
What’s decidable about parametric timed
automata??

Étienne André1,2

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430,
Villetaneuse, France

2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, France

Abstract. Parametric timed automata (PTA) are a powerful formalism
to reason, simulate and formally verify critical real-time systems. After
two decades of research on PTA, it is now well-understood that any
non-trivial problem studied is undecidable for general PTA. We provide
here a survey of decision and computation problems for PTA. On the one
hand, bounding time, bounding the number of parameters or the domain
of the parameters does not (in general) lead to any decidability. On the
other hand, restricting the number of clocks, the use of clocks (compared
or not with the parameters), and the use of parameters (e. g., used only
as upper or lower bounds) leads to decidability of some problems.

1 Introduction

The absence of undesired behaviors in real-time critical systems is of utmost
importance in order to ensure the system safety. Model checking aims at formally
verifying a model of the system against a correctness property. Timed automata
(TA) are a popular formalism to model and verify safety critical systems with
timing constraints. TA extend finite state automata with clocks, i. e., real-valued
variables increasing linearly [AD94]. These clocks can be compared with integer
constants in guards (sets of linear inequalities that must be satisfied to take a
transition) and invariants (sets of linear inequalities that must be satisfied to
remain in a location). TA have been widely studied, and several state-of-the-art
model checkers (such as Uppaal [LPY97] or PAT [SLDP09]) support TA as an
input language.

TA benefit from many interesting decidable properties, such as the emptiness
of the accepted language, the reachability of a control state, etc. However, TA
also suffer from some limitations. First, they cannot be used to specify and verify
systems incompletely specified (i. e., whose timing constants are not known yet),
and hence cannot be used in early design phases. Second, verifying a system for

? This is the author version of the manuscript of the same name published in the
proceedings of the 4th International Workshop on Formal Techniques for Safety-
Critical Systems. The final version is available at www.springer.com. This work is
partially supported by the ANR national research program PACS (ANR-14-CE28-
0002).

1

www.springer.com


a set of timing constants usually requires to enumerate all of them one by one if
they are supposed to be integer-valued; in addition, TA cannot be used anymore
if these constants are rational- or real-valued, and can be taken from a dense
interval. Third, robustness in TA often assumes that all guards can be enlarged
or shrinked by the same small variation; considering independent variations or
considering both enlarging and shrinking was not addressed, and it is actually
unclear whether this can be even considered for TA.

Parametric timed automata (PTA) overcome these limitations by allow-
ing the use of parameters (i. e., unknown constants) in guards and invari-
ants [AHV93]. This increased expressive power comes at the price of the un-
decidability of most interesting problems – at least in the general case.

Tools such as an extension of Uppaal [HRSV02], Roméo [LRST09] or IM-
ITATOR [AFKS12] take PTA as input formalism. Beyond the usual academic
examples (such as variants of train controllers [AHV93,HRSV02]), PTA were
also used to successfully specify and verify numerous interesting case stud-
ies such as the root contention protocol [HRSV02], Philip’s bounded retrans-
mission protocol [HRSV02], a 4-phase handshake protocol [KP12], the alter-
nating bit protocol [JLR15], an asynchronous circuit commercialized by ST-
Microelectronics [CEFX09], (non-preemptive) schedulability problems [JLR15],
a distributed prospective architecture for the flight control system of the
next generation of spacecrafts designed at ASTRIUM Space Transporta-
tion [FLMS12], an unmanned aerial video system by Thales, and even analysis
of music scores [FJ13].

In this paper, we survey decision problems for PTA proposed in the past two
decades. On the one hand, bounding time, bounding the number of parameters
or the domain of the parameters does not (in general) lead to any decidability.
On the other hand, restricting the number of clocks, the use of clocks (compared
or not with the parameters), and the use of parameters (e. g., used only as upper
or lower bounds) can lead to the decidability of some problems.

Related Surveys To the best of our knowledge, no survey was dedicated specifi-
cally to decision problems for PTA. In addition, recent results in the field in the
past two years (e. g., [BO14,Qua14,JLR15,BBLS15,AM15]) justify the need for
a clear picture of these updated (un)decidability results.

Related works include [HKPV98], that is not a survey, but exhibits decidable
subclasses of hybrid automata, an extension of timed automata where variables
can have (in general) arbitrary rates. Then, [AMPS12] acts both as a survey
and as a contribution paper that studies hybrid automata with “low dimen-
sions”, i. e., with few variables. Our survey is also concerned (in Section 4) with
decidability results for PTA with few variables (i. e., clocks and parameters).
In [Mar11,BMS13], various problems related to the robustness in TA are sur-
veyed.

Outline In Section 2, we propose a unified syntax for PTA, and we define the de-
cision problems that we will consider throughout this manuscript. In Section 3,

2



Table 1: Syntax of operators in guards
Operator Definition

∼ {<,≤,=,≥, >}
≤≥ {≤,≥}
<> {<,>}
� {<,≤}

we recall general undecidability for PTA. We then study in Section 4 the decid-
ability when restricting the syntax of PTA (number of variables, syntax of the
constraints, etc.). We consider specifically in Section 5 the subclass of L/U-PTA.
We conclude by emphasizing open problems in Section 6.

2 Parametric Timed Automata and Problems

2.1 Clocks, Parameters and Constraints

Let Z, N, Q+ and R+ denote the sets of (possibly negative) integer num-
bers, (non-negative) natural numbers, non-negative rational numbers, and non-
negative real numbers, respectively. In the following, T denotes the domain of
time, and P the domain of the parameters; these domains will be instantiated
with N, Q+ or R+ later on. Throughout this survey, let d denote an integer
constant in Z, and d+ denote a non-negative constant in N.

Let us assume a set X = {x1, . . . , xH} of clocks, that are T-valued variables
that evolve at the same rate. Let us assume a set P = {p1, . . . , pM} of parame-
ters, i. e., unknown constants. A parameter valuation v is a function v : P → P.
Throughout this survey, symbols x, xi denote clocks whereas p, pi denote pa-
rameters.

A parametric linear term is
∑

1≤i≤M αipi + d, with αi ∈ Z; in the following
plt will denote a parametric linear term.

A (linear) inequality is x ∼ plt , where x is a clock, plt a parametric linear
term, and ∼ ∈ {<,≤,=,≥, >}. We give in Table 1 the conventions used through-
out this survey concerning comparison operators. A (linear) constraint is a set
of linear inequalities.

A simple inequality is either x ∼ p or x ∼ d+. A simple constraint is a set of
simple inequalities.

2.2 A Unified Syntax for Parametric Timed Automata

The syntax of PTA varies a lot in the literature; we give below a definition that
includes any definition in the literature. That is, any definition of PTA can be
obtained from the following one by adding restrictions such as removing the set
of accepting locations, forbidding invariants, restricting the domain of clocks or
parameters, simplifying the syntax of the guards and invariants, etc.

3



idle add sugar

x2 ≤ p2

preparing coffee

x2 ≤ p3

done

x2 ≤ 10

press
x1 := 0
x2 := 0

x1 ≥ p1
press
x1 := 0

x2 = p2
cup

x2 = p3
coffee
x1 := 0

press
x1 := 0
x2 := 0

x2 = 10
idle

Fig. 1: A coffee machine modeled using a PTA

Definition 1. A PTA is a tuple A = (Σ,L, l0, F,X, P, I, E), where:

– Σ is a finite set of actions,
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– F ⊆ L is a set of accepting (or final) locations,
– X is a set of clocks with domain T = R+,
– P is a set of parameters with domain P = R+,
– I is the invariant, assigning to every l ∈ L a constraint I(l), and
– E is a set of edges (l, g, a,R, l′) where l, l′ ∈ L are the source and destination

locations, g is a constraint which is the transition guard, a ∈ Σ, and R ⊆ X
is a set of clocks to be reset.

Given a PTA A and a parameter valuation v, the valuation of A with v,
denoted by v(A), is the (non-parametric) TA where each occurrence of p is
replaced with v(p).

We say that a PTA is deterministic if, for any l ∈ L, for any a ∈ Σ, there
exists at most one edge (l, g, a,R, l′) ∈ E, for some g,R, l′. (Note that it differs
from a rather common definition of determinism for TA, that allows two or more
outgoing transitions with the same action label provided that the corresponding
guards are pairwise disjoint.)

A clock is said to be a parametric clock if it is compared with at least one
parameter in at least one guard or invariant; otherwise, it is a non-parametric
clock. This notion is central when studying the decidability of problems for PTA
with few clocks and parameters.

Example 1. Consider the coffee machine in Fig. 1, modeled using a PTA with
4 locations, 2 clocks (x1 and x2) and 3 parameters (p1, p2, p3). This PTA is
deterministic; both clocks x1 and x2 are parametric clocks. The machine can
initially idle for an arbitrarily long time. Then, whenever the user presses the
(unique) button (action press), the PTA enters location “add sugar”, resetting
both clocks. The machine can remain in this location as long as the invariant

4



(x2 ≤ p2) is satisfied; there, the user can add a dose of sugar by pressing the
button (action press), provided the guard (x1 ≥ p1) is satisfied, which resets x1.
That is, the user cannot press twice the button (and hence add two doses of
sugar) in a time less than p1. Then, p2 time units after the machine left the
idle mode, a cup is delivered (action cup), and the coffee is being prepared;
eventually, p2 time units after the machine left the idle mode, the coffee (action
coffee) is delivered. Then, after 10 time units, the machine returns to the idle
mode – unless a user again requests a coffee by pressing the button.

Semantics The semantics of a PTA A can be defined as the union over all pa-
rameter valuations v of the semantics of v(A). In the following, given δ ∈ R+,
w+δ denotes the valuation such that (w+δ)(x) = w(x)+δ, for all x ∈ X. Given
R ⊆ X, we define the reset of a clock valuation w, denoted by [w]R, as the valu-
ation resetting the clocks in R, and keeping the other clocks unchanged. Given a
parameter valuation v, v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x in v(C) with w(x).
We use the notation w|v |= C to indicate that w(v(C)) evaluates to true.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0, X, P, I, E),
and a parameter valuation v, the semantics of v(A) is given by the timed transi-
tion system (Q, q0,⇒), with

– Q = {(l, w) ∈ L× R+H | v|w |= I(l)},
– q0 = (l0, X = 0),

– ((l, w), e, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w)
e→ (l′, w′′)

δ→ (l′, w′), with:

• discrete transitions: (l, w)
e→ (l′, w′), if (l, w), (l′, w′) ∈ Q, there exists

e = (l, g, a,R, l′) ∈ E, w′ = [w]R, and v|w |= g;

• delay transitions: (l, w)
δ→ (l, w + δ), with δ ∈ R+, if ∀δ′ ∈ [0, δ], (l, w +

δ′) ∈ Q.

A run of a TA is an alternating sequence of states of Q and edges of the

form (l0, w0)
e0⇒ (l1, w1)

e1⇒ · · · em−1⇒ (lm, wm), such that for all i = 0, . . . ,m− 1,
ei ∈ E, and ((li, wi), ei, (li+1, wi+1)) ∈ ⇒.

Note that time elapsing can still be a 0-duration (d ∈ R+ allows d = 0);
in other words, TA allow to model Zeno behaviors, i. e., an infinite number of
actions within a 0-time or, more generally, a finite time (see e. g., [WSW+15]).
The accepted timed language is the set of timed words (alternating sequences of
actions and time elapsing) associated with an accepting run, i. e., a run ending
in a location of F (or, in some works, passing infinitely often by a location in F ).
Note that some works make a difference between finite and infinite runs. The
untimed language of a TA is the timed language projected onto the actions.
The set of traces (or trace set) is the set of accepting runs projected onto the
locations and actions, i. e., a set of alternating locations and actions.

A symbolic semantics is also defined for PTA in [HRSV02,ACEF09,JLR15] as
a parametric zone graph, where a symbolic state is made of a discrete part (the

5



current location) and a symbolic, continuous part (a set of diagonal constraints,
i. e., xi − xj ∼ plt , sometimes allowing disjunctions).

Simple PTA We defined simple PTA as the subclass of PTA where guards and
invariants are simple constraints. We define this class to show that, even in this
restricted situation, all non-trivial problems are undecidable (Section 3).

Variants of the PTA syntax PTA were first defined in [AHV93] using a set
of accepting locations. This is similar to timed automata [AD94]. Timed Safety
Automata (TSA) were introduced later in [HNSY94] by removing the final states,
but adding invariants to locations; many subsequent papers then refer to timed
safety automata as simply “timed automata”. In contrast, timed automata with
accepting locations are often referred to as timed Büchi automata (TBA). It
was shown that the timed expressive power of TSA is strictly less than that of
TBA [HKW95].

The syntax of PTA differs in most of the papers in the literature. Concerning
guards and invariants, in [AHV93] (resp. [Mil00]), guards (resp. guards and in-
variants) are conjunctions of inequalities of the form x ∼ p. In [HRSV02,BL09],
guards are conjunctions of inequalities of the form xi − xj � plt ∪ {∞};
in [HRSV02] invariants have the same form as guards (invariants are not con-
sidered in [BL09]). In [Doy07], guards and invariants are all open, i. e., of the
form x <> p or x <> d+. In [JLR15], guards and invariants are conjunctions
of inequalities of the form x ∼ plt , and invariants can only bound clocks from
above (i. e., x � plt). In [BBLS15], guards are conjunctions of inequalities of
the form x ∼ p and invariants can only bound clocks from above (i. e., x � p).
In [AM15], guards and invariants are conjunctions of inequalities of the form
x ∼ p + d, x ∼ d+ or p ∼ d (although the proofs of undecidability only need
inequalities of the form x ∼ p or x ∼ d+).

A set of accepting locations is considered in [AHV93,BL09,BBLS15], but
only [BL09] is interested in infinite accepting runs, i. e., runs that pass in-
finitely often by an accepting location; hence this latter work considers
what could be referred to as parametric timed Büchi automata. In contrast,
[HRSV02,Doy07,ACEF09,JLR15,AM15] consider parametric timed safety au-
tomata (i. e., without accepting locations).

Expressiveness A comparison of the expressiveness of these different syntactic
models remains to be done. Whereas it is likely that allowing constraints of the
form x ∼ plt may be simulated using constraints of the form x ∼ p (perhaps
adding additional locations, clocks and parameters), the expressiveness may dif-
fer when adding a set of accepting locations (just as the timed expressive power
of TSA is strictly less than that of TBA [HKW95]). In fact, the expressiveness
of a PTA was not even defined; we believe that shall be studied in the future.

2.3 Decision and Computation Problems

Following the presentation in [JLR15], given a class of decision problems
P (reachability, unavoidability, etc.), let us define the P-emptiness, the P-

6



universality and the P-finiteness. Given a PTA A and an instance φ of P, the
P-emptiness, P-universality and P-finiteness ask whether the set of parameter
valuations v such that v(A) satisfies φ is empty, is equal to P|P | and is finite,
respectively.

In this survey, we mainly focus on reachability and unavoidability properties,
and call them EF and AF respectively.3 We will also mention the EG property,
that checks whether there exists a maximal run along which the locations remain
in a subset G of the locations, and the AG property that checks whether the
locations remain in G for all runs.4

Additionally, we will survey the language (resp. trace) preservation (empti-
ness) problem [AM15]: given a PTA A and a parameter valuation v, does there
exist another valuation v′ 6= v such that the untimed languages (resp. sets of
traces) of v(A) and v′(A) are the same?

We finally define the P-synthesis problem: Given a PTA A and an instance
φ of P, compute the parameter valuations such that v(A) satisfies φ.

Example 2. Let us exemplify some decision and computation problems for the
PTA in Fig. 1. Assume the unique target location is “done”, i. e., G = {done}.
EF-emptiness asks whether at least one parameter valuation can reach location
“done” for some run; this is true (e. g., p1 = 1, p2 = 2, p3 = 3). EF-universality
asks whether all parameter valuations can reach location “done” for some run;
this is false (no parameter valuation such that p2 > p3 can reach “done”). AF-
emptiness asks whether at least one parameter valuation can reach location
“done” for all runs; this is true (e. g., p1 = 1, p2 = 2, p3 = 3). EF-synthesis
consists in synthesizing all valuations for which a run reaches location “done”;
the resulting set of valuations is 0 ≤ p2 ≤ p3 ≤ 10 ∧ p1 ≥ 0.

3 Almost Everything is Undecidable for Simple PTA

In this entire section, we consider simple PTA without restriction on the number
of clocks and parameters. In that situation, all non-trivial problems studied in
the literature are undecidable, with the exception of the membership problem
(that asks whether the language of a valuated PTA is empty) – which is rather
a problem for TA. By non-trivial, we mean requiring a semantic analysis, and
not, e. g., a sole analysis of the syntax of the PTA (e. g., “is the number of clocks
even”, or any problem defined in Section 2.3 by setting G = L).

We also survey that bounding time (Section 3.3) or the parameter domain for
rational-valued parameters (Section 3.4) preserves the undecidability. However,
we will show in Section 4 that bounding the number of clocks and/or parameters
brings decidability.

All proofs of undecidability reduce from either the halting problem, or the
boundedness problem, of a 2-counter machine, known to be undecidable [Min67].

3 The names EF, AF, EG, AG were first used for PTA in [JLR15], and come from the
CTL syntax.

4 Note that EF-, AF-, EG-, and AG-emptiness are equivalent to AG-, EG-, AF-, EF-
universality, respectively.

7



3.1 Decidability of the Membership

In [AHV93], the membership problem for PTA is defined as follows: given a
PTA A and a parameter valuation v, is the language of v(A) empty? The mem-
bership problem is not strictly speaking a problem for PTA, but rather for TA,
since it considers a valuated PTA. As a consequence, the decidability of this
problem only relies on known results for TA [AD94]: the membership problem
is decidable (and PSPACE-complete) for PTA over discrete time (T = N and
P = N), over dense time with integer-valued parameters (T = R+ and P = N),
and over dense time with rational-valued parameters (T = R+ and P = Q).
However, it becomes undecidable with real-valued (in fact irrational) parame-
ters [Mil00].

3.2 General Undecidable Problems

EF-, AF, EG, AG-emptiness The seminal paper on PTA [AHV93] showed that
the EF-emptiness problem is undecidable for PTA, both for discrete time, and
for dense-time (real-valued clocks and real-valued parameters). Although not
explicitly stated in [AHV93], the proof of undecidability, that consists in reducing
from the halting problem of a 2-counter machine, also works for real-valued clocks
with integer-valued parameters.

In [JLR15], it is proved that the AF-emptiness is undecidable for L/U-PTA
(a subclass of PTA, see Section 5), and hence for PTA as well. Again, the proof
of undecidability consists in reducing from the halting problem of a 2-counter
machine.

AG- and EG-emptiness are also undecidable [ALR16].

Language and trace preservation problems Both language preservation and trace
preservation problems are undecidable for simple PTA [AM15]. The continuous
(or robust) versions of those problems additionally require that the language
(resp. set of traces) is preserved under any intermediary valuation of the form
λ · v + (1 − λ) · v′, for λ ∈ [0, 1] (with the classical definition of addition and
scalar multiplication). These problems are also undecidable for simple PTA.

The language preservation problems and its continuous version are undecid-
able for a PTA with at least 4 parametric clocks. The trace preservation and
its continuous version require either an unbounded number of non-parametric
clocks and diagonal constraints (that go beyond the usual syntax of PTA), or an
unbounded number of parametric clocks. This is due to the fact that the proof
encodes the 2-counter machine with a fixed number of locations, which thus re-
quires to encode each location with a different clock. It remains open whether
this problem is undecidable for a bounded number of clocks.

3.3 Bounding Time

Bounded-time model checking consists in checking a property within a bounded
time domain. Undecidable problems might become decidable in this situation, or

8



be of a lower complexity. For example, time-bounded reachability becomes decid-
able for a special subclass of hybrid automata with monotonic rates [BDG+13].

In contrast, the EF-emptiness problem remains undecidable for (general)
PTA over bounded, dense time [Jov13, Theorem 3.4].

This said, we emphasize that (quite trivially) model checking discrete-time
PTA over bounded-time would become decidable. (This remains to be shown
formally though.)

3.4 Bounding the Parameter Domain

Bounding the parameter domain consists in setting a minimal and a maximal
bound on the possible parameter valuations of a PTA.

For integer parameters, any problem for a PTA over a bounded parameter
domain is decidable iff the corresponding problem is decidable for a TA. In fact,
the P-emptiness problem for PTA with bounded integer is PSPACE-complete
for any class of problems P that is PSPACE-complete for TA [JLR15]. Indeed, it
suffices to enumerate all parameter valuations, of which there is a finite number.
As a consequence, EF-, AF-, EG-, AG-emptiness are all decidable; and so are
language and trace preservation. In [JLR15], a symbolic method is proposed to
compute EF- and AF-synthesis; experiments showed that this symbolic compu-
tation is faster than an exhaustive enumeration (using Uppaal).

For rational-valued parameters, the EF-emptiness problems is undecidable
for a single parameter in [1, 2] [Mil00]. EG- and AG-emptiness [ALR16], and
language and trace preservation [AM15] are also undecidable for a single param-
eter in [0, 1].

4 Bounding the Numbers of Clocks and Parameters

4.1 EF-Emptiness

Since the seminal paper on PTA [AHV93], the decidability of the EF-emptiness
problem was studied in various settings, by bounding the number of parametric
clocks, of non-parametric clocks, and of parameters. The syntax was also re-
strained. We summarize these results in Table 2 (that is partially inspired by
a similar table in [Doy07], improved by adding more dimensions, and of course
more recent results). The open question of the syntax expressiveness requires to
consider a multi-dimensional table: we need to consider not only the number of
clocks and parameters, but also the syntax allowed in guards and invariants. For
example, [BO14] improves the complexity of [AHV93] (NEXPTIME-complete
instead of non-elementary) over N for 1 clock, but requires non-strict inequal-
ities, and uses invariants; it is hence unclear whether the result of [AHV93] is
really subsumed by [BO14].

Let us extract the most important results out of Table 2. The decidability
is clearly impacted by the number of parametric clocks. First, let us consider
PTA with a single parametric clock: the EF-emptiness problem is decidable

9



Table 2: Decidability of the EF-emptiness problem for general PTA
T P Guards Invariants P-clocks NP-clocks Params Decidability Main ref.

N N x ≤≥ p|d+ 1 any any NEXPTIME-compl. [BO14]

N N x ∈ I None 1 any any non-elementary [AHV93]

N N x ≤≥ p|d+ 2 any 1 PSPACENEXP-hard [BO14]

N N any 2 any > 1 open

N N x ∼ p|d None 3 0 1 undecidable [BBLS15]

N N x <> p any any any open

N N bounded x ∼ plt x � plt any any any decidable [JLR15] (conseq.)

R+ N x ∈ I None 1 0 any non-elementary [AHV93] (conseq.)

R+ N x ∼ p|d x � p 1 any any NEXPTIME [BBLS15]

R+ N x ≤≥ p|d+ 2 any 1 PSPACENEXP-hard [BO14]

R+ N any 2 any > 1 open

R+ N x ∼ p|d None 3 0 1 undecidable [BBLS15]

R+ N x ∼ plt x � plt 3 0 2 undecidable [JLR15]

Q+/R+ N x <> p any any any open

R+ N bounded x ∼ plt x � plt any any any PSPACE-complete [JLR15]

R+ R+ x ∈ I None 1 0 any non-elementary [AHV93]

R+ Q+ x ∼ p|d 1 0 any NP-complete [Mil00]

R+ Q+ x ∼ p|d 1 0 bounded PTIME [Mil00]

R+ R+ any 1 1 or 2 1 open

R+ Q+ x ∼ p|d 1 3 1 undecidable [Mil00]

R+ R+ any 2 any any open

R+ R+ x ∈ I None 3 0 6 undecidable [AHV93]

R+ Q+ x ∼ p|d 3 0 1 undecidable [Mil00]

R+ R+
[1;2] x ∼ p|d 1 3 1 undecidable [Mil00]

R+ R+
[1;2] x ∼ p|d 3 0 1 undecidable [Mil00]

Q+/R+ Q+/R+ x <> p < 2 < 3 < 2 open

Q+/R+ Q+/R+ x <> p 2 3 2 undecidable [Doy07]

over discrete time with arbitrarily many non-parametric clocks (NEXPTIME-
complete when only large inequalities are used [BO14], and non-elementary oth-
erwise [AHV93]). It is NP-complete over dense time with no non-parametric
clock [Mil00]. It is open over dense time with two non-parametric clocks, and
undecidable with three non-parametric clocks [Mil00]; note that this problem is
decidable over discrete time [AHV93,BO14], which exhibits a difference between
dense and discrete time [Mil00].

Second, let us consider PTA with two parametric clocks: the EF-emptiness
problem is decidable over discrete time with a single parameter [BO14]; this
result is claimed in [BO14] to extend to dense time with integer-valued param-
eters. Any other case with two parametric clocks remains open. Third, the EF-
emptiness problem is undecidable in all settings with three (or more) parametric
clocks. Finally, using only strict inequalities, the EF-emptiness is undecidable
over dense time for two parametric clocks, three non-parametric clocks and two
parameters [Doy07]; this situation was not considered over discrete time.

4.2 Language and Trace Preservation

The language- and trace-preservation problems are decidable for deterministic
PTA with a single clock, and with linear parameter constraints allowed in guards
and invariants, i. e., of the form x ∼ plt or plt ∼ 0 [AM15]. A procedure to
compute parameter valuations with the same trace set as a given valuation is

10



proposed in [AM15] (close to the “inverse method” [ACEF09]), that is complete
for deterministic PTA, and terminates in the case of a single clock.

4.3 Parametric Model Checking

Parametric model checking was addressed in different settings: verifying a non-
parametric model against a parametric formula, or a parametric model against
a non-parametric formula, or a parametric model against a parametric formula.

Non-parametric model / parametric formula In [AELP01], an extension of LTL
with parameters in the formula (“PLTL”) is studied. When only parametric
“always” modalities are allowed of the form “≤ p”, checking emptiness of the
valuation set is PSPACE-complete. The solution to the synthesis problem is dou-
bly exponential in the number of parameters. However, when allowing equality
in PLTL, the emptiness problem becomes undecidable [AELP01].

Parametric model / non-parametric formula In [Qua14], it is shown that model
checking PTA with the (non-parametric) logic MTL is undecidable, even with
a single clock and a single parameter, and even when the PTA is deterministic.
This negative result comes in contrast to the decidability of the EF-emptiness
problem for one-clock PTA. Note that the proof of undecidability requires the
parameters to be rational-valued (integer-valued parameters are not sufficient –
and this latter case can hence be considered as open).

Parametric model / parametric formula Model checking a PTA over discrete-
time with a single parametric clock against a PTCTL formula (a parametric
version of TCTL) is decidable, provided the formula does not use equality con-
straints; otherwise the problem becomes undecidable [BR07].

5 The Disappointing Class of L/U-PTA

Lower-bound/upper-bound parametric timed automata (L/U-PTA), proposed
in [HRSV02], restrict the use of parameters in the model. A parameter is said
to be an upper-bound parameter if, whenever it is compared with a clock, it is
compared as an upper bound, i. e., it only appears in inequalities of the form
x � p. Conversely, a parameter is a lower-bound parameter if it is only compared
with clocks as a lower bound, i. e., of the form p � x.

An L/U-PTA is a PTA where the set of parameters is partitioned into upper-
bound parameters and lower-bound parameters. In [BL09], two additional sub-
classes are introduced: L-PTA (resp. U-PTA) are PTA with only lower-bound
(resp. upper-bound) parameters.

Example 3. Consider again the coffee machine in Fig. 1, modeled using a PTA A.
This PTA is not an L/U-PTA; indeed, the guard x2 = p2 (resp. x2 = p3) makes
p2 (resp. p3) be compared with clocks both as a lower-bound and as an upper-
bound. (Recall that = stands for ≤ and ≥.)

11



However, if one replaces x2 = p2 with x2 ≤ p2 and one replaces x2 = p3
with x2 ≤ p3, then A becomes an L/U-PTA with lower-bound parameter p1
and upper-bound parameters {p2, p3}. Note that equalities are not forbidden in
L/U-PTA (e. g., x1 = 10), but only equalities involving parameters.

Several case studies fit into the class of L/U-PTA: the root contention pro-
tocol, the bounded retransmission protocol and the Fischer mutual exclusion
protocol are all modeled with L/U-PTA in [HRSV02]; in [HRSV02,KP12], both
the Fischer mutual exclusion protocol and a producer-consumer are verified
using L/U-PTA. Interestingly, the two case studies of the seminal paper on
PTA [AHV93] (viz., a toy railroad crossing model and a model of Fischer mutual
exclusion protocol) are also L/U-PTA. In addition, most models of asynchronous
circuits with bi-bounded delays (i. e., where each delay between the change of an
input signal and the change of the corresponding output is a parametric interval)
can be modeled using L/U-PTA.

5.1 Decidability Results

The first (and main) positive result for L/U-PTA is the decidability of the EF-
emptiness problem [HRSV02]. L/U-PTA benefit from the following interesting
property: increasing the value of an upper-bound parameter or decreasing the
value of a lower-bound parameter necessarily relaxes the guards and invariants,
and hence can only add behaviors. Hence, checking the EF-emptiness of an L/U-
PTA can be achieved by replacing all lower-bound parameters with 0, and all
upper-bound parameters with ∞; this yields a non-parametric TA, for which
emptiness is PSPACE [AD94]. This procedure is not only sound but also com-
plete.

Further decidability results are exhibited in [BL09], for infinite runs accep-
tance properties, i. e., where a location is met infinitely often (to which we refer
hereafter as BüEF). Note that, in contrast to [HRSV02] where the parameters are
valued with non-negative reals, the results in [BL09] consider integer-valued pa-
rameters (though time is dense, i. e., clocks are real-valued). It is shown in [BL09]
that emptiness, universality, finiteness of the valuation set are PSPACE-complete
for infinite runs acceptance properties. Remark that the decidability of the
BüEF-finiteness is due to the integerness of the parameters; in short, a suf-
ficient bound is computed on the parameters, and then valuations smaller or
equal to this bound are enumerated, which would not be feasible for real-valued
parameters.

In [BL09], a parametric extension of the dense-time linear temporal logic
MITL0,∞ (denoted “PMITL0,∞”) is proposed; when parameters are used only as
lower or upper bound in the formula (to which we refer as L/U-PMITL0,∞), sat-
isfiability and model checking are PSPACE-complete; this is obtained by trans-
lating the formula into an L/U-automaton and checking an infinite acceptance
property.

12



Table 3: Decision problems for L/U-PTA
Problem P Complexity Main ref.

EF-emptiness R+ PSPACE [HRSV02]

AG-emptiness R+ PSPACE [HRSV02]

AF-emptiness R+ undecidable [JLR15]

EG-emptiness R+ open

BüEF-emptiness N PSPACE-complete [BL09]

BüEF-universality N PSPACE-complete [BL09]

BüEF-finiteness N PSPACE-complete [BL09]

constrained BüEF-emptiness N undecidable [BL09]

constrained BüEF-universality N undecidable [BL09]

L/U-constrained BüEF-emptiness N PSPACE-complete [BL09]

L/U-constrained BüEF-universality N PSPACE-complete [BL09]

Language preservation N undecidable [AM15]

Language preservation R+ undecidable [AM15]

L/U-PMITL0,∞-emptiness N PSPACE-complete [BL09]

L/U-PMITL0,∞-universality N PSPACE-complete [BL09]

5.2 Undecidability Results

The first undecidability results for L/U-PTA are shown in [BL09]: the constrained
EF-emptiness problem and constrained EF-universality problem (for infinite
runs acceptance properties) are undecidable for L/U-PTA. By constrained it
is meant that some parameters of the L/U-PTA can be constrained by an initial
linear constraint, e. g., p1 ≤ 2 × p2 + p3. Indeed, using linear constraints, one
can constrain an upper-bound parameter to be equal to a lower-bound param-
eter, and hence build a 2-counter machine using an L/U-PTA. However, when
no upper-bound parameter is compared to a lower-bound parameter (i. e., when
no initial linear inequality contains both an upper-bound and a lower-bound
parameter), these two problems retrieve decidability [BL09].

A second negative result is shown in [JLR15]: the AF-emptiness problem
is undecidable for L/U-PTA. This is achieved by a reduction from a 2-counter
machine where a lower-bound parameter is equal to an upper-bound parameter
iff AF holds. This restricts again the use of L/U-PTA, as AF is essential to show
that all possible runs of a system eventually reach a (good) state.

Then, in [AM15], it is shown that the language preservation problem is un-
decidable for L/U-PTA. Again, this is achieved by a reduction from a 2-counter
machine where a lower-bound parameter is equal to an upper-bound parameter
iff the language is preserved.

We summarize in Table 3 decision problems for L/U-PTA.

5.3 Intractability of the Synthesis

The most disappointing result concerning L/U-PTA is shown in [JLR15]: if it
can be computed, the solution to the EF-synthesis problem for L/U-PTA cannot

13



be represented using a formalism for which the emptiness of the intersection with
equality constraints is decidable. The proof relies on the undecidability of the
constrained emptiness problem of [BL09]. A very annoying consequence is that
such a solution cannot be represented as a finite union of polyhedra (since the
emptiness of the intersection with equality constraints is decidable).

5.4 Two Open Classes: L-PTA and U-PTA

L-PTA and U-PTA (introduced in [BL09]) are very open classes, in the sense
that to the best of our knowledge, no result known to be decidable for L-PTA
(or U-PTA) was shown undecidable for L/U-PTA (and is hence either decidable
or open). Conversely, and even stronger, no result known to be undecidable for
L/U-PTA was shown decidable for L-PTA (or U-PTA) – and is always open.

To summarize, the AF-emptiness, the language- and trace-preservation prob-
lems, are all undecidable for L/U-PTA, but remain open for L-PTA and U-PTA.

In fact, the only result that could be described as a difference between L/U-
PTA and U-PTA (resp. L-PTA) is given in [AM15]: the language-preservation
problem is decidable for deterministic U-PTA (resp. deterministic L-PTA) with
a single integer-valued parameter, whereas this problem is proved undecidable
for L/U-PTA. However, one could argue that an L/U-PTA with a single param-
eter is necessarily either an L-PTA (if the unique parameter is a lower-bound
parameter) or a U-PTA (otherwise).

Synthesis The synthesis for L-PTA and U-PTA was not much addressed, with
the exception of integer-valued parameters: in that case, it is possible to synthe-
size the solution to the BüEF-synthesis problem in the form of a union of linear
constraints doubly exponential in the number of parameters [BL09]. The authors
note that it remains open whether one can construct a linear constraint with a
single exponential blow-up. This result does not extend in a straightforward
manner to rational-valued parameters, as the technique in [BL09] (for U-PTA)
requires the computation of a sufficient upper bound, and then an exhaustive
enumeration of parameters below this bound.

6 Open Questions

Syntax and expressiveness A first perspective is to compare the expressiveness of
the various syntaxes of PTA defined in the literature. This implies to first agree
on a definition of the expressiveness of a PTA. We propose as a perspective two
possible definitions: either the union over all parameter valuations of the timed
language, or the union over all parameter valuations of the untimed language.
Comparing the expressiveness of the syntaxes in the literature would reduce the
number of dimensions for the various decidability results of the EF-emptiness
problem studied in Table 2.

14



Decidability problems A main open problem is the decidability of PTA with
two clocks, that was only studied with a single parameter and over discrete
time [BO14]. Studying further the EG-, AF- and AG-emptiness problems for
few clocks and parameters (as it was quite extensively done for EF-emptiness)
remains to be done too, although the theoretical or practical interest may be
somehow debatable. More interesting (and promising) are the two open classes
of L-PTA and U-PTA. These classes are non-trivial, and relate to the robust
analysis of TA: most robustness problems (see [Mar11,BMS13]) consider an en-
largement of all guards by (usually) the same constant factor, whereas U-PTA
allow to enlarge or decrease some of the upper-bound guards by a possibly differ-
ent parameter, which gives an orthogonal definition of robustness. The language
preservation problem remains open for U-PTA [AM15], and the question of the
synthesis is also challenging.

Also note that formalisms close to PTA (not surveyed here for lack of space)
include subclasses of hybrid automata [BDG+13] and parametric interrupt timed
automata [BHJL13], that benefit from promising decidability results.

Synthesis Whereas decision problems (surveyed in this document) were much
studied, little interest has been dedicated to the synthesis of parameters, which
should however be a main practical challenge. Despite undecidability (in gen-
eral [AHV93]) or intractability (for L/U-PTA [JLR15]), semi-algorithms or ap-
proximated procedures could be devised; SMT-based techniques [KP12], or the
integer hull approximation [JLR15,ALR15] can serve as a basis for future works.

Are PTA a useless formalism? Despite many undecidability problems, PTA were
often used to model and verify various case studies (see Section 1). This can be
seen as a paradox considering the numerous undecidability results PTA suffer
from. In fact, as all of the aforementioned analyses terminate, it is challenging to
understand why, and perhaps to exhibit further classes for which the problems
considered in this survey become decidable.

Acknowledgements

This manuscript benefited from discussions with Didier Lime, Nicolas Markey,
and Olivier H. Roux.

References

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. International
Journal of Foundations of Computer Science, 20(5):819–836, 2009.

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

AELP01. Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled. Para-
metric temporal logic for “model measuring”. ACM Transactions on Com-
putational Logic, 2(3):388–407, 2001.

15



AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMI-
TATOR 2.5: A tool for analyzing robustness in scheduling problems. In FM,
volume 7436 of Lecture Notes in Computer Science, pages 33–36. Springer,
2012.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993.

ALR15. Étienne André, Didier Lime, and Olivier H. Roux. Integer-complete syn-
thesis for bounded parametric timed automata. In RP, volume 9058 of
Lecture Notes in Computer Science. Springer, 2015.

ALR16. Étienne André, Didier Lime, and Olivier H. Roux. Decision problems for
parametric timed automata. Submitted, 2016.

AM15. Étienne André and Nicolas Markey. Language preservation problems in
parametric timed automata. In FORMATS, volume 9268 of Lecture Notes
in Computer Science, pages 27–43. Springer, 2015.

AMPS12. Eugene Asarin, Venkatesh Mysore, Amir Pnueli, and Gerardo Schneider.
Low dimensional hybrid systems – decidable, undecidable, don’t know. In-
formation and Computation, 211:138–159, 2012.

BBLS15. Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jǐŕı Srba. Language empti-
ness of continuous-time parametric timed automata. In ICALP, Part II,
volume 9135 of Lecture Notes in Computer Science, pages 69–81. Springer,
2015.

BDG+13. T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Wor-
rell. Time-bounded reachability for monotonic hybrid automata: Complex-
ity and fixed points. In ATVA, Lecture Notes in Computer Science, pages
55–70. Springer, 2013.

BHJL13. Béatrice Bérard, Serge Haddad, Aleksandra Jovanović, and Didier Lime.
Parametric interrupt timed automata. In RP, volume 8169 of Lecture Notes
in Computer Science, pages 59–69. Springer, 2013.

BL09. Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121–151, 2009.

BMS13. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in timed
automata. In RP, volume 8169 of Lecture Notes in Computer Science, pages
1–18. Springer, 2013. Invited paper.

BO14. Daniel Bundala and Joël Ouaknine. Advances in parametric real-time rea-
soning. In MFCS, volume 8634 of Lecture Notes in Computer Science, pages
123–134. Springer, 2014.

BR07. Véronique Bruyère and Jean-François Raskin. Real-time model-checking:
Parameters everywhere. Logical Methods in Computer Science, 3(1:7), 2007.

CEFX09. Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and
Weiwen Xu. Timed verification of the generic architecture of a memory
circuit using parametric timed automata. Formal Methods in System De-
sign, 34(1):59–81, 2009.

Doy07. Laurent Doyen. Robust parametric reachability for timed automata. In-
formation Processing Letters, 102(5):208–213, 2007.

FJ13. Léa Fanchon and Florent Jacquemard. Formal timing analysis of mixed
music scores. In International Computer Music Conference, 2013.

FLMS12. Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat. Robust-
ness analysis for scheduling problems using the inverse method. In TIME,
pages 73–80. IEEE Computer Society Press, 2012.

16



HKPV98. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and Sys-
tem Sciences, 57(1):94–124, 1998.

HKW95. Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi. The expres-
sive power of clocks. In ICALP, volume 944 of Lecture Notes in Computer
Science, pages 417–428. Springer, 1995.

HNSY94. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Information and Compu-
tation, 111(2):193–244, 1994.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 52-53:183–220, 2002.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for timed automata. IEEE Transactions on Software Engineering,
41(5):445–461, 2015.

Jov13. Aleksandra Jovanović. Parametric Verification of Timed Systems. PhD
thesis, 2013. École Centrale Nantes, France.

KP12. Michal Knapik and Wojciech Penczek. Bounded model checking for para-
metric timed automata. Transactions on Petri Nets and Other Models of
Concurrency, 5:141–159, 2012.

LPY97. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technology Transfer,
1(1-2):134–152, 1997.

LRST09. Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with stop-
watches. In TACAS, volume 5505 of Lecture Notes in Computer Science,
pages 54–57. Springer, 2009.

Mar11. Nicolas Markey. Robustness in real-time systems. In SIES, pages 28–34.
IEEE Computer Society Press, 2011.

Mil00. Joseph S. Miller. Decidability and complexity results for timed automata
and semi-linear hybrid automata. In HSCC, volume 1790 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

Min67. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-
Hall, Inc., NJ, USA, 1967.

Qua14. Karin Quaas. MTL-model checking of one-clock parametric timed au-
tomata is undecidable. In SynCoP, volume 145 of EPTCS, pages 5–17,
2014.

SLDP09. Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexi-
ble verification under fairness. In CAV, volume 5643 of Lecture Notes in
Computer Science, pages 709–714. Springer, 2009.

WSW+15. Ting Wang, Jun Sun, Xinyu Wang, Yang Liu, Yuanjie Si, Jin Song Dong,
Xiaohu Yang, and Xiaohong Li. A systematic study on explicit-state non-
zenoness checking for timed automata. IEEE Transactions on Software
Engineering, 41(1):3–18, 2015.

17


	What's decidable about parametric timed automata?

