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Context: Verifying complex timed systems

Need for early bug detection
Bugs discovered when final testing: expensive

; Need for a thorough specification and verification phase
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The Therac-25 radiation therapy machine (1/2)

Radiation therapy machine used in the 1980s
Involved in accidents between 1985 and 1987, in which patients were given
massive overdoses of radiation

Approximately 100 times the intended dose!
Numerous causes, including race condition

“The failure only occurred when a particular nonstandard sequence of
keystrokes was entered on the VT-100 terminal which controlled the
PDP-11 computer: an X to (erroneously) select 25MV photon mode
followed by ↑, E to (correctly) select 25 MeV Electron mode, then Enter,
all within eight seconds.”
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The Therac-25 radiation therapy machine (2/2)

The testing engineers could obviously not detect this strange (and quick!)
sequence leading to the failure.

Limits of testing

This case illustrates the difficulty of bug detection without formal methods.
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Bugs can be difficult to find

. . . and can have dramatic consequences for critical systems:

health-related devices

aeronautics and aerospace transportation

smart homes and smart cities

military devices

etc.

Hence, high need for formal verification
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Model checking concurrent systems

Use formal methods [Baier and Katoen, 2008]

A model of the system

?

|= is unreachable

A property to be satisfied

Question: does the model of the system satisfy the property?

Yes No

Counterexample
Turing award (2007) to Edmund M. Clarke, Allen Emerson and Joseph Sifakis
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Transition systems

Definition (Transition system)

A transition system (TS) is a tuple T S = (S,Σ, S0, SF ,⇒), where

S is a set of states;

Σ is an alphabet of events;

S0 ⊆ S is a set of initial states;

SF ⊆ S is a set of final (or accepting) states; and,

⇒ : S × Σ→ 2S is a transition relation.

Usually, we write s1
a

=⇒ s2 when (s1, a, s2) ∈ ⇒.
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Finite-state automata

Definition (Finite automaton)

A Finite automaton (FA) FA = (L,Σ, `0, LF , E) is a tuple where

L is a finite set of locations;

Σ is a finite set of actions;

`0 ∈ L is the initial location;

LF ⊆ L is a set of final (or accepting) locations;

E : L× Σ→ L is a transition relation.

Usually, we write l1
a−→ l2 when (l1, a, l2) ∈ E.
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Example 1

FA = (L,Σ, `0, LF , E), with

L = {l1, l2, l3}
Σ = {a, b, c, d}
`0 = l1

LF = {l2}
E = {(l1, a, l1), (l1, b, l2), (l2, c, l1), (l2, d, l2), (l3, b, l2)}

a b

c

d

b
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Example 2
a

b

c

d

b

d
a

FA = (L,Σ, `0, LF , E), with

L = {l1, l2, l3, l4}
Σ = {a, b, c, d}
`0 = {l1}
LF = {l1, l3, l4}
E = {(l1, b, l4), (l2, c, l1), (l2, b, l3), (l2, d, l4), (l3, d, l3),
(l4, a, l3), (l4, a, l4)}
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Semantics of finite automata

Definition (Semantics of finite automata)

Let FA = (L,Σ, `0, LF ,⇒) be a Finite Automaton.
The semantics of FA is the transition system T S = (S,Σ, S0, SF ,⇒), with

S = L;

Σ the same;

S0 = {`0};
SF = LF ; and,

⇒ = E.
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A coffee machineAC

I S P
press? cup?

press?

coffee!

I Waiting
S Adding sugar
P Preparing coffee

Examples of runs
Coffee with no sugar

press? cup? coffee!

Coffee with 2 doses of sugar

press? press? press? cup? coffee!

And so on
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A coffee drinker (1/2)

Specify a coffee drinker automatonAD1 that performs forever the following
actions:

1 press the button once
2 place the cup
3 wait for the coffee
4 drink the coffee
5 put the cup to the washing machine

D1 D2 D3 D4 D5press! cup! coffee? drink!

toWash!
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A coffee drinker (2/2)

Specify a coffee drinker automatonAD2 that works just asAD1 except that
(s)he can nondeterministically ask for 0, 1 or 2 doses of sugar.

D1 D2 D3 D4 D5

D6

D7

press!
cup!

coffee? drink!

toWash!

press!

press!

cup!

cup!
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A washing machine

Specify a washing machine automatonAW that accepts cups to wash, and
once 5 cups are placed into the washing machine, then the machine washes
all cups.

W0 W1 W2 W3 W4 W5
toWash? toWash? toWash? toWash? toWash?

wash!
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Systems as components

Often, a complex system is made of components or modules
Components can interact with each other:

using strong synchronization

using shared variables

using one-to-one synchronization

in an interleaving manner

Here, we show that FAs can be composed easily using strong synchronization on
actions.
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Composition of finite automata

FA1 = (L1,Σ1, (`0)1, (LF )1, E1)
FA2 = (L2,Σ2, (`0)2, (LF )2, E2)

Then we define FA1 ‖ FA2 as

A = (L,Σ, `0, LF , E) with

L = L1 × L2

Σ = Σ1 ∪ Σ2

`0 =
(
(`0)1, (`0)2

)
LF = (LF )1 × L2 ∪ L1 × (LF )2 (alternatively: LF = (LF )1 × (LF )2)(
(`1, `2), a, (`

′
1, `
′
2)
)
∈ E if

a ∈ Σ1 ∩ Σ2 ∧ (`1, a1, `
′
1) ∈ E1 ∧ (`2, a2, `

′
2) ∈ E2, or

a ∈ Σ1 \ Σ2 ∧ (`1, a, `
′
1) ∈ E1 ∧ `′2 = `2, or

a ∈ Σ2 \ Σ1 ∧ (`2, a, `
′
2) ∈ E2 ∧ `′1 = `1
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Composition of finite automata: Example 1

Draw the automaton composed of the automataAC ‖ AD1

W 1 A 2 D 3 W 4 W 5press cup coffee drink!

toWash!
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Composition of finite automata: Example 2

Draw the automaton composed of the automataAC ‖ AD2

W 1 A 2 D 3 W 4 W 5

A 6

A 7

press!
cup!

coffee? drink!

toWash!

press!

press!

cup!

cup!
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Composition of finite automata: Example 3

Start to draw the automaton composed of the automataAC ‖ AD2 ‖ AW . What
do you notice?
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Temporal logics

Modal logics expressing timing information over a set of atomic propositions,
and can be used to formally verify a model.

Some temporal logics:

LTL (Linear Temporal Logic) [Pnueli, 1977]

CTL (Computation Tree Logic) [Clarke and Emerson, 1982]

MITL

CTL*

µ-calculus

Warning

Temporal logics express the ordering between events over time, but do not (in
general) contain timed information.
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LTL (Linear Temporal Logic) [Pnueli, 1977]

LTL expresses formulas about the future of one path, using a set of atomic
propositions AP

Minimal syntax:

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

Explanation and additional operators:
p ∈ AP atomic proposition
X Next “at the next step”
U Until “ψ holds until ϕ holds”
F Finally (eventually) “now or sometime later”
G Globally “now and anytime later”
R Release
W Weak until “ψ holds either until ϕ holds or forever”
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Illustrating LTL operators
Xϕ

ϕ

Fϕ
ϕ

Gϕ
ϕ ϕ ϕ ϕ ϕ

ψUϕ
ψ ψ ψ ϕ

ψRϕ
ϕ ϕ ϕ ϕ,ψ

ϕ ϕ ϕ ϕ ϕ

ψWϕ
ψ ψ ψ ϕ

ψ ψ ψ ψ ψ
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Exercise: Understanding LTL
ψ ψ ψ ϕ ϕ ϕ ϕ

On which states do the following properties hold?
ϕ

Xϕ

Fϕ

Fψ

Gϕ

GX(ϕ ∨ ψ)

∅

GFϕ

GFψ

∅

ψUϕ

ϕUψ

ψWϕ

ϕWψ

ψRϕ
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Exercise: Specifying with LTL

Express in LTL the following properties:

“The plane will never crash” (safety property)

G¬crash

“I will eventually get a job” (liveness property)

Fjob

“Every day, I will be alive until the day of my death—unless I am immortal”

deathRalive

“Every time I ask a question, the teacher will eventually answer me”
(fairness property)

G(ask⇒ Fanswer)

“If I ask for food infinitely often, then I will get food infinitely often” (strong
fairness property)

GFask⇒ GFfood
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CTL (Computation Tree Logic) [Clarke and Emerson, 1982]

CTL expresses formulas on the order between the future events for some or for
all paths, using a set of atomic propositions AP

Quantifiers over paths:

ϕ ::= p ∈ AP | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ

Quantifiers over states:
ψ ::= Xϕ | ϕUϕ

Explanation:
E Exists “along some of the future paths”
A ForAll “along all the future paths”
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Illustrating combined quantifiers (1/2)

A path quantifier must always be followed by a state quantifier.

Some useful combinations:

EX

“there exists a path for which the next state is. . . ”

ϕ

AX

“for all possible paths, the next state is. . . ”

ϕ

ϕ
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Illustrating combined quantifiers (2/2)

EF

“it is possible that eventually. . . ”

ϕ

AF

“in any case, eventually. . . ”

ϕ

ϕ

AG

“in any case, for all states. . . ”

ϕ

ϕ ϕ ϕ

ϕ ϕ
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Exercise: Understanding CTL

ϕ

ϕ ϕ ϕ

ϕ ϕ

ψ

ϕ,ψ

On which states do the following properties hold?
ϕ =⇒ ψ

EXϕ

AXϕ

EFψ

AFψ

AX(ϕ ∧ ψ)

∅

EGϕ

AGϕ

AϕUψ
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Exercise: specifying with CTL

Express in CTL the following properties:

“Whatever happens, the plane will never crash” (safety property)

AG¬crash

“Whatever happens, I will eventually get a job” (liveness property)

AFjob

“I may eventually get a job” (reachability property)

EFjob

“I may love you for the rest of my life”

EGlove

“It can always happen that suddenly I discover formal methods and then I
may use them for the rest of time”

AG
(
discover⇒ (EGuse)

)
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Exercise: CTL and the coffee machine

Express in CTL the following properties, and decide whether they are satisfied for
the coffee machine

“After the button is pressed, a coffee is always eventually delivered.”

AG
(
button⇒ AFcoffee

)
(×)

“After the button is pressed, there exists an execution such that a coffee is
eventually delivered.”

AG
(
button⇒ EFcoffee

)
(
√
)

“Once the cup is delivered, coffee will come next.”

AG
(
cup⇒ AXcoffee

)
(
√
)

“It is possible to get a coffee with 2 doses of sugar.”

EF(sugar ∧EF(sugar ∧EFcoffee)) (
√
)
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The reachability problem

The reachability problem

Given FA, given a given location `, does there exist a path from an initial location
of FA leading to `?

Applications:

Is there an execution of the therapy machine leading to the delivery of high
radiations?

Can the coffee machine deliver a coffee with five doses of sugar?
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Forward reachability

Let S be the set of all reachable states.
Given a subset S′ ⊆ S of states, which states of S are reachable from S′ in just
one step?

Definition (Post)

Given a set S′ ⊆ S of states, we define Post as:

Post(S′) = {s ∈ S |

∃s′ ∈ S′,∃a ∈ Σ : s′
a−→ s}

By extension, we write Post∗(S′) for the set of all states reachable from states
of S′.
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Forward reachability: Algorithm

Algorithm isReachable(T S, S0, SF )

input : Set S0 of initial states, set SF of final states
output : true if SF is reachable from S0, false otherwise

1 S ← S0 ;
2 repeat
3 if S ∩ SF 6= ∅ then

4 return true

;

5 S ←

Post(S) ∪ S

;
6 until

Post(S) ⊆ S

;
7 return

false

;
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Exercise: Forward reachability

Problem: is reachable?
S0 = { }
SF = { }

S S ∩ SF 6= ∅?

false

false

false

true

Answer:

true
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Backward Reachability

Let S be the set of all reachable states.
Given a subset S′ ⊆ S of states, from which states of S can we access states
of S′ in just one step?

Definition (Pre)

Given a set S′ ⊆ S of states, we define Pre as:

Pre(S′) = {s ∈ S | ∃s′ ∈ S′, ∃a ∈ Σ : s
a−→ s′}

By extension, we write Pre∗(S′) for the set of all states from which one can
reach states of S′.
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Backward Reachability: Algorithm

isReachableBack(T S, S0, SF )

input : Set S0 of initial states, set SF of final states
output : true if SF is reachable from S0, false otherwise

1 S ← SF ;
2 repeat
3 if S ∩ S0 6= ∅ then

4 return true

;

5 S ←

Pre(S) ∪ S

;
6 until

Pre(S) ⊆ S

;
7 return

false

;
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Exercise: Backward reachability

Problem: is reachable?
S0 = { }
SF = { }

S S ∩ S0 6= ∅?

false

false

false

Answer:

false
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Verifying properties using observers

An observer is an automaton that observes the system behavior

It synchronizes with other automata’s actions

It must be non-blocking (see example on the white board)

Its location(s) give an indication on the system property

Then verifying the property reduces to a reachability condition on the observer
(in parallel with the system)
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Observers for the coffee machine (1/3)
Design an observer for the coffee machine and the drinker verifying that
whenever the coffee comes, no cup was put to the washing machine before.
(. . . and check the validity of the property)

/

cup?

toWash? cup?

toWash? toWash?

cup?
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Observers for the coffee machine (2/3)
Design an observer for the coffee machine and the drinker verifying that it is
possible to order a coffee with at least one dose of sugar.
(. . . and check the validity of the property)

,

coffee?

press?
press?

coffee?

press?

coffee?

press?

coffee?
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Observers for the coffee machine (3/3)
Design an observer for the coffee machine and the drinker verifying that it is
possible to order a coffee with exactly one dose of sugar.
(. . . and check the validity of the property)

,

coffee? press?
press?

coffee?

coffee?

press?

press?

coffee?

press?coffee?
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Sources and references
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Finkel, François Laroussinie, Antoine Petit, Laure Petrucci, Philippe
Schnoebelen), Springer, 2001

Principles of Model Checking (Christel Baier and Joost-Pieter Katoen), MIT
Press, 2008
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Additional explanation
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Explanation for the 4 pictures in the beginning

Allusion to the Northeast blackout (USA, 2003)
Computer bug
Consequences: 11 fatalities, huge cost
(Picture actually from the Sandy Hurricane, 2012)

Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
No fatalities
Computer bug: inaccurate finite element analysis modeling
(Picture actually from the Deepwater Horizon Offshore Drilling Platform)

Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)
28 fatalities, hundreds of injured
Computer bug: software error (clock drift)
(Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

Error screen on the earliest versions of Macintosh
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License
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Source of the graphics (1)

Title: Clock 256
Author: Everaldo Coelho
Source: https://commons.wikimedia.org/wiki/File:Clock_256.png
License: GNU LGPL

Title: Smiley green alien big eyes (aaah)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain

Title: Smiley green alien big eyes (cry)
Author: LadyofHats
Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License: public domain
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Source of the graphics (2)

Title: Hurricane Sandy Blackout New York Skyline
Author: David Shankbone
Source: https://commons.wikimedia.org/wiki/File:Hurricane_Sandy_Blackout_New_York_Skyline.JPG
License: CC BY 3.0

Title: Sad mac
Author: Przemub
Source: https://commons.wikimedia.org/wiki/File:Sad_mac.png
License: Public domain

Title: Deepwater Horizon Offshore Drilling Platform on Fire
Author: ideum
Source: https://secure.flickr.com/photos/ideum/4711481781/
License: CC BY-SA 2.0

Title: DA-SC-88-01663
Author: imcomkorea
Source: https://secure.flickr.com/photos/imcomkorea/3017886760/
License: CC BY-NC-ND 2.0
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License of this document

These slides can be republished, reused and modified according to the terms of
the license Creative Commons Attribution-NonCommercial-ShareAlike 4.0
Unported (CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/

Author: Étienne André
(LATEX source available on demand)
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