
Université Paris 13
Institut Galilée
Master 2 PLS

SITH � Partie 2.1

Systèmes temporisés

Étienne André

Etienne.Andre (à) univ-paris13.fr

Version : January 26, 2018 (diapositives à trous pour Web)

Étienne André SITH � 2.1 2017�2018 1 / 57

Partie 2.1: SITH � Plan

1 Finite-State Automata

2 Timed Automata

Étienne André SITH � 2.1 2017�2018 2 / 57

Introduction Motivation

Context: Verifying complex timed systems

Need for early bug detection

Bugs discovered when �nal testing: expensive

; Need for a thorough speci�cation and veri�cation phase

Étienne André SITH � 2.1 2017�2018 3 / 57

Introduction Motivation

The Therac-25 radiation therapy machine (1/2)

Radiation therapy machine used in the 1980s

Involved in accidents between 1985 and 1987, in which patients
were given massive overdoses of radiation

Approximately 100 times the intended dose!

Numerous causes, including race condition

�The failure only occurred when a particular nonstandard

sequence of keystrokes was entered on the VT-100

terminal which controlled the PDP-11 computer: an X to

(erroneously) select 25MV photon mode followed by ↑, E
to (correctly) select 25 MeV Electron mode, then Enter,

all within eight seconds.�

Étienne André SITH � 2.1 2017�2018 4 / 57

Introduction Motivation

The Therac-25 radiation therapy machine (1/2)

Radiation therapy machine used in the 1980s

Involved in accidents between 1985 and 1987, in which patients
were given massive overdoses of radiation

Approximately 100 times the intended dose!

Numerous causes, including race condition

�The failure only occurred when a particular nonstandard

sequence of keystrokes was entered on the VT-100

terminal which controlled the PDP-11 computer: an X to

(erroneously) select 25MV photon mode followed by ↑, E
to (correctly) select 25 MeV Electron mode, then Enter,

all within eight seconds.�

Étienne André SITH � 2.1 2017�2018 4 / 57

Introduction Motivation

The Therac-25 radiation therapy machine (2/2)

The testing engineers could obviously not detect this strange (and

quick!) sequence leading to the failure.

Limits of testing

This case illustrates the di�culty of bug detection without formal

methods.

Étienne André SITH � 2.1 2017�2018 5 / 57

Introduction Motivation

The Therac-25 radiation therapy machine (2/2)

The testing engineers could obviously not detect this strange (and

quick!) sequence leading to the failure.

Limits of testing

This case illustrates the di�culty of bug detection without formal

methods.

Étienne André SITH � 2.1 2017�2018 5 / 57

Introduction Context

Bugs can be di�cult to �nd

. . . and can have dramatic consequences for critical systems:

health-related devices

aeronautics and aerospace transportation

smart homes and smart cities

military devices

etc.

Hence, high need for formal veri�cation

Étienne André SITH � 2.1 2017�2018 6 / 57

Introduction Context

Bugs can be di�cult to �nd

. . . and can have dramatic consequences for critical systems:

health-related devices

aeronautics and aerospace transportation

smart homes and smart cities

military devices

etc.

Hence, high need for formal veri�cation

Étienne André SITH � 2.1 2017�2018 6 / 57

Finite-State Automata

Plan: Finite-State Automata

1 Finite-State Automata

Syntax

Semantics

Examples

Composing Finite State Automata

Specifying Properties Using Logics

Reachability

Specifying Properties Using Observers

2 Timed Automata

Étienne André SITH � 2.1 2017�2018 7 / 57

Finite-State Automata

Model checking concurrent systems

Use formal methods [Baier and Katoen, 2008]

A model of the system

?

|=

is unreachable

A property to be satis�ed

Question: does the model of the system satisfy the property?

Yes No

Counterexample
Turing award (2007) to Edmund M. Clarke, Allen Emerson and Joseph Sifakis

Étienne André SITH � 2.1 2017�2018 8 / 57

Finite-State Automata

Model checking concurrent systems

Use formal methods [Baier and Katoen, 2008]

A model of the system

?

|= is unreachable

A property to be satis�ed

Question: does the model of the system satisfy the property?

Yes No

Counterexample
Turing award (2007) to Edmund M. Clarke, Allen Emerson and Joseph Sifakis

Étienne André SITH � 2.1 2017�2018 8 / 57

Finite-State Automata

Model checking concurrent systems

Use formal methods [Baier and Katoen, 2008]

A model of the system

?

|= is unreachable

A property to be satis�ed

Question: does the model of the system satisfy the property?

Yes No

Counterexample

Turing award (2007) to Edmund M. Clarke, Allen Emerson and Joseph Sifakis

Étienne André SITH � 2.1 2017�2018 8 / 57

Finite-State Automata

Model checking concurrent systems

Use formal methods [Baier and Katoen, 2008]

A model of the system

?

|= is unreachable

A property to be satis�ed

Question: does the model of the system satisfy the property?

Yes No

Counterexample
Turing award (2007) to Edmund M. Clarke, Allen Emerson and Joseph Sifakis

Étienne André SITH � 2.1 2017�2018 8 / 57

Finite-State Automata

Transition systems

Dé�nition (Transition system)

A transition system (TS) is a tuple TS = (S, Σ, SI, SF,⇒), where

S is a set of states;

Σ is an alphabet of events;

SI ⊆ S is a set of initial states;

SF ⊆ S is a set of �nal (or accepting) states; and,⇒ : S× Σ→ 2S is a transition relation.

Usually, we write s1
a

=⇒ s2 when (s1, a, s2) ∈⇒.

Étienne André SITH � 2.1 2017�2018 9 / 57

Finite-State Automata Syntax

Finite-state automata

Dé�nition (Finite automaton)

A Finite automaton (FA) FA = (L, Σ, lI, LF,→) is a tuple where

L is a �nite set of locations;

Σ is a �nite set of actions;

lI ∈ L is the initial location;

LF ⊆ L is a set of �nal (or accepting) locations;→ : L× Σ→ 2L is a transition relation.

Usually, we write l1
a−→ l2 when (l1, a, l2) ∈→.

Étienne André SITH � 2.1 2017�2018 10 / 57

Finite-State Automata Syntax

Example 1

FA = (L, Σ, lI, LF,→), with

L = {l1, l2, l3}

Σ = {a, b, c, d}

lI = l1

LF = {l2}→ = {(l1, a, l1), (l1, b, l2), (l2, c, l1), (l2, d, l2), (l3, b, l2)}

a b

c

d

b

Étienne André SITH � 2.1 2017�2018 11 / 57

Finite-State Automata Syntax

Example 1

FA = (L, Σ, lI, LF,→), with

L = {l1, l2, l3}

Σ = {a, b, c, d}

lI = l1

LF = {l2}→ = {(l1, a, l1), (l1, b, l2), (l2, c, l1), (l2, d, l2), (l3, b, l2)}

a b

c

d

b

Étienne André SITH � 2.1 2017�2018 11 / 57

Finite-State Automata Syntax

Example 2
a

b

c

d

b

d
a

FA = (L, Σ, lI, LF,→), with

L = {l1, l2, l3, l4}

Σ = {a, b, c, d}

lI = {l1}

LF = {l1, l3, l4}→ = {(l1, b, l4), (l2, c, l1), (l2, b, l3), (l2, d, l4), (l3, d, l3),

(l4, a, l3), (l4, a, l4)}

Étienne André SITH � 2.1 2017�2018 12 / 57

Finite-State Automata Syntax

Example 2
a

b

c

d

b

d
a

FA = (L, Σ, lI, LF,→), with

L = {l1, l2, l3, l4}

Σ = {a, b, c, d}

lI = {l1}

LF = {l1, l3, l4}→ = {(l1, b, l4), (l2, c, l1), (l2, b, l3), (l2, d, l4), (l3, d, l3),

(l4, a, l3), (l4, a, l4)}

Étienne André SITH � 2.1 2017�2018 12 / 57

Finite-State Automata Semantics

Semantics of �nite automata

Dé�nition (Semantics of �nite automata)

Let FA = (L, Σ, lI, LF,⇒) be a Finite Automaton.

The semantics of FA is the transition system TS = (S, Σ, SI, SF,⇒),

with

S = L;

Σ the same;

SI = {lI};

SF = LF; and,⇒ =→.

Étienne André SITH � 2.1 2017�2018 13 / 57

Finite-State Automata Examples

A co�ee machine AC

press? cup!

press?

co�ee!

Waiting

Adding sugar

Delivering co�ee

Example of runs

Co�ee with no sugar

press? cup! co�ee!

Co�ee with 2 doses of sugar

press? press? press? cup! co�ee!

And so on

Étienne André SITH � 2.1 2017�2018 14 / 57

Finite-State Automata Examples

A co�ee machine AC

press? cup!

press?

co�ee!

Waiting

Adding sugar

Delivering co�ee

Example of runs

Co�ee with no sugar

press? cup! co�ee!

Co�ee with 2 doses of sugar

press? press? press? cup! co�ee!

And so on

Étienne André SITH � 2.1 2017�2018 14 / 57

Finite-State Automata Examples

A co�ee machine AC

press? cup!

press?

co�ee!

Waiting

Adding sugar

Delivering co�ee

Example of runs

Co�ee with no sugar

press? cup! co�ee!

Co�ee with 2 doses of sugar

press? press? press? cup! co�ee!

And so on

Étienne André SITH � 2.1 2017�2018 14 / 57

Finite-State Automata Examples

A co�ee drinker (1/2)
Specify a co�ee drinker automaton AD1 that performs forever the
following actions:

1 press the button once

2 place the cup

3 wait for the co�ee

4 drink the co�ee

5 put the cup to the washing machine

Étienne André SITH � 2.1 2017�2018 15 / 57

Finite-State Automata Examples

A co�ee drinker (2/2)

Specify a co�ee drinker automaton AD2 that works just as AD1
except that (s)he can nondeterministically ask for 0, 1 or 2 doses

of sugar.

Étienne André SITH � 2.1 2017�2018 16 / 57

Finite-State Automata Examples

A washing machine

Specify a washing machine automaton AW that accepts up to 5

cups, and washes all cups when the machine is full.

Étienne André SITH � 2.1 2017�2018 17 / 57

Finite-State Automata Composing Finite State Automata

Systems as components

Often, a complex system is made of components or modules

Components can interact with each other:

using strong synchronization

using shared variables

using one-to-one synchronization

in an interleaving manner

Here, we show that FAs can be composed easily using strong

synchronization on actions.

Étienne André SITH � 2.1 2017�2018 18 / 57

Finite-State Automata Composing Finite State Automata

Composition of �nite automata

FA1 = (L1, Σ1, (lI)1, (LF)1,→1)

FA2 = (L2, Σ2, (lI)2, (LF)2,→2)

Then we de�ne FA1 ‖ FA2 as

Étienne André SITH � 2.1 2017�2018 19 / 57

Finite-State Automata Composing Finite State Automata

Composition of �nite automata: Example 1

Draw the automaton composed of the automata AC ‖ AD1

Étienne André SITH � 2.1 2017�2018 20 / 57

Finite-State Automata Composing Finite State Automata

Composition of �nite automata: Example 2

Draw the automaton composed of the automata AC ‖ AD2

Étienne André SITH � 2.1 2017�2018 21 / 57

Finite-State Automata Composing Finite State Automata

Composition of �nite automata: Example 3

Start to draw the automaton composed of the automata

AC ‖ AD2 ‖ AW . What do you notice?

Étienne André SITH � 2.1 2017�2018 22 / 57

Finite-State Automata Specifying Properties Using Logics

Temporal logics

Modal logics expressing timing information over a set of atomic

propositions, and can be used to formally verify a model.

Some temporal logics:

LTL (Linear Temporal Logic) [Pnueli, 1977]

CTL (Computation Tree Logic) [Clarke and Emerson, 1982]

MITL

CTL*

µ-calculus

Warning

Temporal logics express the ordering between events over time, but do

not (in general) contain timed information.

Étienne André SITH � 2.1 2017�2018 23 / 57

Finite-State Automata Specifying Properties Using Logics

Temporal logics

Modal logics expressing timing information over a set of atomic

propositions, and can be used to formally verify a model.

Some temporal logics:

LTL (Linear Temporal Logic) [Pnueli, 1977]

CTL (Computation Tree Logic) [Clarke and Emerson, 1982]

MITL

CTL*

µ-calculus

Warning

Temporal logics express the ordering between events over time, but do

not (in general) contain timed information.

Étienne André SITH � 2.1 2017�2018 23 / 57

Finite-State Automata Specifying Properties Using Logics

LTL (Linear Temporal Logic) [Pnueli, 1977]
LTL expresses formulas about the future of one path, using a set of

atomic propositions AP

Minimal syntax:

ϕ ::= p ∈ AP | ¬ϕ | ϕ∨ϕ | Xϕ | ϕUϕ

Explanation and additional operators:
p ∈ AP atomic proposition

X Next �at the next step�

U Until

F Finally (eventually) �now or sometime later�

G Globally �now and anytime later�

R Release

W Weak until

Étienne André SITH � 2.1 2017�2018 24 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

LTL: Examples

Express in LTL the following properties:

�The plane will never crash� (safety property)

G¬crash

�I will eventually get a job� (liveness property)

Fjob

�Every time I ask a question, the teacher will eventually answer

me� (liveness property)

G(ask ⇒ Fanswer)

�If I ask for food in�nitely often, then I will get food in�nitely

often� (strong fairness property)

GFask ⇒ GFfood

Étienne André SITH � 2.1 2017�2018 25 / 57

Finite-State Automata Specifying Properties Using Logics

CTL (Computation Tree Logic)
[Clarke and Emerson, 1982]

CTL expresses formulas on the order between the future events for

some or for all paths, using a set of atomic propositions AP

Quanti�ers over paths:

ϕ ::= p ∈ AP | ¬ϕ | ϕ∨ϕ | Eψ | Aψ

Quanti�ers over states:

ψ ::= Xϕ | ϕUϕ

Explanation:
E Exists �along some of the future paths�

A ForAll �along all the future paths�

Étienne André SITH � 2.1 2017�2018 26 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: More on quanti�ers

A path quanti�er must always be followed by a state quanti�er.

Some useful combinations:

�there exists a path for which the next state is. . . �

EX

�for all possible paths, the next state is. . . �

AX

�it is possible that eventually. . . �

EF

�in any case, eventually. . . �

AF

�in any case, for all states. . . �

AG

Étienne André SITH � 2.1 2017�2018 27 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Examples

Express in CTL the following properties:

�Whatever happens, the plane will never crash� (safety property)

AG¬crash

�Whatever happens, I will eventually get a job� (liveness property)

AFjob

�I may eventually get a job� (reachability property)

EFjob

�I may love you for the rest of my life�

EGlove

�It can always happen that suddenly I discover formal methods

and then I may use them for the rest of time�

AF(discover ⇒ EGuse)

Étienne André SITH � 2.1 2017�2018 28 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee

(×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee

(
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee

(
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee))

(
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Specifying Properties Using Logics

CTL: Back to the co�ee machine

Express in CTL the following properties, and decide whether they are

satis�ed for the co�ee machine

�After the button is pressed, a co�ee is always eventually

delivered.�

button ⇒ AFco�ee (×)

�After the button is pressed, there exists an execution such that a

co�ee is eventually delivered.�

button ⇒ EFco�ee (
√
)

�Once the cup is delivered, co�ee will come next.�

cup ⇒ AXco�ee (
√
)

�It is possible to get a co�ee with 2 doses of sugar.�

EF(sugar ∧ EF(sugar ∧ EFco�ee)) (
√
)

Étienne André SITH � 2.1 2017�2018 29 / 57

Finite-State Automata Reachability

The reachability problem

The reachability problem

Given FA, given a given location l, does there exist a path from an

initial location of FA leading to l?

Applications:

Is there an execution of the therapy machine leading to the

delivery of high radiations?

Can the co�ee machine deliver a co�ee with �ve doses of sugar?

Étienne André SITH � 2.1 2017�2018 30 / 57

Finite-State Automata Reachability

Forward reachability

Let S be the set of all reachable states.

Given a subset S ′ ⊆ S of states, which states of S are reachable from S ′

in just one step?

Dé�nition (Post)

Given a set S ′ ⊆ S of states, we de�ne Post as:

Post(S ′) = {s ∈ S |

∃s ′ ∈ S ′, ∃a ∈ Σ : s ′
a−→ s}

By extension, we write Post∗(S ′) for the set of all states reachable

from states of S ′.

Étienne André SITH � 2.1 2017�2018 31 / 57

Finite-State Automata Reachability

Forward reachability

Let S be the set of all reachable states.

Given a subset S ′ ⊆ S of states, which states of S are reachable from S ′

in just one step?

Dé�nition (Post)

Given a set S ′ ⊆ S of states, we de�ne Post as:

Post(S ′) = {s ∈ S |

∃s ′ ∈ S ′, ∃a ∈ Σ : s ′
a−→ s}

By extension, we write Post∗(S ′) for the set of all states reachable

from states of S ′.

Étienne André SITH � 2.1 2017�2018 31 / 57

Finite-State Automata Reachability

Forward reachability

Let S be the set of all reachable states.

Given a subset S ′ ⊆ S of states, which states of S are reachable from S ′

in just one step?

Dé�nition (Post)

Given a set S ′ ⊆ S of states, we de�ne Post as:

Post(S ′) = {s ∈ S |

∃s ′ ∈ S ′, ∃a ∈ Σ : s ′
a−→ s}

By extension, we write Post∗(S ′) for the set of all states reachable

from states of S ′.

Étienne André SITH � 2.1 2017�2018 31 / 57

Finite-State Automata Reachability

Forward reachability: Algorithm

Algorithm isReachable(TS , SI, SF)

input : Set SI of initial states, set SF of �nal states
output : true if SF is reachable from SI, false otherwise

1 S← SI ; i← 0 ;

2 repeat
3 if S ∩ SF 6= ∅ then

4 return true

;

5 S←

Post(S) ∪ S

;

6 i← i+ 1 ;

7 until

Post(S) = S

;

8 return

false

;

Étienne André SITH � 2.1 2017�2018 32 / 57

Finite-State Automata Reachability

Forward reachability: Algorithm

Algorithm isReachable(TS , SI, SF)

input : Set SI of initial states, set SF of �nal states
output : true if SF is reachable from SI, false otherwise

1 S← SI ; i← 0 ;

2 repeat
3 if S ∩ SF 6= ∅ then

4 return true

;

5 S←

Post(S) ∪ S

;

6 i← i+ 1 ;

7 until

Post(S) = S

;

8 return

false

;

Étienne André SITH � 2.1 2017�2018 32 / 57

Finite-State Automata Reachability

Forward reachability: Algorithm

Algorithm isReachable(TS , SI, SF)

input : Set SI of initial states, set SF of �nal states
output : true if SF is reachable from SI, false otherwise

1 S← SI ; i← 0 ;

2 repeat
3 if S ∩ SF 6= ∅ then

4 return true

;

5 S←

Post(S) ∪ S

;

6 i← i+ 1 ;

7 until

Post(S) = S

;

8 return

false

;

Étienne André SITH � 2.1 2017�2018 32 / 57

Finite-State Automata Reachability

Forward reachability: Algorithm

Algorithm isReachable(TS , SI, SF)

input : Set SI of initial states, set SF of �nal states
output : true if SF is reachable from SI, false otherwise

1 S← SI ; i← 0 ;

2 repeat
3 if S ∩ SF 6= ∅ then

4 return true

;

5 S←

Post(S) ∪ S

;

6 i← i+ 1 ;

7 until

Post(S) = S

;

8 return

false

;

Étienne André SITH � 2.1 2017�2018 32 / 57

Finite-State Automata Reachability

Forward reachability: Algorithm

Algorithm isReachable(TS , SI, SF)

input : Set SI of initial states, set SF of �nal states
output : true if SF is reachable from SI, false otherwise

1 S← SI ; i← 0 ;

2 repeat
3 if S ∩ SF 6= ∅ then

4 return true

;

5 S←

Post(S) ∪ S

;

6 i← i+ 1 ;

7 until

Post(S) = S

;

8 return

false

;

Étienne André SITH � 2.1 2017�2018 32 / 57

Finite-State Automata Reachability

Forward reachability: Applications

Étienne André SITH � 2.1 2017�2018 33 / 57

Finite-State Automata Specifying Properties Using Observers

Verifying properties using observers

An observer is an automaton that observes the system behavior

It synchronizes with other automata's actions

It must be non-blocking (see example on the white board)

Its location(s) give an indication on the system property

Then verifying the property reduces to a reachability condition on the

observer (in parallel with the system)

Étienne André SITH � 2.1 2017�2018 34 / 57

Finite-State Automata Specifying Properties Using Observers

Observers for the co�ee machine (1/2)
Design an observer for the co�ee machine and the drinker verifying

that it is possible to order a co�ee with at least one dose of sugar.

(. . . and check the validity of the property)

Étienne André SITH � 2.1 2017�2018 35 / 57

Finite-State Automata Specifying Properties Using Observers

Observers for the co�ee machine (2/2)
Design an observer for the co�ee machine and the drinker verifying

that whenever the co�ee comes, the cup was not put to the washing

machine before.

(. . . and check the validity of the property)

Étienne André SITH � 2.1 2017�2018 36 / 57

Timed Automata

Plan: Timed Automata

1 Finite-State Automata

2 Timed Automata

Syntax

Semantics

Timed Temporal Logics

Remarks

Étienne André SITH � 2.1 2017�2018 37 / 57

Timed Automata

Beyond �nite state automata

Finite State Automata give a powerful syntax and semantics to model

qualitative aspects of systems

Executions, sequence of actions

Modular de�nitions (parallelism)

Powerful checking (reachability, safety, liveness. . .)

But what about quantitative aspects:

Time (�the airbag always eventually in�ates, but maybe 10

seconds after the crash�)

Temperature (�the alarm always eventually ring, but maybe when

the temperature is above 75 degrees�)

Étienne André SITH � 2.1 2017�2018 38 / 57

Timed Automata

Beyond �nite state automata

Finite State Automata give a powerful syntax and semantics to model

qualitative aspects of systems

Executions, sequence of actions

Modular de�nitions (parallelism)

Powerful checking (reachability, safety, liveness. . .)

But what about quantitative aspects:

Time (�the airbag always eventually in�ates, but maybe 10

seconds after the crash�)

Temperature (�the alarm always eventually ring, but maybe when

the temperature is above 75 degrees�)

Étienne André SITH � 2.1 2017�2018 38 / 57

Timed Automata Syntax

Timed automaton (TA)

Finite state automaton (sets of locations)

and actions) augmented

with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be veri�ed to stay at a location

Transition guard: property to be veri�ed to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

Étienne André SITH � 2.1 2017�2018 39 / 57

Timed Automata Syntax

Timed automaton (TA)

Finite state automaton (sets of locations and actions)

augmented

with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be veri�ed to stay at a location

Transition guard: property to be veri�ed to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

press?

x := 0

y := 0

y = 5

cup!

x ≥ 1

press?

x := 0

y = 8

co�ee!

Étienne André SITH � 2.1 2017�2018 39 / 57

Timed Automata Syntax

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented

with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be veri�ed to stay at a location

Transition guard: property to be veri�ed to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

press?

x := 0

y := 0

y = 5

cup!

x ≥ 1

press?

x := 0

y = 8

co�ee!

Étienne André SITH � 2.1 2017�2018 39 / 57

Timed Automata Syntax

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented

with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be veri�ed to stay at a location

Transition guard: property to be veri�ed to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

y≤ 5
y ≤ 8

press?

x := 0

y := 0

y = 5

cup!

x ≥ 1

press?

x := 0

y = 8

co�ee!

Étienne André SITH � 2.1 2017�2018 39 / 57

Timed Automata Syntax

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented

with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be veri�ed to stay at a location

Transition guard: property to be veri�ed to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

y≤ 5
y ≤ 8

press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Étienne André SITH � 2.1 2017�2018 39 / 57

Timed Automata Syntax

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented

with a set X of clocks [Alur and Dill, 1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be veri�ed to stay at a location

Transition guard: property to be veri�ed to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

y≤ 5
y ≤ 8

press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Étienne André SITH � 2.1 2017�2018 39 / 57

Timed Automata Syntax

Formal de�nition of timed automata

Dé�nition (Timed automaton)

A timed automaton (TA) A is a 6-tuple of the form

A = (L, Σ, lI, X, Inv ,→), where

L is a �nite set of locations, lI ∈ L is the initial location,

Σ is a �nite set of actions,

X is a set of clocks,

Inv is the invariant, assigning to every l ∈ L a constraint Inv(l)

on the clocks, and→ is a step (or �transition�) relation consisting of elements of the

form e = (l, g, a, R, l ′), also denoted by l
g,a,R−→ l ′, where l, l ′ ∈ L,

a ∈ Σ, R ⊆ X is a set of clock variables to be reset by the step, and

g (the step guard) is a constraint on the clocks.

Étienne André SITH � 2.1 2017�2018 40 / 57

Timed Automata Syntax

Example 1
Draw the TA A = (L, Σ, l1, X, Inv ,→) such that

L = {l1, l2, l3, l4},

Σ = {a1, a2, a3},

X = {x1, x2},

Inv(l1) = x1 ≤ 3, and Inv(l3) = x2 ≥ 2,→ = {(l1, x1 ≥ 2, a1, {x1}, l2),
(l1, x2 ≤ 1, a2, ∅, l3),
(l2, x2 = 1, a3, {x2}, l2),

(l2, true, a1, ∅, l3),
(l3, true, a2, {x1, x2}, l4),

(l4, x2 > 2, a3, ∅, l3)}

Étienne André SITH � 2.1 2017�2018 41 / 57

Timed Automata Syntax

Example 2

Give the formal TA corresponding to the timed co�ee machine.

A = (L, Σ, l1, X, Inv ,→), with:

L = { , , },

Σ = {press?, cup!, coffee!},

X = {x, y},

Inv() = XXXX, Inv() = y ≤ 5, and Inv() = y ≤ 8,

Étienne André SITH � 2.1 2017�2018 42 / 57

Timed Automata Syntax

Example 2

Give the formal TA corresponding to the timed co�ee machine.

A = (L, Σ, l1, X, Inv ,→), with:

L = { , , },

Σ = {press?, cup!, coffee!},

X = {x, y},

Inv() = XXXX, Inv() = y ≤ 5, and Inv() = y ≤ 8,

Étienne André SITH � 2.1 2017�2018 42 / 57

Timed Automata Semantics

Concrete semantics of timed automata

Concrete state of a TA: pair (l,w), where

l is a location,

w is a valuation of each clock

Example:
(

,
(
x=1.2
y=3.7

))
Concrete run: alternating sequence of concrete states and actions

or time elapse

Étienne André SITH � 2.1 2017�2018 43 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

press?

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

press? 5

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

press? 5 cup!

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

press? 5 cup! 3

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

press?

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

press? 1.5

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

press? 1.5 press?

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

2.7

4.2

press? 1.5 press? 2.7

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

2.7

4.2

0

4.2

press? 1.5 press? 2.7 press?

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

2.7

4.2

0

4.2

0.8

5

press? 1.5 press? 2.7 press? 0.8

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

2.7

4.2

0

4.2

0.8

5

0.8

5

press? 1.5 press? 2.7 press? 0.8 cup!

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

2.7

4.2

0

4.2

0.8

5

0.8

5

3.8

8

press? 1.5 press? 2.7 press? 0.8 cup! 3

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Example of concrete runs

y ≤ 5

y ≤ 8
press?

x := 0

y := 0

y = 5

cup!
x ≥ 1

press?

x := 0

y = 8

co�ee!

Possible concrete runs for the co�ee machine

Co�ee with no sugar

0

0

x =

y =

0

0

5

5

5

5

8

8

8

8

press? 5 cup! 3 co�ee!

Co�ee with 2 doses of sugar

0

0

x =

y =

0

0

1.5

1.5

0

1.5

2.7

4.2

0

4.2

0.8

5

0.8

5

3.8

8

3.8

8

press? 1.5 press? 2.7 press? 0.8 cup! 3 co�ee!

Étienne André SITH � 2.1 2017�2018 44 / 57

Timed Automata Semantics

Dense time

Time is dense: transitions can be taken anytime

In�nite number of timed runs

Model checking needs a �nite structure!

Some runs are equivalent

Taking the press? action at t = 1.5 or t = 1.57 is equivalent w.r.t.

the possible actions

Idea: reason with abstractions

Region automaton [Alur and Dill, 1994], and zone automaton

Example: in location , all clock values in the following zone are

equivalent

y ≤ 5∧ y− x ≥ 4
This abstraction is �nite

Étienne André SITH � 2.1 2017�2018 45 / 57

Timed Automata Semantics

Abstract semantics of timed automata

Abstract state of a TA: pair (l, C), where

l is a location, and C is a constraint on the clocks (�zone�)

Abstract run: alternating sequence of abstract states and actions

Example

x≤ 3 x≤ 4

Possible abstract run for this TA

0 ≤ x ≤ 3
∧ x = y

Étienne André SITH � 2.1 2017�2018 46 / 57

Timed Automata Semantics

Abstract semantics of timed automata

Abstract state of a TA: pair (l, C), where

l is a location, and C is a constraint on the clocks (�zone�)

Abstract run: alternating sequence of abstract states and actions

Example

x≤ 3 x≤ 4

x ≥ 1
a

y := 0

b

x := 0

y≥ 3
c

Possible abstract run for this TA

0 ≤ x ≤ 3
∧ x = y

Étienne André SITH � 2.1 2017�2018 46 / 57

Timed Automata Semantics

Abstract semantics of timed automata

Abstract state of a TA: pair (l, C), where

l is a location, and C is a constraint on the clocks (�zone�)

Abstract run: alternating sequence of abstract states and actions

Example

x≤ 3 x≤ 4

x ≥ 1
a

y := 0

b

x := 0

y≥ 3
c

Possible abstract run for this TA

0 ≤ x ≤ 3
∧ x = y

Étienne André SITH � 2.1 2017�2018 46 / 57

Timed Automata Semantics

Abstract semantics of timed automata

Abstract state of a TA: pair (l, C), where

l is a location, and C is a constraint on the clocks (�zone�)

Abstract run: alternating sequence of abstract states and actions

Example

x≤ 3 x≤ 4

x ≥ 1
a

y := 0

b

x := 0

y≥ 3
c

Possible abstract run for this TA

0 ≤ x ≤ 3
∧ x = y

1 ≤ x ≤ 4
∧ 1 ≤ x − y ≤ 3

a

Étienne André SITH � 2.1 2017�2018 46 / 57

Timed Automata Semantics

Abstract semantics of timed automata

Abstract state of a TA: pair (l, C), where

l is a location, and C is a constraint on the clocks (�zone�)

Abstract run: alternating sequence of abstract states and actions

Example

x≤ 3 x≤ 4

x ≥ 1
a

y := 0

b

x := 0

y≥ 3
c

Possible abstract run for this TA

0 ≤ x ≤ 3
∧ x = y

1 ≤ x ≤ 4
∧ 1 ≤ x − y ≤ 3

y ≥ 0
∧ 1 ≤ y − x ≤ 4

a b

Étienne André SITH � 2.1 2017�2018 46 / 57

Timed Automata Semantics

Abstract semantics of timed automata

Abstract state of a TA: pair (l, C), where

l is a location, and C is a constraint on the clocks (�zone�)

Abstract run: alternating sequence of abstract states and actions

Example

x≤ 3 x≤ 4

x ≥ 1
a

y := 0

b

x := 0

y≥ 3
c

Possible abstract run for this TA

0 ≤ x ≤ 3
∧ x = y

1 ≤ x ≤ 4
∧ 1 ≤ x − y ≤ 3

y ≥ 0
∧ 1 ≤ y − x ≤ 4

y ≥ 3
∧ 1 ≤ y − x ≤ 4

a b c

Étienne André SITH � 2.1 2017�2018 46 / 57

Timed Automata Semantics

What is decidability?

Dé�nition

A decision problem is decidable if one can design an algorithm that, for

any input of the problem, can answer yes or no (in a �nite time, with a

�nite memory).

�given three integers, is one of them the product of the other two?�

�given a timed automaton, does there exist a run from the initial

state to a given location l?�

�given a context-free grammar, does it generate all strings?�

�given a Turing machine, will it eventually halt?�

Étienne André SITH � 2.1 2017�2018 47 / 57

Timed Automata Semantics

What is decidability?

Dé�nition

A decision problem is decidable if one can design an algorithm that, for

any input of the problem, can answer yes or no (in a �nite time, with a

�nite memory).

�given three integers, is one of them the product of the other two?�

�given a timed automaton, does there exist a run from the initial

state to a given location l?�

�given a context-free grammar, does it generate all strings?�

�given a Turing machine, will it eventually halt?�

Étienne André SITH � 2.1 2017�2018 47 / 57

Timed Automata Semantics

What is decidability?

Dé�nition

A decision problem is decidable if one can design an algorithm that, for

any input of the problem, can answer yes or no (in a �nite time, with a

�nite memory).

√

�given three integers, is one of them the product of the other two?�

�given a timed automaton, does there exist a run from the initial

state to a given location l?�

�given a context-free grammar, does it generate all strings?�

�given a Turing machine, will it eventually halt?�

Étienne André SITH � 2.1 2017�2018 47 / 57

Timed Automata Semantics

What is decidability?

Dé�nition

A decision problem is decidable if one can design an algorithm that, for

any input of the problem, can answer yes or no (in a �nite time, with a

�nite memory).

√

�given three integers, is one of them the product of the other two?�

√

�given a timed automaton, does there exist a run from the initial

state to a given location l?�

�given a context-free grammar, does it generate all strings?�

�given a Turing machine, will it eventually halt?�

Étienne André SITH � 2.1 2017�2018 47 / 57

Timed Automata Semantics

What is decidability?

Dé�nition

A decision problem is decidable if one can design an algorithm that, for

any input of the problem, can answer yes or no (in a �nite time, with a

�nite memory).

√

�given three integers, is one of them the product of the other two?�

√

�given a timed automaton, does there exist a run from the initial

state to a given location l?�

×

�given a context-free grammar, does it generate all strings?�

�given a Turing machine, will it eventually halt?�

Étienne André SITH � 2.1 2017�2018 47 / 57

Timed Automata Semantics

What is decidability?

Dé�nition

A decision problem is decidable if one can design an algorithm that, for

any input of the problem, can answer yes or no (in a �nite time, with a

�nite memory).

√

�given three integers, is one of them the product of the other two?�

√

�given a timed automaton, does there exist a run from the initial

state to a given location l?�

×

�given a context-free grammar, does it generate all strings?�

×

�given a Turing machine, will it eventually halt?�

Étienne André SITH � 2.1 2017�2018 47 / 57

Timed Automata Semantics

Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for

algorithms yielding exact solutions (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is

correct

design algorithms yielding over- or under-approximations

Étienne André SITH � 2.1 2017�2018 48 / 57

Timed Automata Semantics

Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for

algorithms yielding exact solutions (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is

correct

design algorithms yielding over- or under-approximations

Étienne André SITH � 2.1 2017�2018 48 / 57

Timed Automata Semantics

Decision problems for timed automata

The �niteness of the region automaton allows us to check properties

, Reachability of a location (PSPACE-complete)

, Liveness (Büchi conditions)

Some problems impossible to check using the region automaton (but

still decidable)

, non-Zenoness emptiness check

Some undecidable problems (and hence impossible to check in general)

/ universality of the timed language

/ timed language inclusion

Étienne André SITH � 2.1 2017�2018 49 / 57

Timed Automata Semantics

Software supporting timed automata

Timed automata have been successfully used since the 1990s

Tools for modeling and verifying models speci�ed using TA

HyTech (also hybrid, parametric timed automata)

[Henzinger et al., 1997]

Kronos [Yovine, 1997]

TReX (also parametric timed automata) [Annichini et al., 2001]

Uppaal [Larsen et al., 1997]

Roméo (parametric time Petri nets) [Lime et al., 2009]

PAT (also other formalisms) [Sun et al., 2009]

IMITATOR (also parametric timed automata) [André et al., 2012]

Étienne André SITH � 2.1 2017�2018 50 / 57

Timed Automata Timed Temporal Logics

Timed temporal logics

Specify properties on the order and the delay between events

No X operator because

of dense time

Étienne André SITH � 2.1 2017�2018 51 / 57

Timed Automata Timed Temporal Logics

Timed temporal logics

Specify properties on the order and the delay between events

No X operator because

of dense time

Étienne André SITH � 2.1 2017�2018 51 / 57

Timed Automata Timed Temporal Logics

TCTL (Timed CTL) [Alur et al., 1993]

TCTL expresses formulas on the order and the time between the future

events for some or for all paths, using a set of atomic propositions AP

Quanti�ers over paths:

ϕ ::= p ∈ AP | ¬p | ϕ∨ϕ | ϕ∧ϕ | Eψ | Aψ

Quanti�ers over states:

ψ ::= ϕUIϕ

I is an interval of the form [a, b], [a, b), (a, b], (a, b), [a,∞), or (a,∞),

where a, b ∈ N

Étienne André SITH � 2.1 2017�2018 52 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples

�Whatever happens, the plane will never crash in the next 10

minutes�

AG≤10minutes¬crash

�I may get a job before next year�

EF≤1year job

�Whenever a �re breaks, it is sure that the alarm will start ringing

at least 5 seconds and at most 10 seconds later�

AG
(
�re ⇒ (AF[5,10]alarm)

)

�Whatever happens, I will love you for 2 years after we marry�

AG
(
marry ⇒ (AG≤2love)

)

Étienne André SITH � 2.1 2017�2018 53 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples

�Whatever happens, the plane will never crash in the next 10

minutes�

AG≤10minutes¬crash

�I may get a job before next year�

EF≤1year job

�Whenever a �re breaks, it is sure that the alarm will start ringing

at least 5 seconds and at most 10 seconds later�

AG
(
�re ⇒ (AF[5,10]alarm)

)

�Whatever happens, I will love you for 2 years after we marry�

AG
(
marry ⇒ (AG≤2love)

)

Étienne André SITH � 2.1 2017�2018 53 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples

�Whatever happens, the plane will never crash in the next 10

minutes�

AG≤10minutes¬crash

�I may get a job before next year�

EF≤1year job

�Whenever a �re breaks, it is sure that the alarm will start ringing

at least 5 seconds and at most 10 seconds later�

AG
(
�re ⇒ (AF[5,10]alarm)

)

�Whatever happens, I will love you for 2 years after we marry�

AG
(
marry ⇒ (AG≤2love)

)

Étienne André SITH � 2.1 2017�2018 53 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples

�Whatever happens, the plane will never crash in the next 10

minutes�

AG≤10minutes¬crash

�I may get a job before next year�

EF≤1year job

�Whenever a �re breaks, it is sure that the alarm will start ringing

at least 5 seconds and at most 10 seconds later�

AG
(
�re ⇒ (AF[5,10]alarm)

)

�Whatever happens, I will love you for 2 years after we marry�

AG
(
marry ⇒ (AG≤2love)

)

Étienne André SITH � 2.1 2017�2018 53 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples

�Whatever happens, the plane will never crash in the next 10

minutes�

AG≤10minutes¬crash

�I may get a job before next year�

EF≤1year job

�Whenever a �re breaks, it is sure that the alarm will start ringing

at least 5 seconds and at most 10 seconds later�

AG
(
�re ⇒ (AF[5,10]alarm)

)

�Whatever happens, I will love you for 2 years after we marry�

AG
(
marry ⇒ (AG≤2love)

)

Étienne André SITH � 2.1 2017�2018 53 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)
(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press)) (×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press)) (
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)

(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press)) (×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press)) (
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)
(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press)) (×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press)) (
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)
(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press))

(×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press)) (
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)
(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press)) (×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press)) (
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)
(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press)) (×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press))

(
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Timed Temporal Logics

TCTL: Examples (co�ee machine)

�Whenever the button is pressed, a co�ee is necessarily eventually

delivered within 10 units of time.�

AG
(
press ⇒ (AF≤10co�ee)

)
(
√
)

�It must never happen that the button can be pressed twice within

1 unit of time.�

AG(press ⇒ (AG≤1¬press)) (×)

�It must never happen that the button can be pressed twice within

a time strictly less than 1 unit of time.�

AG(press ⇒ (AG<1¬press)) (
√
)

Étienne André SITH � 2.1 2017�2018 54 / 57

Timed Automata Remarks

Remarks on timed automata

Timed automata can be composed just as �nite-state automata

Symbolic states can be e�ciently computed using Di�erence

Bound Matrices (DBMs)

isReachable can be applied to the abstract semantics of timed

automata (the underlying �nite transition system)

Observers (both untimed and timed) can be used for timed

automata
The expressive power of observers for timed automata has been studied
in [Aceto et al., 1998b, Aceto et al., 1998a]

Étienne André SITH � 2.1 2017�2018 55 / 57

Timed Automata Remarks

Exercise: An observer for timed automata

Design an observer for the co�ee machine verifying that it must never

happen that the button can be pressed twice within a time strictly less

than 1 unit of time.

Étienne André SITH � 2.1 2017�2018 56 / 57

Timed Automata Remarks

Towards a parametrization. . .

Challenge 1: systems incompletely speci�ed

Some delays may not be known yet, or may change

Challenge 2: Robustness [Markey, 2011]

What happens if 8 is implemented with 7.99?

Can I really get a co�ee with 5 doses of sugar?

Challenge 3: Optimization of timing constants

Up to which value of the delay between two actions press? can I

still order a co�ee with 3 doses of sugar?

Challenge 4: Avoiding numerous veri�cations

If one of the timing delays of the model changes, should I model

check again the whole system?

A solution: Parametric analysis

Consider that timing constants are unknown (parameters)

Find good values for the parameters s.t. the system behaves well

Étienne André SITH � 2.1 2017�2018 57 / 57

Timed Automata Remarks

Towards a parametrization. . .

Challenge 1: systems incompletely speci�ed

Some delays may not be known yet, or may change

Challenge 2: Robustness [Markey, 2011]

What happens if 8 is implemented with 7.99?

Can I really get a co�ee with 5 doses of sugar?

Challenge 3: Optimization of timing constants

Up to which value of the delay between two actions press? can I

still order a co�ee with 3 doses of sugar?

Challenge 4: Avoiding numerous veri�cations

If one of the timing delays of the model changes, should I model

check again the whole system?

A solution: Parametric analysis

Consider that timing constants are unknown (parameters)

Find good values for the parameters s.t. the system behaves well

Étienne André SITH � 2.1 2017�2018 57 / 57

Sources et références

Source et références

Étienne André SITH � 2.1 2017�2018 58 / 57

Sources et références

General References

Systems and Software Veri�cation (Béatrice Bérard, Michel Bidoit,

Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci,

Philippe Schnoebelen), Springer, 2001

Principles of Model Checking (Christel Baier and Joost-Pieter

Katoen), MIT Press, 2008

Étienne André SITH � 2.1 2017�2018 59 / 57

Bibliographie

References I

Aceto, L., Bouyer, P., Burgueño, A., and Larsen, K. G. (1998a).
The power of reachability testing for timed automata.
In Arvind, V. and Ramanujam, R., editors, FSTTCS'98, volume 1530 of Lecture
Notes in Computer Science, pages 245�256. Springer.

Aceto, L., Burgueño, A., and Larsen, K. G. (1998b).
Model checking via reachability testing for timed automata.
In TACAS'98, volume 1384 of Lecture Notes in Computer Science, pages 263�280.
Springer.

Alur, R., Courcoubetis, C., and Dill, D. L. (1993).
Model-checking in dense real-time.
Information and Computation, 104(1):2�34.

Alur, R. and Dill, D. L. (1994).
A theory of timed automata.
Theoretical Computer Science, 126(2):183�235.

Étienne André SITH � 2.1 2017�2018 60 / 57

Bibliographie

References II

André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012).
IMITATOR 2.5: A tool for analyzing robustness in scheduling problems.
In Giannakopoulou, D. and Méry, D., editors, Proceedings of the 18th International
Symposium on Formal Methods (FM'12), volume 7436 of Lecture Notes in Computer
Science, pages 33�36. Springer.

André, É. and Soulat, R. (2013).
The Inverse Method.
FOCUS Series in Computer Engineering and Information Technology. ISTE Ltd and
John Wiley & Sons Inc.
176 pages.

Annichini, A., Bouajjani, A., and Sighireanu, M. (2001).
TReX: A tool for reachability analysis of complex systems.
In Berry, G., Comon, H., and Finkel, A., editors, CAV'01, volume 2102 of Lecture
Notes in Computer Science, pages 368�372. Springer.

Baier, C. and Katoen, J.-P. (2008).
Principles of Model Checking.
MIT Press.

Étienne André SITH � 2.1 2017�2018 61 / 57

Bibliographie

References III

Clarke, E. M. and Emerson, E. A. (1982).
Design and synthesis of synchronization skeletons using branching-time temporal
logic.
In Proceedings of the Workshop on Logics of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52�71. Springer.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997).
HyTech: A model checker for hybrid systems.
Software Tools for Technology Transfer, 1:110�122.

Larsen, K. G., Pettersson, P., and Yi, W. (1997).
UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134�152.

Lime, D., Roux, O. H., Seidner, C., and Traonouez, L.-M. (2009).
Romeo: A parametric model-checker for Petri nets with stopwatches.
In Kowalewski, S. and Philippou, A., editors, 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2009), volume
5505 of LNCS, pages 54�57. Springer.

Étienne André SITH � 2.1 2017�2018 62 / 57

Bibliographie

References IV

Markey, N. (2011).
Robustness in real-time systems.
In Proceedings of the 6th IEEE International Symposium on Industrial Embedded
Systems (SIES'11), pages 28�34, Västerås, Sweden. IEEE Computer Society Press.

Pnueli, A. (1977).
The temporal logic of programs.
In FOCS, pages 46�57. IEEE Computer Society.

Sun, J., Liu, Y., Dong, J. S., and Pang, J. (2009).
PAT: Towards �exible veri�cation under fairness.
In CAV'09, volume 5643 of Lecture Notes in Computer Science, pages 709�714.
Springer.

Yovine, S. (1997).
Kronos: A veri�cation tool for real-time systems.
International Journal on Software Tools for Technology Transfer, 1(1-2):123�133.

Étienne André SITH � 2.1 2017�2018 63 / 57

License

License

Étienne André SITH � 2.1 2017�2018 64 / 57

License

Source of the graphics (1)

Titre: Clock 256
Auteur: Everaldo Coelho
Source: https://commons.wikimedia.org/wiki/File:Clock_256.png

Licence: GNU LGPL

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

License: public domain

Étienne André SITH � 2.1 2017�2018 65 / 57

https://commons.wikimedia.org/wiki/File:Clock_256.png
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

License

Source of the graphics (2)

Title: Hurricane Sandy Blackout New York Skyline
Author: David Shankbone
Source: https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG

License: CC BY 3.0

Title: Sad mac
Author: Przemub
Source: https://commons.wikimedia.org/wiki/File:Sad_mac.png

License: Public domain

Title: Deepwater Horizon O�shore Drilling Platform on Fire
Author: ideum
Source: https://secure.flickr.com/photos/ideum/4711481781/

License: CC BY-SA 2.0

Title: DA-SC-88-01663
Author: imcomkorea
Source: https://secure.flickr.com/photos/imcomkorea/3017886760/

License: CC BY-NC-ND 2.0

Étienne André SITH � 2.1 2017�2018 66 / 57

https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG
https://commons.wikimedia.org/wiki/File:Sad_mac.png
https://secure.flickr.com/photos/ideum/4711481781/
https://secure.flickr.com/photos/imcomkorea/3017886760/

License

Licence de ce document
Ce support de cours peut être republié, réutilisé et modi�é selon les

termes de la licence Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 Unported (CC
BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/

Auteur : Étienne André
(Source LATEX disponible sur demande)

Étienne André SITH � 2.1 2017�2018 67 / 57

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://lipn.univ-paris13.fr/~andre/

	Finite-State Automata
	Syntax
	Semantics
	Examples
	Composing Finite State Automata
	Specifying Properties Using Logics
	Reachability
	Specifying Properties Using Observers

	Timed Automata
	Syntax
	Semantics
	Timed Temporal Logics
	Remarks

