing bounds
 - [©] May not terminate

Outline

- 1 Time Petri Nets with Inhibitor Arcs
- 2 The Inverse Method for ITPNs
- 3 Precise Robustness Analysis
- 4 Conclusion and Perspectives

Conclusion

- Local robustness analysis of timed systems
 - For linear-time properties
 - Using the inverse method
 - Quantifies the robustness of each timing bound
 - → Identifies critical bounds
- Sufficient condition for rendering a non-robust system robust
- Comparison with related approaches
 - More precise than most existing approaches
 - May not terminate

Conclusion

- Local robustness analysis of timed systems
 - For linear-time properties
 - Using the inverse method
 - Quantifies the robustness of each timing bound
 - → Identifies critical bounds
- Sufficient condition for rendering a non-robust system robust
- Comparison with related approaches
 - More precise than most existing approaches
 - May not terminate
- Linear-time properties, hence untimed
 - But timed properties can be considered using observers

Perspectives

- Implementation
 - Work in progress
 - Comparison with other tools such as Shrinktech [Sankur, 2013]
- Improve conditions for rendering non-robust systems robust
- Variation of the clocks speed (" ϵ ")
 - Addition of two parameters for the admissible decrease and increase of the clock rate
 - Extension of the inverse method to non-linear (hybrid) systems

Bibliography

References I

André, É., Petrucci, L., and Pellegrino, G. (2013). Precise robustness analysis of time Petri nets with inhibitor arcs.

In FORMATS, volume 8053 of Lecture Notes in Computer Science, pages 1-15. Springer.

Bouyer, P., Markey, N., and Sankur, O. (2012). Robust reachability in timed automata: A game-based approach. In *ICALP*, volume 7392 of *Lecture Notes in Computer Science*, pages 128–140. Springer.

Jaubert, R. and Reynier, P.-A. (2011).

Quantitative robustness analysis of flat timed automata.

In FoSSaCS, volume 6604 of Lecture Notes in Computer Science, pages 229–244. Springer-Verlag.

Markey, N. (2011). Robustness in real-time systems.

In SIES, pages 28–34. IEEE Computer Society Press.

References II

Merlin, P. M. (1974).

A study of the recoverability of computing systems. PhD thesis, University of California, Irvine, CA, USA,

Sankur, O. (2013).

Shrinktech: A tool for the robustness analysis of timed automata.

In CAV'13, volume 8044 of Lecture Notes in Computer Science, pages 1006–1012. Springer.

Traonouez, L.-M. (2012).

A parametric counterexample refinement approach for robust timed specifications. In *FIT*, volume 87 of *EPTCS*, pages 17–33.

Traonouez, L.-M., Lime, D., and Roux, O. H. (2009).

Parametric model-checking of stopwatch Petri nets.

Journal of Universal Computer Science, 15(17):3273-3304.

Additional explanation

The Algorithm

5

Algorithm 1: $IM(\mathcal{N}, \pi)$

```
input: PITPN N of initial class c_0 and initial constraint K_0, valuation \pi
   output: Constraint K<sub>r</sub>
1 i \leftarrow 0: K_c \leftarrow K_0: C \leftarrow \{c_0\}
2 while true do
         while \exists \pi-incompatible classes in \mathbb{C} do
               Select a \pi-incompatible class (M, D) of C
               Select a \pi-incompatible I in D_{IP}
             K_c \leftarrow K_c \land \neg J; \quad C \leftarrow \bigcup_{i=0}^i Post_{\mathcal{N}(K_a)}^j(\{c_0\})
         if Post_{\mathcal{N}(K_c)}(C) \subseteq C then
          return K_r \leftarrow \bigcap_{(M,D) \in C} D \downarrow_P
         i \leftarrow i + 1; C \leftarrow C \cup Post_{\mathcal{N}(K_n)}(C)
```

Explanation for the 4 pictures in the beginning

Allusion to the Northeast blackout (USA, 2003) Computer bug Consequences: 11 fatalities, huge cost (Picture actually from the Sandy Hurricane, 2012)

Allusion to any plane crash (Picture actually from the happy-ending US Airways Flight 1549, 2009)

Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991) No fatalities Computer bug: inaccurate finite element analysis modeling (Picture actually from the Deepwater Horizon Offshore Drilling Platform)

Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)
28 fatalities, hundreds of injured
Computer bug: software error (clock drift)
(Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

Licensing

Source of the graphics used

Title: Hurricane Sandy Blackout New York Skyline

Author: David Shankbone

Source: https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG

License: CC BY 3.0

Title: Miracle on the Hudson

Author: Janis Krums (cropped by Étienne André)

Source: https://secure.flickr.com/photos/davidwatts1978/3199405401/

License: CC BY 2.0

Title: Deepwater Horizon Offshore Drilling Platform on Fire

Author: ideum

Source: https://secure.flickr.com/photos/ideum/4711481781/

License: CC BY-SA 2.0

Title: DA-SC-88-01663 Author: imcomkorea

Source: https://secure.flickr.com/photos/imcomkorea/3017886760/

License: CC BY-NC-ND 2.0

License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

(LFTEX source available on demand)

Author: Étienne André

https://creativecommons.org/licenses/by-sa/3.0/